Skip to main content
Log in

Changes in the range of motion of the cervical spine and adjacent segments at ≥24 months after uninstrumented corpectomy for cervical spondylotic myelopathy

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Few clinical studies have described the changes in the range of motion (ROM) of the cervical spine and adjacent segments following central corpectomy. We aimed to quantify the changes in range of motion (ROM) of the cervical spine and the adjacent segments at ≥24 months following uninstrumented central corpectomy (CC) for cervical spondylotic myelopathy (CSM) and to determine the contribution of the adjacent segments to the compensation for loss of motion of the cervical spine following CC.

Methods

Preoperative and follow-up lateral cervical spine radiographs of 36 patients who underwent CC for CSM between 2001 and 2007 were compared for the ROM of the subaxial cervical spine, superior and inferior adjacent segment. Anterior osteophytes as seen on the radiographs were classified according to Nathan’s grading system.

Results

The mean duration of follow-up was 48.5 months. At follow-up, the total cervical spine ROM decreased by 18.3° ± 2.2° (p < 0.001), the superior adjacent segment ROM increased by 2.3° ± 0.9° (p = 0.01) and the inferior adjacent segment ROM, measured in 20 cases, increased by 6.2° ± 1.7° (p = 0.01). The superior adjacent segment showed a 70% increase, whereas the inferior adjacent segment showed a 110% increase in mobility. Nathan’s grade at the superior or inferior adjacent segment increased in 12 cases.

Conclusions

CC significantly reduces the motion of the cervical spine and increases the adjacent segment mobility at intermediate follow-up. The inferior adjacent segment shows greater compensation of motion as compared to the superior adjacent segment in our series. Adjacent segment degeneration as estimated by Nathan’s grade was seen in one-third of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adams CBT, Logue V (1971) Studies in cervical spondylotic myelopathy: I. Movement of the cervical roots, dura and cord, and their relation to the course of the extrathecal roots. Brain 94:557–568

    Article  PubMed  CAS  Google Scholar 

  2. Adams CBT, Logue V (1971) Studies in cervical spondylotic myelopathy: II. The movement and contour of the spine in relation to the neural complications of cervical spondylosis. Brain 94:569–586

    Article  Google Scholar 

  3. Ahn P-G, Kim KN, Moon SW, Kim KS (2009) Changes in cervical range of motion and sagittal alignment in early and late phases after total disc replacement: radiographic follow-up exceeding 2 years. J Neurosurg Spine 11:688–695

    Article  PubMed  Google Scholar 

  4. Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18:2167–2173

    Article  PubMed  CAS  Google Scholar 

  5. Barnes MP, Saunders M (1984) The effect of cervical mobility on the natural history of cervical spondylotic myelopathy. J Neurol Neurosurg Psychiatry 47:17–20

    Article  PubMed  CAS  Google Scholar 

  6. Braunstein EM, Hunter LY, Bailey RW (1980) Long term radiographic changes following anterior cervical fusion. Clin Radiol 31:201–203

    Article  PubMed  CAS  Google Scholar 

  7. Capen DA, Garland DE, Waters RL (1985) Surgical stabilization of the cervical spine: a comparative analysis of anterior and posterior spine fusions. Clin Orthop Relat Res 196:229–237

    PubMed  Google Scholar 

  8. Cheng JS, Liu F, Komistek RD, Mahfouz MR, Sharma A, Glaser D (2007) Comparison of cervical spine kinematics using a fluoroscopic model for adjacent segment degeneration. J Neurosurg Spine 7:509–513

    Article  PubMed  Google Scholar 

  9. Cherubino P, Benazzo F, Borromeo U, Perle S (1990) Degenerative arthritis of the adjacent spinal joints following anterior cervical spinal fusion: clinicoradiologic and statistical correlations. Ital J Orthop Traumatol 16:533–543

    PubMed  CAS  Google Scholar 

  10. DiAngelo DJ, Foley KT, Vossel KA, Rampersaud YR, Jansen TH (2000) Anterior cervical plating reverses load transfer through multilevel strut-grafts. Spine 25:783–795

    Article  PubMed  CAS  Google Scholar 

  11. Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine 30:1165–1172

    Article  PubMed  Google Scholar 

  12. Dmitriev AE, Kuklo TR, Lehman RAJ, Rosner MK (2007) Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis: an in vitro human cadaveric study of the operative and adjacent segment kinematics. Spine 32:E188–E196

    Article  PubMed  Google Scholar 

  13. Döhler JR, Kahn MRH, Hughes SPF (1985) Instability of the cervical spine after anterior interbody fusion. Arch Orthop Trauma Surg 104:247–250

    Article  PubMed  Google Scholar 

  14. Eck JC, Humphreys SC, Lim T-H, Jeong ST, Kim JG, Hodges SD, An HS (2002) Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental Motion. Spine 27:2431–2434

    Article  PubMed  Google Scholar 

  15. Edwards CC II, Heller JG, Murakami H (2002) Corpectomy versus laminoplasty for multilevel cervical myelopathy: an independent matched-cohort analysis. Spine 27:1168–1175

    Article  PubMed  Google Scholar 

  16. Emery SE, Bohlman HH, Bolesta MJ, Jones PK (1998) Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy: two to seventeen-year follow-up. J Bone Joint Surg Am 80:941–951

    Article  PubMed  CAS  Google Scholar 

  17. Fuller DA, Kirkpatrick JS, Emery SE, Wilber RG, Davy DT (1998) A kinematic study of the cervical spine before and after segmental arthrodesis. Spine 23:1649–1656

    Article  PubMed  CAS  Google Scholar 

  18. Galler RM, Dogan S, Fifield MS, Bozkus H, Chamberlain RH, Sonntag VK, Crawford NR (2007) Biomechanical comparison of instrumented and uninstrumented multilevel cervical discectomy versus corpectomy. Spine 32:1220–1226

    Article  PubMed  Google Scholar 

  19. Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Van Calenbergh F, van Loon J (2004) Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 17:79–85

    PubMed  Google Scholar 

  20. Gore DR, Gardner GM, Sepic SB, Murray MP (1986) Roentgenographic findings following anterior cervical fusion. Skeletal Radiol 15:556–559

    Article  PubMed  CAS  Google Scholar 

  21. Hacker RJ, Cauthen JC, Gilbert TJ, Griffith SL (2000) A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 25:2646–2655

    Article  PubMed  CAS  Google Scholar 

  22. Hanai K, Fujiyoshi F, Kamei K (1986) Subtotal vertebrectomy and spinal fusion for cervical spondylotic myelopathy. Spine 11:310–315

    Article  PubMed  CAS  Google Scholar 

  23. Hilibrand AS, Balasubramanian K, Eichenbaum M, Thinnes JH, Daffner S, Berta S, Albert TJ, Vaccaro AR, Siegler S (2006) The effect of anterior cervical fusion on neck motion. Spine 31:1688–1692

    Article  PubMed  Google Scholar 

  24. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519–528

    PubMed  CAS  Google Scholar 

  25. Humphreys SC, Hodges SD, Patwardhan A, Eck JC, Covington LA, Sartori M (1998) The natural history of the cervical foramen in symptomatic and asymptomatic individuals aged 20–60 years as measured by magnetic resonance imaging: a descriptive approach. Spine 23:2180–2184

    Article  PubMed  CAS  Google Scholar 

  26. Hunter LY, Braunstein EM, Bailey RW (1980) Radiographic changes following anterior cervical fusion. Spine 5:399–401

    Article  PubMed  CAS  Google Scholar 

  27. Ikenaga M, Shikata J, Tanaka C (2005) Anterior corpectomy and fusion with fibular strut grafts for multilevel cervical myelopathy. J Neurosurg Spine 3:79–85

    Article  PubMed  Google Scholar 

  28. Kirkpatrick JS, Levy JA, Carillo J, Moeini SR (1999) Reconstruction after multilevel corpectomy in the cervical spine: a sagittal plane biomechanical study. Spine 24:1186–1190

    Article  PubMed  CAS  Google Scholar 

  29. Kolstad F, Nygaard OP, Leivseth G (2007) Segmental motion adjacent to anterior cervical arthrodesis: a prospective study. Spine 32:512–517

    Article  PubMed  Google Scholar 

  30. Kulkarni V, Rajshekhar V, Raghuram L (2004) Accelerated spondylotic changes adjacent to the fused segment following central cervical corpectomy: magnetic resonance imaging study evidence. J Neurosurg 100:2–6

    Article  PubMed  Google Scholar 

  31. Kumar GS, Rajshekhar V (2009) Acute graft extrusion following central corpectomy in patients with cervical spondylotic myelopathy and ossified posterior longitudinal ligament. J Clin Neurosci 16:373–377

    Article  PubMed  Google Scholar 

  32. Maeda T, Arizono T, Saito T, Iwamoto Y (2002) Cervical alignment, range of motion, and instability after cervical laminoplasty. Clin Orthop Relat Res 401:132–138

    Article  PubMed  Google Scholar 

  33. Matsunaga S, Kabayama S, Yamamoto T, Yone K, Sakou T, Nakanishi K (1999) Strain on intervertebral discs after anterior cervical decompression and fusion. Spine 24:670–675

    Article  PubMed  CAS  Google Scholar 

  34. Morio Y, Yamamoto K, Teshima R, Nagashima H, Hagino H (2000) Clinicoradiologic study of cervical laminoplasty with posterolateral fusion or bone graft. Spine 25:190

    Article  PubMed  CAS  Google Scholar 

  35. Nathan H (1962) Osteophytes of the vertebral column: an anatomical study of their development according to age, race, and sex with considerations as to their etiology and significance. J Bone Joint Surg Am 44:243–268

    Google Scholar 

  36. Oh MC, Zhang HY, Park JY, Kim KS (2009) Two-level anterior cervical discectomy versus one-level corpectomy in cervical spondylotic myelopathy. Spine 34:692–696

    Article  PubMed  Google Scholar 

  37. Park D-H, Ramakrishnan P, Cho T-H, Lorenz E, Eck JC, Humphreys SC, Lim T-H (2007) Effect of lower two-level anterior cervical fusion on the superior adjacent level. J Neurosurg Spine 7:336–340

    Article  PubMed  Google Scholar 

  38. Park S-A, Fayyazi AH, Ordway NR, Sun MH, Fredrickson BE, Yuan HA (2009) Correlation of radiostereometric measured cervical range of motion with clinical radiographic findings after anterior cervical discectomy and fusion. Spine 34:680–686

    Article  PubMed  Google Scholar 

  39. Rajshekhar V, Arunkumar MJ, Kumar SS (2003) Changes in cervical spine curvature after uninstrumented one- and two-level corpectomy in patients with spondylotic myelopathy. Neurosurgery 52:799–804

    Article  PubMed  Google Scholar 

  40. Rajshekhar V, Kumar GS (2005) Functional outcome after central corpectomy in poor-grade patients with cervical spondylotic myelopathy or ossified posterior longitudinal ligament. Neurosurgery 56:1279–1284

    Article  PubMed  Google Scholar 

  41. Rajshekhar V, Muliyil J (2007) Patient perceived outcome after central corpectomy for cervical spondylotic myelopathy. Surg Neurol 68:185–190

    Article  PubMed  Google Scholar 

  42. Reid JD (1960) Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J Neurol Neurosurg Psychiatry 23:214–221

    Article  PubMed  CAS  Google Scholar 

  43. Reitman CA, Hipp JA, Nguyen L, Esses SI (2004) Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine 29:E221–E226

    Article  PubMed  Google Scholar 

  44. Sasso RC, Smucker JD, Hacker RJ, Heller JG (2007) Artificial disc versus fusion: a prospective, randomized study with 2-year follow-up on 99 patients. Spine 32:2933–2940

    Article  PubMed  Google Scholar 

  45. Schwab JS, DiAngelo DJ, Foley KT (2006) Motion compensation associated with single-level cervical fusion: where does the lost motion go? Spine 31:2439–2448

    Article  PubMed  Google Scholar 

  46. Shin DA, Yi S, Yoon DH, Kim KN, Shin HC (2009) Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease. Spine 34:1153–1159

    Article  PubMed  Google Scholar 

  47. Simpson AK, Biswas D, Emerson JW, Lawrence BD, Grauer JN (2008) Quantifying the effects of age, gender, degeneration, and adjacent level degeneration on cervical spine range of motion using multivariate analyses. Spine 33:183–186

    Article  PubMed  Google Scholar 

  48. Thakar S, Vedantam A, Rajshekhar V (2008) Correlation between change in graft height and change in segmental angle following central corpectomy for cervical spondylotic myelopathy. J Neurosurg Spine 9:158–166

    Article  PubMed  Google Scholar 

  49. Wada E, Suzuki S, Kanazawa A, Matsuoka T, Miyamoto S, Yonenobu K (2001) Subtotal corpectomy versus laminoplasty for multilevel cervical spondylotic myelopathy: a long-term follow-up study over 10 years. Spine 26:1443–1447

    Article  PubMed  CAS  Google Scholar 

  50. White AA III, Panjabi MM (1990) Clinical biomechanics of the spine. JB Lippincott, Philadelphia, p 98

    Google Scholar 

  51. Wigfield C, Gill S, Nelson R, Langdon I, Metcalf N, Robertson J (2002) Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg Spine 96:17–21

    Article  Google Scholar 

  52. Woesner ME, Mitts MG (1972) The evaluation of cervical spine motion below C2: a comparison of cineroentgenographic and conventional roentgenographic methods. Am J Roentgenol 115:148–154

    CAS  Google Scholar 

  53. Ylinen JJ, Savolainen S, Airaksinen O, Kautiainen H, Salo P, Häkkinen A (2003) Decreased strength and mobility in patients after anterior cervical diskectomy compared with healthy subjects. Arch Phys Med Rehabil 84:1043–1047

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedantam Rajshekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedantam, A., Revanappa, K.K. & Rajshekhar, V. Changes in the range of motion of the cervical spine and adjacent segments at ≥24 months after uninstrumented corpectomy for cervical spondylotic myelopathy. Acta Neurochir 153, 995–1001 (2011). https://doi.org/10.1007/s00701-011-0986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-011-0986-5

Keywords

Navigation