
Computing (2020) 102:2385–2408
https://doi.org/10.1007/s00607-020-00833-6

REGULAR PAPER

On opportunistic software reuse

Niko Mäkitalo1 · Antero Taivalsaari2 · Arto Kiviluoto1 · Tommi Mikkonen1 ·
Rafael Capilla3

Received: 27 February 2020 / Accepted: 2 July 2020 / Published online: 10 July 2020
© The Author(s) 2020

Abstract
The availability of open source assets for almost all imaginable domains has led the
software industry to opportunistic design—an approach in which people develop new
software systems in an ad hoc fashion by reusing and combining components that were
not designed to be used together. In this paper we investigate this emerging approach.
We demonstrate the approach with an industrial example in which Node.js modules
and various subsystems are used in an opportunistic way. Furthermore, to study oppor-
tunistic reuse as a phenomenon, we present the results of three contextual interviews
and a survey with reuse practitioners to understand to what extent opportunistic reuse
offers improvements over traditional systematic reuse approaches.

Keywords Software reuse · Software engineering · Opportunistic design ·
Opportunistic reuse · Software architecture · Code snippet

Mathematics Subject Classification 68-04

B Tommi Mikkonen
tommi.mikkonen@helsinki.fi

Niko Mäkitalo
niko.makitalo@helsinki.fi

Antero Taivalsaari
antero.taivalsaari@nokia-bell-labs.com

Arto Kiviluoto
arto.kiviluoto@alumni.helsinki.fi

Rafael Capilla
rafael.capilla@urjc.es

1 Department of Computer Science, University of Helsinki, Helsinki, Finland

2 Nokia Bell Labs, Tampere, Finland

3 Department of Computer Science, Rey Juan Carlos University, Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-020-00833-6&domain=pdf


2386 N. Mäkitalo et al.

1 Introduction

Ever since software reuse became a software engineering discipline in the early 1970s,
there has been a call for systematic software reuse practices. The key idea in reuse is
that parts of a computer program written at one time can be used in the construction
of other programs later [15]. Reusability is typically considered as one of the key
“ilities” or major software quality factors [15]. However, it has turned out that for
various reasons achieving the benefits of reuse and reusable software is difficult [40].

Today, software reuse takes place in many ways. The evolution of software arti-
facts from mere source code to modern forms of reuse as services and microservices
[4] has changed the way developers integrate functionality into their systems. More-
over, the systematization offered by software product line engineering practices for
building and customize reusable core assets into a common product line architecture
[9] is a popular development strategy nowadays. However, the current popularity of
today’s open source repositories has brought a shift in which developers search and
reuse codemodules seeminglywithout any systematic reusemethod and inwhich soft-
ware designs are created and modified opportunistically based on available third-party
components.

Opportunistic design is an approach in which people develop new software systems
by reusing and combining components that were not designed to be used together [18,
34]. This emergent pattern places focus on large scale reuse anddeveloper convenience,
with the developers “trawling” formost suitable open source components andmodules
online. The availability of open source assets for almost all imaginable domains has led
to software systems in which the visible application code—written by the application
developers themselves—forms only the “tip of the iceberg” compared to the reused
bulk that remains mostly unknown to the developers [44]. While often immensely
productive in short term, this approach implies that reuse takes place in a rather ad
hoc, mix-and-match fashion.

This paper examines opportunistic design and new forms of software reuse, and
presents an industry system where we discuss opportunistic reuse. Furthermore, in
order to gather more evidence, we conducted a number of interviews and ran a sur-
vey to investigate how widely this practice has spread in the software industry and
to understand how developers apply new forms of reuse when creating real-world
software systems. The work is an extended version of a short insights article recently
published in IEEE Software [34] and a position paper that focused on practical chal-
lenges of opportunistic design [44]. While the goal of the earlier short papers was
to increase the awareness of opportunistic reuse practices, the goal of this extended
version is to provide a coherent view of the phenomenon and to truly connect it to
academic background and previous work.

The rest of this paper is structured as follows. In Sect. 2, we provide the necessary
background and motivation for the paper. In Sect. 3, we focus on the fundamentals
of software reuse in light of the new, emerging forms of reuse. In Sect. 4, we present
a motivating example following the “tip of the iceberg” development model that is
typical today. In Sect. 5, we describe our research approach. In Sect. 6, we provide
three contextual interviews from practitioners as confirming evidence of opportunis-
tic reuse practices. In Sect. 7, we present a survey regarding emerging practices of

123



On opportunistic software reuse 2387

opportunistic reuse, with data collected from the industry. In Sect. 8, we provide an
extended discussion of our findings and their implications for practitioners. In Sect. 9,
we present threats to the validity of this work. In Sect. 10, we address related work.
Finally, in Sect. 11 we discuss the conclusions. Sections 2–4 are based on our previous
papers, whereas Sects. 5-11 are new material that includes our results.

2 Background andmotivation

Originally introduced in the NATO Software Engineering Conference in 1968 [35],
software reuse started becoming a popular research topic in the 1980s [2,31,32]. Since
then, software reuse as research topic blossomed, reaching maturity in the 1990s, after
the introduction and adoption of software product line engineering (SPLE) practices
and Microsoft’s component technologies.

Compared to systematic reuse methodologies [25,31] proposed more than twenty
years ago, today people routinely trawl for ready-made solutions for specific problems
online and try to discover libraries and code snippets to be included in applications
with little consideration or knowledge about their technical quality. The availability of
reusable open source assets has changed the nature of system development profoundly,
with developers rarely performing reuse in a planned or institutionalizedway such as in
product line development [8]. Also, with the popularity of service-based components
[3,49], microservices, and open source repositories, the systematization of reuse tech-
niques adopted by SPLs have become gradually less formal and more opportunistic.
Today, developers tend to reuse software trawling and scraping the Internet for most
suitable or most easily available components at the time when they need them. Quite
often, the developer has no idea of what code or how much code they are actually
reusing, since the included components may dynamically pull in hundreds or even
thousands of additional subcomponents; it may simply be infeasible to analyze all the
dependencies and follow their evolution over time.

This approach is all about combining unrelated, often previously unknownhardware
and software artifacts by joining themwith “duct tape and glue code” [18]. Opportunis-
tic reuse is common in spite of components potentially having unknown safety-related
characteristics or having been developed by unknown developers using unknown
methodologies [52]. Although it is widely admitted that opportunistic designs are not
automatically optimal and such designs may require significant architectural adjust-
ments to fulfill functional and non-functional requirements [41], developers have
embraced this approach in droves. Component selection is often based simply on
popularity ratings or recommendations from other developers [34].

In contrast with classical forms of reuse aimed to produce high-quality components
[16,48], reuse of assets that have not been originally designed with reuse in mind can
lead to serious quality-related issues. Apart from potential quality issues, the scale of
opportunistic design and ad hoc reuse has received surprisingly little attention among
researchers, but nowadays is becoming amore relevant topic of study formany research
groups.

123



2388 N. Mäkitalo et al.

3 Opportunistic reuse as a new trend

According to Krueger’s classic survey paper on software reuse [27], a successful
software reuse technique must fulfill the following four “truisms”:

1. For a software reuse technique to be effective, it must reduce the cognitive distance
between the initial concept of a system and its final executable implementation.

2. For a software reuse technique to be effective, it must be easier to reuse the artifacts
than it is to develop the software from scratch.

3. To select an artifact for reuse, you must know what it does.
4. To reuse a software artifact effectively, you must be able to “find it” faster than

you could “build it”.

In relation to Krueger’s observations, the situation has changed radically within
a short period of time. In the 1980s, studies showed that a considerable amount of
time in software development was spent on designing routines and structures that are
almost identical with constructs used in other programs. In 1984, Jones reported that on
average only 15% of code is truly unique, novel and specific to individual applications;
the remaining 85% appeared to be common, generic, and concerned with making the
program to cooperate with the surrounding execution environment [23]. Other studies
in the 1980s reported potential reuse rates between 10 and 60% [2,31,32].

Although the potential for software reuse was high in the 1980s and early 1990s,
actual reuse rates remained low. Those days developers actually preferred writing their
own code, and took pride on doing as much as possible from scratch. In fact, they were
effectively expected or forced to do so, since third-party components were not widely
available or easy to find. Furthermore, before the widespread adoption of open source
software development, components were rarely available for free or with license terms
favoring large-scale use, apart from standard operating system and language libraries.

Today, many companies and individuals are actually proud about the amount the
third-party code in their products. For instance, well-known car manufacturers, such
as Bentley and Volvo, proudly boast in their advertisements and reviews about the
large amount of software in their cars, as if it was categorically a good thing [51].
For example, the 2018 version of the Bentley Continental GT is said to contain “93
processors, feeding more than a 100 million lines of code through eight kilometers
of wiring”.1 Thus, software reuse has finally happened in massive scale, but it has
happened in an entirely different way than envisioned by the software engineering
community.

As opposed to the situation in the 1980s and 1990s when the amount of reused
software formed only a fraction of the entire software systems, the situation is now
decidedly the contrary. While opportunistic designs promise short development times
and rapid deployment, developers are becoming accustomed to designs that they do
not fully understand, and yet using them even in domains that require high attention
to security and safety. As mentioned before, opportunistic reuse and the “tip-of-the-
iceberg” developmentmodel has fundamentally reshaped theway software systems are
constructed. Instead of systematically written, organized software libraries available

1 http://edition.cnn.com/style/article/bentley-continental-gt/index.html.

123

http://edition.cnn.com/style/article/bentley-continental-gt/index.html


On opportunistic software reuse 2389

for purchase, there is a cornucopia of free, overlapping open source components of
varying quality available for nearly all imaginable tasks and domains. This is in striking
contrast with the situation in the late 1990s when software reuse was declared dead.2

The success of reuse in general, and opportunistic design in particular, in the past
years can be attributed largely to second and fourth points raised by Krueger [27].
The Web and its search engines have made it easy to search for potentially applicable
software components and code snippets online. In addition, the availability of soft-
ware in open source form has made it easy to experiment with potentially applicable
components without any significant financial commitment ahead of time. Yet, contrary
to Krueger’s [27] third point—“to select an artifact for reuse, you must know what
it does”—it can be argued that the overall understanding of the reused software has
decreased over the years. After all, the key premise in “classic” software reuse is that
there are systematically designed systems with stable, well-documented interfaces.
The sheer volume of open source software makes it difficult to analyze and compare
technologies in detail, let alone fully understand the abstractions exposed by them,
especially in light of the highly varying quality of documentation that is characteristic
of many open source projects.

To summarize, the basic problem in opportunistic design is that it does not follow
any systematic, abstraction-driven approach. Instead, as characterized by Hartmann et
al. [18], developers end up creating significant systems by hacking,mashing and gluing
together disparate, continually evolving components that were not designed to work
together. Developers publishing such components often have no formal training in cre-
ating high-quality software components, and the developers performing opportunistic,
ad hoc reuse might not have any professional skills for selecting and combining such
components. From our observations from the existing literature and experience in
reusing software, we jointly synthesized the following list of challenges:

– What are the current or most popular reuse practices, specifically those concerned
with non-systematic approaches?

– How do developers search and reuse code in today’s software projects?
– How do developers integrate the reused code into their existing systems and archi-
tectures?

– What checks do reuse practitioners perform before they integrate the reusable code
snippets into their own system?

We will answer the challenges above in the following sections.

4 An industrial example

Our industrial example is based on an IoT development project in which the goal was
to design and implement a scalable cloud back-end for an IoT system for multiple use
cases. In particular, some of the use cases required that large amounts of measurement
data could be collected—generated by various types of data-intensive measurement
devices—and then streamed in continuously to our back-end at high data rates. Besides
streaming data, real-time data analytic was needed. This feature consisted of analyzing

2 https://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html.

123

https://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html


2390 N. Mäkitalo et al.

and processing the incoming data in near real-time, and then generating visualizations,
actuation requests, alerts and other actions with minimal latency. Inside the back-end,
query mechanisms were introduced for accessing collected data (time series), with
various query parameters and query types (e.g., from a certain sensor and within the
given time range). Finally, a notification mechanism was introduced to provide alerts
when data values reached certain predefined criteria.

4.1 Architecture design

The baseline architecture of our system was largely prescribed by the domain of IoT
systems, in essence forming an end-to-end data pipeline. In this pipeline, the data flow
from measurement devices via a cloud backend to applications. Within the pipeline,
the cloud introduces numerous functions, including in particular data acquisition,
analytics, storage, and access and notification mechanisms.

In order tomake it easier to add new domain-specific functionality, components and
APIs on top of the base system, a microservice based architecture [36] was selected
as a generic solution for plugging in additional components without interfering with
the rest of the system.

From the very beginning of the development, it was obvious that we would have
neither interest nor resources to develop the complete system from scratch. Therefore,
we decided to rely extensively on available third-party open source software for areas
that were not at the focus of the development, such as streaming data acquisition and
real-time analytics functionality, both of which require complex solutions.

In addition, our system included a lot of “bread-and-butter” cloud back-end func-
tionality such as user identity management (user accounts and access permissions),
device management, logging and monitoring capabilities, and some administrative
tools for managing the overall system. Concrete key subsystems include NGINX3 for
security perimeter, Apache Kafka4 for data acquisition, Apache Storm5 for real-time
data analytics, and Graphite6 and Icinga7 for logging and monitoring.

We also wanted to have a flexible, scalable cloud deployment model that was not
physically tied to any particular machines, data centers or vendors. To meet these
requirements, we used Docker8 and Docker Swarm.9 The deployment model had to
include the ability to easily deploy multiple instances of the entire cloud environment
onto different types of cloud environments, including OpenStack10 in particular.

For the implementation of microservices, our developers tapped extensively into
the rich NPM module ecosystem; about half of the microservices are written on top
of Node.js. In microservice implementations, the number of NPMmodules (transitive

3 https://nginx.org/.
4 https://kafka.apache.org/.
5 http://storm.apache.org/.
6 https://graphiteapp.org/.
7 https://www.icinga.com/.
8 https://www.docker.com/.
9 https://docs.docker.com/engine/swarm/.
10 https://www.openstack.org/.

123

https://nginx.org/
https://kafka.apache.org/
http://storm.apache.org/
https://graphiteapp.org/
https://www.icinga.com/
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://www.openstack.org/


On opportunistic software reuse 2391

closure of all theNPMmodules pulled in by eachmicroservice) varies froma fewdozen
to over a thousand per microservice. Cumulatively, the total number of different NPM
modules (excluding duplicates) used by the system exceeds two thousand.Whilemany
of those NPMmodules are very simple, such as uuid, there are also significantly more
complex ones such as core-js, shelljs, or redux. Overall, we estimate that only about
3-5% of the source code of the system was written by our developers, while the vast
majority comes from third-party open source components. The exact percentage is not
easy to measure given the transitive and overlapping dependencies in the dynamically
loaded modules and the fact that dependencies may change in different versions of the
components.

4.2 Analysis on reuse and its effectiveness

For software developers who are familiar with modern cloud backend technologies,
the selections of key components and subsystems are relatively easy to justify. These
selections meet Krueger’s software reuse “truisms” (see Sect. 3) with flying colors: all
the key subsystems mentioned above are so complex that developing similar function-
ality from scratch would have been prohibitively expensive (Krueger’s Principle 2).
These technologies made the implementation of the system considerably faster, thus
reducing the cognitive distance between the original concept and final implementa-
tion (Principle 1). These systems are so well documented that the “finding them” and
“knowing what they do” principles were relatively easy to fulfill (Principles 3 and 4).

In contrast, the technology selections for the Node.js based microservices are more
difficult to justify. According to the developers, many of the NPM modules were
chosen based on module popularity ratings alone. In the end, because of the extensive
transitive dependencies in NPM modules, the system contains literally hundreds of
NPM modules that were not explicitly chosen by the developers but which were
pulled in because of the dependencies. We have characterized software reuse in the
implementation of the example in light of Krueger’s software reuse principles a bit
further in Table 1.

Themotivating industrial example presented above is by nomeans unique in its very
high reuse ratio. There are various factors to contribute to such rates, such as routinely
using containers and virtual machines. Libraries that are included in designs represent
only a fraction of the features needed, and standardized deployment pipelines aswell as
other infrastructure enable deployment in the large. A further influencing factor in this
example is that the team was largely self-organized and free to select components that
were considered well suited for their project, but also motivated to study components
on their own right. Links to systems, subsystems and modules were discovered via
different sources, in particular from the Stack Overflow, NPM repository, as well as
from developers’ personal contacts and favourite web sites. Although strict scrutiny
was applied to the selected components, this technology selection process contributed
to high reuse rates, simply because more widely used, popular and mature libraries
and frameworks tend to have a large number of dependencies that pull in hundreds of
additional components.

123



2392 N. Mäkitalo et al.

Table 1 Evaluation of the industrial example in view of Krueger’s truisms/principles

Krueger’s truism Observations in the industrial example

1 An effective reuse technique
reduces the cognitive distance
between the concept and its
implementation

The selection of the key components and subsystems
mentioned above sped up development considerably,
and allowed the limited development resources to be
used on implementing domain-specific functionalities

2 For a software reuse technique to
be effective, it must be easier to
reuse the artifacts than building
software from scratch

Considering the scale of the system being built and the
effort it takes to build such software, it would have
been impossible to build the same system from scratch
with the same resources and in the same timeframe.
The use of new software technologies such as
containers facilitated the development of a more
scalable solution

3 To select an artifact for reuse, you
must know what it does

This is a pain point for opportunistic reuse. In selecting
the main implementation technologies, developers
resorted primarily to their past experience, choosing
technologies that were fairly well understood ahead of
time. However, in choosing the NPM modules that
were used for implementing the microservices, the
developers had to rely extensively on 3rd party
recommendations, ultimately picking numerous
components that were unfamiliar at the beginning of
the project. Moreover, the external dependencies of
those components were originally unknown

4 To reuse a software artifact
effectively, you must be able to find
it faster than you could build it

In the era of Internet, it can be remarkably easy to
search possible implementation technologies and
components. In our project, we noticed that
developers were often overwhelmed by the amount of
possible overlapping component offerings especially
in the NPM ecosystem, though. While finding
components can be easy, choosing the right ones has
not become easier. This is an area where developer’s
experience plays a significant role

5 Researchmethod

In this section we describe the research approach that we followed. As we planned
to investigate opportunistic reuse as a phenomenon, we decided to carry out an
exploratory case study as described in [10,50] to find out similarities and differences
among different opportunistic reuse practices. To carry out our study we first defined
the following research questions derived from the challenges stated in Sect. 3.

RQ1. How does opportunistic reuse appear in practice?
Rationale: In this research question we want to investigate which are the main
reasons by which opportunistic reuse appears.
RQ2.Howdo the developers select the reusable assetswhen using anopportunistic
reuse strategy?
Rationale: This question analyzes how developers reuse software when they do
not follow a classic, systematic and rational process for component selection and
development.

123



On opportunistic software reuse 2393

RQ3.What is the expected architectural impact arising from the practice of oppor-
tunistic reuse?
Rationale: Finally, our last question analyzes what are the expected benefits of
opportunistic reuse compared to traditional, systematic approaches.

Basically, the first two challenges described in Sect. 3 are addressed by research
questions RQ1 and RQ2, while the third challenge is addressed by RQ3. Our fourth
challenge is partially addressed in RQ3 but also by one of the questions we describe in
our only survey and direct interviews as well. To address the aforementioned research
questions we first collected some initial insight from three direct interviews with
practitioners and developers in our universities (Sect. 6) and after we carried out an
online survey (Sect. 7) with international practitioners involved in reuse activities. The
questions we asked the subjects in the online survey were derived from the insight
gained during the interviews.

6 Evidence gathered from university projects

To further investigate the process of opportunistic design, we conducted three con-
textual interviews with practitioners from two research groups from Universidad Rey
Juan Carlos (URJC, Spain) and University of Helsinki (Finland). Contextual inter-
views are a kind of think-aloud protocols [11,19] commonly used to gain insight into
the environment or context in which a design will be used. Therefore, we gathered
qualitative data as stated by [39] to provide additional insight on how practitioners
do opportunistic reuse. We selected interviewed research groups using the follow-
ing criteria: (i) Groups involved in reuse practices of open source components, (ii)
Groups with at least five years of experience reusing open source software, (iii) Local
colleagues or groups that we can approach easily to perform direct interviews.

In the interviews, we asked the following questions:

(i) Which repositories you prefer to use for finding reusable assets?
(ii) How do you search for reusable assets?
(iii) How do you ascertain that a reused code asset fits in your system or software

project?
(iv) How do you integrate the reused code into your system?
(v) Do you check the conformity of the reused asset with the existing architecture?

First interview. In the first interview we asked two researchers involved in a
research project called ElasTest,11 an H2020 research project aimed to create an elas-
tic platform for testing complex distributed large software systems in the cloud. Both
researchers have more than 10 years of experience in developing and reusing code
assets, and they are leaders of their research group as well. The key answers to the
aforementioned questions are as follows.

(i, ii, iii) People from ElasTest mainly search in Google for a reusable asset in order
to solve a programming issue, and then utilize Stack Overflow mentioned above to
find relevant discussions. Then, they look for similar questions searching for responses

11 https://elastest.eu/project.html.

123

https://elastest.eu/project.html


2394 N. Mäkitalo et al.

with highly ranked answers, and review the responses manually and select the code
snippet that fits best to their situation.

(iv, v) Usually both researchers stated they perform some security checks before
they integrate the code into the system; afterwards they run the usual tests defined in
the project. Only in those cases where they need to upgrade the version of the existing
platform caused by a requirement of the code reused they check the conformity with
the existing software architecture for adaptation purposes.

Second interview. Our second interview targeted researchers and developers from
research groups at URJC (Spain). We interviewed two of their research leaders with
more than 15 years of experience in open source software projects andmining software
repositories. Both are researchers and founders of a start-up called Bitergia,12 and they
have experience in reusing software artifacts. All interviewees from research groups
have a PhD in computer science, and they range between 39 and 45 years old. The
answers we received for the five questions are summarized below.

(i, ii) The repositories most frequently used for finding reusable components are
Stack Overflow but also in Python.org repositories. The search strategy used is Google
search looking for the first non-sponsored match. If it is on Stack Overflow or a similar
repository, they keep looking for reviews and ratings there. In other case they go back
to the search results and look for the second non-sponsored match.

(iii) Regarding how the subjects can be sure if a code snippet is applicable: When
they are not sure they use the Python interpreter, and test it before introducing the
asset into the code.

(iv, v) Finally, the integration is done using simple copy-paste of the code; some
adaptation is typically required, e.g., to change conflicting variable names.The subjects
said that checking the conformity of the reused asset with the existing architecture is
not relevant for Python3 code.

Third interview. Our third interview concerns developers of Toska group, Depart-
ment of Computer Science, University of Helsinki, where total of two developers were
interviewed. The goal of the group is to provide administrative tools for the depart-
ment, and the age of the interviewees is between 20-30. Both interviewees also have
experience working for companies outside of the university context.

(i, ii) Stack Overflow is used for finding snippets as well as links to bigger compo-
nents. In addition, NPM is routinely used for smallish functions, Github for complete
(sub-)systems, and Docker Hub for container-related issues. Asking or checking from
Stack Overflow is done routinely. When working on unfamiliar territory, the strategy
used has three steps: first, figure out what others are using; secondly, share the view
with the team, and finally make a personal decision.

(iii) When selecting a module to reuse, first the developers check that the module
has the correct features. If necessary, the missing features are added and a pull request
is sent to the project, but only if the addition is architecturally sound. If necessary, own
implementation following the baseline design of an existing component can be used,
for instance if the necessary additions contradict the original design or the used licence
does not match the needs, or there are support issues with the community. Once the
module is running, it is possible to consider performance and other secondary issues.

12 https://bitergia.com/.

123

https://bitergia.com/


On opportunistic software reuse 2395

(iv, v) Modifications are made on the need basis to systems that are familiar enough
or small enough. In contrast, larger systems such as GUI libraries, databases and so
on are taken as given and not modified at all, and rest of the system will be adapted
to accommodate them. The process of integration also depends on which repository
the code is from. For Github, for instance, a common approach is to install the entire
repository and follow installation instructions. In contrast, for NPM or Dockerhub,
command line interface is preferred, so that a package can be deleted as effortlessly
as it was installed in the first place.

Conformance and license checks are made upon integration, although this partly
depends on what kinds of reusable assets are being reused. To summarize, in all inter-
views about opportunistic reuse, its seems a search using Stack Overflow is a usual
practice in this kind of research projects where software development tasks are carried
out. In both cases the subjects stated they employ similar techniques as opportunis-
tic reuse strategy. Nevertheless, the alignment of the code with the architecture is
only performed in those cases where interoperability requirements demand this, as in
other cases developers assume the code snippets reused should fit under the existing
architecture.

7 Survey design

According to the guidelines defined in [38], we performed a survey to confirm our
pilot study based on the contextual interviews and find evidence with practitioners
about opportunistic reuse practices.

7.1 Setting up the survey

Planning the survey. We carried out an online survey with industry practitioners
and researchers in the field of software engineering asking 9 questions about their
experience in reusing software, with special focus on opportunistic reuse. We asked
questions about: (i) code reuse practice; (ii) architectural impact during reuse; and
(iii) associated benefits. The complete list of questions is presented in the Appendix.
The mapping between the research questions and the specific questions asked in the
survey is as follows: RQ1 is answered by questions Q1 and Q4, RQ2 is answered by
Q2 and Q3, RQ3 is answered by Q6 and Q7. Finally, we asked other questions (Q5,
Q8 and Q9) not specifically related to any of the research questions but important to
gain additional findings.

Data collection. As a result we collected responses from 30 industry practitioners
and researchers in Brazil, Denmark, Finland, Italy, Spain and Sweden. We collected
the data until November 15, 2019 as we could not get additional responses. We used
the following online survey13 to collect the responses. The authors suggest to email
different reuse experts or people involve in reuse practices in the past based on contact
of our research network and names found randomly in the research paperswe analyzed.
We double-checked that all participants who answer the survey respond to at least the

13 https://tinyurl.com/yaagvmat.

123

https://tinyurl.com/yaagvmat


2396 N. Mäkitalo et al.

Fig. 1 Professional roles of the respondents

80%of the answers to accept the response as valid. In the following sectionswe discuss
the results.

7.2 Survey results

The demographics of the survey are as follows. We received responses from subjects
representing 13 companies and one university. The size of the companies are: seven
large companies, two medium-size organizations and four small organizations. Only
one respondent did not indicate his organization. The ages of the respondents range
between 22 and 55 years, and the average industry experience is 15 years, ranging
between 3 and 37 years. We provide diverse insights from 30 subjects located in
different countries and organizations, with all of them involved in reuse practices,
mainly in software companies. Figure 1 presents the distribution of the roles of the
subjects, with developers, designers and data specialists being the most frequent roles.

Since we are interested in which programming languages offer more reuse oppor-
tunities and which are the most popular ones, Fig. 2 summarizes the languages that
are most frequently used amongst the respondents. As we can see in the figure, Java,
JavaScript, NodeJS, and other web-enabled languages such as Python, PHP and Ruby
are the most popular ones for reuse purposes (29 subjects mentioned at least one of
them). These languages are also those that developers found most amenable to soft-
ware reuse.14 Furthermore, we need to mention that five of our respondents answered
that all or any platform are valid for reusewithout indicating any specific programming
language.

Regarding how the subjects identified the code they wanted to reuse, a significant
percentage of the users (67%) listed Internet searches as the preferred method for
finding reusable assets, while others emphasized the importance of web sites such
as CodeProject,15, Stack Overflowfootnotehttps://stackoverflow.com/. GitHub16 and

14 Note that respondees were allowed to choose multiple languages, and we counted each mentioned
language as a valid response.
15 https://www.codeproject.com/.
16 https://github.com/.

123

https://stackoverflow.com/
https://www.codeproject.com/
https://github.com/


On opportunistic software reuse 2397

Fig. 2 Most popular programming languages for reuse

Fig. 3 Most popular repositories for mining reusable assets

Table 2 Average number of reused components per project

Ranges of reusable components per projects Number of times

Between [0–3] 8

Between [4–20] 7

Between [21–100] 1

More than 100 5

Reddit.17 Figure 3 lists the most popular code repositories based on the survey, with
GitHub, NPM and Stack Overflow being the most frequently used ones. Only a small
number of subjects responded that asking colleagues or using professional networks is
a suitable way for finding reusable assets. Interestingly, reuse from previous projects
developed in the companies was only highlighted by one of the subjects. One further
interesting measurement is the extent of reuse per project. Table 2 shows the number
of reused components per project as summarized by the subjects of our study.

17 https://www.reddit.com/.

123

https://www.reddit.com/


2398 N. Mäkitalo et al.

Table 3 Frequency of
architecture updates after reuse

Frequency types Frequencies

Always 2

During project reviews/when needed 9

Usually not/very seldom 1

Occasionally/sometimes 5

Our questions also addressed interoperability of the reusable assets within the
existing system. Based on the answers, only 3% of the subjects did not consider
interoperability as an important concern, while 67% of the subjects felt that interop-
erability is sometimes important or important for any reuse practice. However, 17%
of the respondents did not fully understand our question and the expressed doubts
regarding answering about the role of interoperability for reuse, since it may depend
on the customer and their organization.

7.3 Impact on the architecture

When it comes to the importance and impact of code reuse in architectural design, it is
difficult to summarize the received answers. The majority of the subjects considered
that reuse affects the architecture, but some of them indicated that architectural design
comes first and code reuse is merely a coding practice. Moreover, some of the respon-
dents noted that larger components typically have a larger impact on architectural
changes than smaller components. In particular, selected development frameworks
often mandate (or effectively dictate) many of the architectural choices. In other cases,
reuse may fall within the scope of design decisions made when designing the archi-
tecture, since the architecture defines the way code is distributed and reused over each
service. However, when coordinating over a number of a applications and modules,
code reuse becomes more cumbersome. One subject indicated that in some cases,
reuse may drive architectural design. For instance, open source service running in
Kubernetes as an inexpensive option against a costly commercial service.

The frequency of architecture updates after reuse is shown in Table 3. As we can
see, fifteen subjects occasionally update the architecture after reuse, and six subjects
indicated architecture changes to occur “always” or “during project reviews”. Only
two respondents said that the architecture was rarely updated. From the six subjects
that indicated the architecture must be updated after reuse, four out of six agreed
(previous question) that code reuse drives architectural design; surprisingly, two out
of the six respondents think that code reuse does not drive architectural design.

One subject indicated that the functionality derived from requirements should
already have defined the architecture, but at the same time code reuse is used for
achieving functionality. We understood from this response that all the functionality
reused must be aligned with existing architecture, so the architecture would rarely be
updated even when new reusable components are brought into the system.

123



On opportunistic software reuse 2399

Table 4 Summary of Benefits and Downsides of Reuse

Benefits Downsides

Faster development Compatibility problems may lead to
technical debt, and copy-paste
reuse practices to hard traceability
problems

Increased productivity Snowballing dependencies may
affect code reuse

Cost reduction Reusable software assets are often
poorly maintained

Avoidance of common security risks Security concerns may arise from
open package repositories such as
NPM

Stability of the initial prototypes and
the reduction in the number of
errors

GPL licenses are complex to
understand

8 Implications for practitioners and researchers

Next, we provide an extended discussion of our key findings, which are summarized
in Table 4. First, we present implications for practitioners for each of the research
questions addressed, and then, a set of implications for researchers is provided.

Based on the presented sample project, the number of components that are readily
available for reuse is overwhelming. There are packages and subsystems available
for almost all imaginable needs, and in many cases there are de facto solutions for
key areas, such as Hadoop for offline data analytics, to mention a concrete example.
For several areas, there are a number of competing technologies. A good example are
container technologies, an area for which there are solutions that offer slight variations
between different implementations. At the level of implementation-level libraries,
offerings become significantly richer; a good example are the JavaScript libraries for
client-side Web development—an area that offers an abundance of relatively similar
choices, with developer popularity shifting from one library to the next over the years.
Given the cornucopia of choices, it is difficult to create a one-size-fits-all platform out
of the available components, even if the target architectures were seemingly similar,
as subtle differences in the reused components often imply that developers will have
to create their own configurations and patches to make the selected libraries work
together. In addition, in some domains like IoT, the situation is made more complex
due to the use of complementing technologies that require different development
approaches [43].Hence, performing reuse in short term is easy and does not require that
much skills. In contrast, long-lasting, strategic reuse is harder than ever and requires a
lot of experience and skills, including not only software skills but also riskmanagement
experiment and business insight.

RQ1. How does opportunistic reuse appear in practice? The industrial example
presented in Sect. 4 represents a rather typical end-to-end IoT system today, built
upon open source components and readily available back-end service technologies.

123



2400 N. Mäkitalo et al.

The majority of microservices in this system were implemented in the JavaScript pro-
gramming language, Dockerized into separate services, utilizing the Node.js runtime
environment and its expansive NPM module ecosystem. Furthermore, the example
demonstrates how various packages and libraries today offer ready-made solutions for
many basic functionalities, such as user accounts and authentication, that are required
by nearly all back-end services—In our case, as already mentioned, this includes
systems such as NGINX for security perimeter, Apache Kafka for data acquisition,
Apache Storm for real-time data analytics, and Graphite and Icinga for logging and
monitoring. Furthermore, many backend-as-a-service systems have been proposed,
that readily integrate such systems into a coherent hole. Reuse at such scale can sig-
nificantly increase developer productivity, and for many large and complex software
systems, reuse at such scale is often the only option when developing new systems
from scratch. Thus, while opportunistic reuse can open security risks when compo-
nents of unknown provenance are used, it also shows how fast and straightforward it
can be to wire together a complex systemwith relatively small amount of development
resources.

RQ2.How do the developers select the reusable assets when using an opportunistic
reuse strategy? In motivating example, the selection of components, tools and tech-
niques was left under the responsibility of the developers, who tended to choose to use
latest and most fashionable tools and techniques in the implementation. At the level
of individual components, the selection was based on various criteria, although the
transitive and overlapping dependencies in the dynamically loaded modules, together
with the fact that dependencies may change in different versions of the components,
make it difficult to determine if a rational selection process was followed in devel-
oping the different subsystems. The survey confirmed the findings of the industrial
example regarding the number of components. In this context, in which the amount
of potentially reusable software is excessive to be understood by any individual, it is
not surprising that almost all the developers use the Internet as a data source when
writing code, often trusting anonymous commenters and popularity ratings more than
their own colleagues. In fact, seeking advice online was a far more popular way for
finding components than asking a colleague.

RQ3.What is the expected architectural impact arising from the practice of oppor-
tunistic reuse? As for architectural consequences, the variety of the responses in the
survey was wide. Even though our gut feeling was that in most cases architecture
drives reuse practices, there are exceptions in which reuse has a major impact on the
architecture design, depending on how systematic the selected reuse approach is and
how well it is enforced. Moreover, the fact that the majority of the respondents replied
that the architecture may need updating after choosing new reusable assets basically
implies that reuse indeed does impact the architecture or at least requires revisiting
of the original architecture choices. In several cases the subjects mentioned a limited
impact in the design mainly because they are focused on or driven by the “de facto”
expected architecture of the system; thus they do not necessarily perceive that reused
assets might affect the original design choices. This is in line with the observations
in the industrial example, in which the general feeling was that its architecture was
largely prescribed by the IoT domain and its generic end-to-end architecture. One
particular concern worth mentioning is that some respondents expressed their cau-

123



On opportunistic software reuse 2401

tion about unknown dependencies that reused assets might bring into the architecture.
Finally, software reuse is not only about the use of existing software to construct new
software, but reusable assets can also be software knowledge [15]. Focusing on this
knowledge introduces a wide range of research opportunities, ranging from analytical
work to constructive development and risk management.

To complement the implications for practitioners discussed above, we now focus
on the implications for researchers. This in particular concerns the downsides raised
in Table 4.

Analytical work. One of the most obvious research topics for analytical research
consists of systematic analyses of widely used open source systems, their components,
and the quality and stability of their interfaces and documentation. Furthermore, as our
findings imply that in many domains a generic reference architecture has emerged,
systematic analyses can be extended to the most popular open source components
for key domains, and recommendations of best available components for each area.
An important part of these are objective reviews and measured statistics of them in
real-world applications. The analysis can be enriched with the study and definition of
recommended reuse patterns and combinations of most popular open source compo-
nents. Moreover, open source projects could even provide information regarding the
observed forms of their reuse as a part of larger systems, and hence contribute to the
increased understanding of the scale of reuse—it is one thing to reuse a large-scale
subsystem such as NGINX, and completely different to reuse an NPM package or an
individual component. This will help mitigate challenges associated with compatibil-
ity problems and technical debt related to it, whereas technical debt tools and quality
metrics can help to identify quality issues.

Tools and techniques. Numerous tools and techniques are needed for supporting
opportunistic designs and associated reuse. To begin with, tools for visualizing all
the “underwater” dependencies in a “tip of an iceberg” software system that relies
extensively on SOUP (Software of Unknown Provenance) components are an essential
element to better understand the fundamentals of different designs. This includes
improved tools for static and dynamic component dependency analysis, “tree shaking”
(for eliminating duplicate components), crawling to the end of dependency chains to
create transitive closure of all the needed modules, and so on. Such facilities will also
improve understanding regarding snowballing dependencies.

A second class of tools and techniques consists of systems that help assess the
stability and maturity of reused components, e.g., how likely they will change in
terms of their interfaces, and assessing how trustworthy their contributors are. The
tools and techniques (e.g., dynamic, regularly updated dependency charts) should also
help monitor and understand changes in widely used subsystems that are loaded on
the fly from third-party sources. In addition, such tools enable assessing the quality of
maintenance of reusable assets.

A third class of tools and techniques include systems that enable the development
and testing of “iceberg” software systems within safe boundaries. Such sand-boxing
technologies are especially important in complex systems in which software runs
on multiple servers or virtual machines. For instance, with Docker Compose18 it is

18 https://docs.docker.com/compose/.

123

https://docs.docker.com/compose/


2402 N. Mäkitalo et al.

possible to package an entire cloud onto a single machine for testing purposes ahead
of deploying the system onto an actual farm of servers or VMs. To some extent, this
will also mitigate risks associated with open package repositories.

Riskmanagement. The final engineering element that is intimately associatedwith
opportunistic designs consists of risk management guidance and techniques that help
assess the risks associated with “tip of the iceberg” systems depending on rapidly
evolving third-party components [52]. Indeed, successful opportunistic reuse is heav-
ily dependent on risk management. The use of third-party components—especially
if it occurs in a fashion in which first-level reused components end up transitively
pulling in layers and layers of other components—raises the risks associated with a
software system considerably. While concerns regarding the issues around trust have
been raised already over thirty years ago [45], the fact that unrelated software compo-
nents are nowadays so commonly fused togethermeans that softwarewrittenwith even
the best of intentions can introduce severe problems. Today, risk management should
cover issues other than code as such, in particular licence management. There are
subtle differences between different licences that may yield two technically compat-
ible systems legally incompatible [17]. Moreover, as we experienced in our research
groups, training about the diversity of GPL-related and other open source licenses can
help to reduce the entry barrier to understand its use.

9 Threats to validity

From the initial insight gained from our industrial example, the contextual interviews
and the online survey we can confirm that opportunistic reuse is a proven trend nowa-
days. The diversity of software components in different repositories and variety of
programming languages and technologies involved confirm the de facto opportunistic
reuse practices in software development and especially in distributed teams. Never-
theless, the impact on opportunistic reuse in the architecture is proven only in some
cases, so we need to conduct additional studies to demonstrate a stronger connection
between ad hoc reuse and its impact in the design in terms of adaptation effort.

Regarding external validity and the general applicability of the results, we are
aware that the sample of reuse practitioners is not very large and that the number and
diversity of the countries of the interviewed subjects is small. Since the target group
for our research consisted of reuse experts, they are more likely to favor software
reuse than developers in general. However, it seems a good starting to confirm with
different developers and designers from several countries that opportunistic reuse is
an increasing trend due to the popularity of open source repositories. To confirm our
initial results we need a broader study including practitioners from more countries.

Construct validity shows whether the experimental settings reflect the theory. Since
our survey interviewed subjects from different roles, and some of the authors of this
work have been involved in systematic reuse practices, we reduced the bias of our
initial findings. In addition, we selected the subjects randomly to avoid additional bias
in our analysis.Also,we followed commonguidelines describedby [20] for conducting
semi-structured interviews and reduce the bias from the interviewees. Nevertheless, a
second experiment involving more subjects would be useful to confirm our claims.

123



On opportunistic software reuse 2403

10 Related work

Systematic software reuse has been studied decades. There are numerous papers on
that topic, including the classic survey paper by Krueger [27] that we have referred to
in several places in this paper earlier. In contrast, there are only a few studies that inves-
tigate opportunistic software reuse, or the transition from systematic to opportunistic
reuse. Several years ago, Frakes [14] described the shift to systematic reuse in soft-
ware engineering and elaborated the success factors that help reuse to be systematic.
Similar concerns were also highlighted by Tracz [47]. Another study [12] highlights
the emergence of systematic reuse in the 2000s to improve software development
productivity and quality. The authors analyzed 15 software projects, and they found
evidence of systematization because of lack of incentives. This claim for systematic
reuse practices in object-oriented programming is stated in [42] where reuse in OO
was mostly ad hoc in the 1990s. The authors introduce the idea of reuse contracts to
make assets more reusable.

Hartmann et al. brought the topic of opportunistic reuse to public attention [18].
More recently, Fischer et al. [13] describe clone-and-own techniques (i.e. a practice
“where a variant of a system is built by coping and adapting existing variants”) as a
suitable form of systematic reuse that has been adopted in the recent years. The authors
suggest a methodology applied to clone-and-own in variability models, because clone-
and-own techniques often suffer of a lack of systematic process. This type of reuse
is hence close to opportunistic reuse in this sense. A recent survey by Capilla et al.
[5] investigates different forms of reuse from past practices to current ones. Although
the authors provide some insight on how practitioners do reuse, they do not analyze
in depth which of these practices are carried out in an opportunistic way. A recent
work by Ali et al. [1] presents a hybrid DevOps process that follows a systematic
reuse-based development and management process aimed to reduce reuse effort and
cost based on information retrieval techniques. In [21], the authors apply data mining
techniques to guide developers to reuse code snippets using a set of predefined rules
and they developed a prototype to predict useful API code snippets.

Early works on opportunistic reuse such as in [26] explore scrapheap development
as a form where developers identify opportunities for reuse. Scrapheap reuse is low-
cost reuse strategy in which large parts of applications are composed from “scraps”
of software functionality retrieved from systems that have been discarded. In [22]
the authors discuss a pragmatic reuse approach of third-party functionality by two
start-up companies in building successfully two products, as a clear demonstration of
opportunistic reuse, but the effort required to integrate new services and components
into the architecture may lead to severe changes in the design. Also the approach
discussed in [24] highlights the role of opportunistic reuse in a systematic way around
80 software cases, while in [28], the authors propose to systematize the selection of
external modules based on the extraction of design decisions from source code to avoid
design mismatches when reusing opportunistically.

In a recent work by Kulkarni [29], the author discusses the need for sourcing soft-
ware without a concrete reuse plan to improve developers’ productivity. The authors
highlight the existing problems and consequences of opportunistic reuse practices,
such as fragile structure, violations of constraints or unforeseen behavior, mainly

123



2404 N. Mäkitalo et al.

caused by a widespread adoption of these reuse practices. Additionally, the study pro-
vided in Paschali et al. [37] highlights reuse opportunities in 600 open source projects
in different application domains, as in some of the domains it is not easy to identify
the reusable assets, such as one of the relevant questions we asked to our subjects in
this research.

Moreover, the approach described in [46] highlights a trendy modern form of code
reuse where software is engineered in the form of microservices, as an evolution
of reusable web services. Microservices enable a scalable way for building service-
based systems with components of small granularity and enabling rapid development,
testing and deployment. In a similar vein, the work discussed in [6] report a survey
about mining reusable microservices from legacy systems. All in all, it is clear that one
of the trends since arrival of web services architectures is an opportunistic way to reuse
web code snippets on behalf of the popularity of web-based systems and open source
software. The authors in [30] describe a process to improve open-source software reuse
and capitalize the opportunistic reuse practices in open source projects. Therefore
and to bring a bit more controversy between both strategies, the authors suggest that
opportunistic practices can be guided by a process to maximize the adoption of reuse,
similarly to the steps performed by the practitioners we interviewed.

Finally, in the study reported in [7] about reusing web code snippets opportunis-
tically, the authors report that developers rarely test immediately the system after
opportunistic reuse happens, which is in line with some of the patterns and observa-
tions from the developers we interviewed.

11 Conclusions

In this paper,we have provided empirical evidence on the role of opportunistic software
reuse by presenting an industrial case study, three practitioner interviews, and the
results of a more comprehensive survey focusing on software reuse. Based on the
results, software reuse takes place at a very large scale in the software industry today.
In fact, it appears that it is nearly impossible to write any significant software systems
nowadays without reusing third-party components extensively, with the developers
themselves only writing the “tip of the iceberg”, while the bulk of the system comes
from external sources and unfamiliar developers. This is dramatically different from
software development in the 1980s and 1990s when developers still prided on writing
most of the software themselves. Today, software systems tend to contain so much
invisible code with so many dependencies that they are impossible to analyze by hand.

WhileMcIlroy’s original vision of software reuse [33] called for high-quality mass-
produced software components to be used in a large, industrial scale, today’s software
reuse scene is really more about grassroots, opportunistic reuse rather than strategic,
systematic reuse. This transition has been enabled by the ease of searching and pub-
lishing components on the Internet. The resulting approach raises many interesting
challenges from architectural mismatches (“tail wagging the dog”), poor understand-
ing of the actual behavior (“I decided to use this component since it had been used by
somany other developers before”) to all kinds of security issues arising fromunknown,
dynamic dependencies with other components.

123



On opportunistic software reuse 2405

Moreover, even individual code snippets seem to be easy to integrate into a bigger
whole. Still, in caseswhere components do not fitwell, changes at the architecture level
have to be made, which is recognized by the developers. However, many developers
do not perform the necessary security checks during the integration phase, which may
create security issues in the code in particular in the long run. Thus, while reuse may
not be strategic in terms of company goals, the elements of systematic approach to
selecting components for reuse are emerging, consisting of recommendations, experi-
ence reports and personal experience. This in turn emphasizes the professional attitude
of practicing developers while reusing components of different origins.

To conclude, we have studied opportunistic design and its implications, and pre-
sented a call for action for the research community. It is our belief that opportunistic
reuse and the “tip of the iceberg” programming model has not yet received the atten-
tion it deserved, as the eventual solution will be developer education to understand
the contexts in which opportunistic design is acceptable, and where more risk-aware
approaches are needed. Furthermore, in general we hope that this paper raises the
awareness of opportunistic reuse, and encourages people to tackle the challenges asso-
ciated with this important topic. To this end, practices and software reuse principles
developed in the 1980s and 1990s—especially in the area of creating modular, well-
documented, stable interfaces and reusable components—provide a solid foundation
to build on.

Acknowledgements Open access funding provided byUniversity ofHelsinki includingHelsinkiUniversity
Central Hospital. The work of N. Mäkitalo was supported by the Academy of Finland (Project 328729).
The work from R. Capilla is partially funded by the Spanish research networkMCIU-AEI TIN2017-90664-
REDT.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Survey on opportunistic reuse practice

In this appendix, we describe the nine questions that were presented to the subjects
about opportunistic reuse practices.

1. Inwhich environment (Java, Python,C#, PHP., etc) have you encountered oppor-
tunistic code re-use in today’s software development?

2. How do you identify the code (e.g., packages, libraries, frameworks, etc.) that
you want to re-use? (Mining code, Internet search, Database query).

3. What are the preferred open source repositories that you search for reusable
code? (GitHub,GitLab,Bitbucket, Sourceforge, Smipple, Snipplr, CodeProject,
Javascript, npm, Other (please specify)).

123

http://creativecommons.org/licenses/by/4.0/


2406 N. Mäkitalo et al.

4. Towhat extent are interoperability concerns a problemwhen integrating reusable
code into the systems of your organization? (Not important, Sometimes relevant,
Important concern).

5. How many reusable components do you reuse on average per project?
6. To what extent does code re-use drive your architectural design or development

process?
7. Do you update your software architecture after reusing code components, snip-

pets, libraries? (Always, Never, Occasionally, During project reviews, Other
(please specific)).

8. What positive aspects do you see in today’s code re-use? (reduced number of
errors, faster development, productivity, Other (please specify)).

9. What are the downsides of today’s (opportunistic) code re-use? (software is
harder to debug, emergent features, Other (please specify)).

References

1. Ali N, Horn D, Hong JE (2020) A hybrid DevOps process supporting software reuse: a pilot project.
J Softw Evol Process. https://doi.org/10.1002/smr.2248

2. Biggerstaff TJ, Richter C (1987) Reusability framework, assessment and directions. IEEE Softw
4(2):41–49

3. Bouzid A, Rennyson D (2015) The art of SaaS: a primer on the fundamentals of building and running
a successful SaaS business. Xlibris

4. Capilla R, Gallina B, Cetina Englada C (2019) The new era of software reuse. J Softw Evol Process
31(8):e2221

5. Capilla R,GallinaB,Cetina EngladaC, Favaro J (2019)Opportunities for software reuse in an uncertain
world: from past to emerging trends. J Softw Evol Process 31(8):e2217

6. Carvalho L, Garcia A, Assunção WKG, Bonifácio R, Tizzei LP, Colanzi TE (2019) Extraction of
configurable and reusable microservices from legacy systems: an exploratory study. In: Proceedings
of the 23rd international systems and software product line conference, SPLC 2019, volume A, Paris,
France, September 9–13, 2019, ACM, pp 6:1–6:6

7. Ciborowska A, Kraft NA, Damevski K (2018) Detecting and characterizing developer behavior fol-
lowing opportunistic reuse of code snippets from the web. In: Proceedings of the 15th international
conference on mining software repositories, MSR 2018, Gothenburg, Sweden, May 28–29, 2018,
ACM, pp 94–97

8. Clements P, Northrop L (2002) Software product lines. Addison-Wesley, Boston
9. Dikel D, Kane D, Ornburn S, Loftus W, Wilson J (1997) Applying software product-line architecture.

Computer 30(8):49–55
10. Easterbrook S, Singer J, Storey MD, Damian DE (2008) Selecting empirical methods for software

engineering research. In: Guide to advanced empirical software engineering, pp 285–311
11. Ericsson KA, Simon HA (1998) How to study thinking in everyday life: contrasting think-asloud

protocols with descriptions and explanations of thinking. Mind Cult Act 5:176–186
12. Fichman RG, Kemerer CF (2001) Incentive compatibility and systematic software reuse. J Syst Softw

57(1):45–60
13. FischerS,LinsbauerL,Lopez-HerrejonRE,EgyedA(2014)Enhancing clone-and-ownwith systematic

reuse for developing software variants. In: 30th IEEE international conference on softwaremaintenance
and evolution, Victoria, BC, Canada, September 29–October 3, 2014, pp 391–400

14. Frakes WB, Isoda S (1994) Success factors of systematic reuse. IEEE Softw 11(5):14–19
15. Frakes WB, Kang K (2005) Software reuse research: status and future. IEEE Trans Softw Eng

31(7):529–536
16. Gao JZ, Tsao HS, Wu Y (2003) Testing and quality assurance for component-based software. Artech

House Publishers

123

https://doi.org/10.1002/smr.2248


On opportunistic software reuse 2407

17. Hammouda I, Mikkonen T, Oksanen V, Jaaksi A (2010) Open source legality patterns: architectural
design decisions motivated by legal concerns. In: Proceedings of the 14th international academic
mindtrek conference: envisioning future media environments, ACM, pp 207–214

18. Hartmann B, Doorley S, Klemmer SR (2008) Hacking, mashing, gluing: understanding opportunistic
design. IEEE Pervasive Comput 7(3):46–54

19. Holtzblatt K, Joses S (1995) Conducting and analyzing a contextual interview. Human–computer
interaction, pp 241–253

20. Hove S, Anda B (2005) Experiences from conducting semi-structured interviews in empirical software
engineering research. In: 11th IEEE international symposium in software metrics, IEEE, pp 10–23

21. Hsu S, Lin S (2011) MACs: mining API code snippets for code reuse. Expert Syst Appl 38(6):7291–
7301

22. Jansen S, Brinkkemper S, Hunink I, Demir C (2008) Pragmatic and opportunistic reuse in innovative
start-up companies. IEEE Softw 25(6):42–49

23. Jones TC (1984) Reusability in programming: a survey of the state of the art. IEEE Trans Softw Eng
10(5):488–494

24. KalninaE,KalninsA,CelmsE, SostaksA, Iraids J (2010)Generationmechanisms in graphical template
language. In: MDA &MTDD 2010—proceedings of the 2nd international workshop on model-driven
architecture and modeling theory-driven development, in conjunction with ENASE 2010, Athens,
Greece, July 2010, SciTePress, pp 43–52

25. Kim Y, Stohr EA (1998) Software reuse: survey and research directions. J Manag Inf Syst 14(4):113–
147

26. Kotonya G, Lock S, Mariani J (2008) opportunistic reuse: lessons from scrapheap software devel-
opment. In: Proceedings of component-based software engineering, 11th international symposium,
CBSE 2008, Karlsruhe, Germany, October 14–17, 2008, pp 302–309

27. Krueger CW (1992) Software reuse. ACM Comput Surv 24(2):131–183
28. Kulkarni N (2013) Systematically selecting a software module during opportunistic reuse. In: Notkin

D, Cheng BHC, Pohl K (eds) 35th international conference on software engineering, ICSE’13, San
Francisco, CA, USA, May 18–26, 2013, IEEE Computer Society, pp 1405–1406

29. Kulkarni N, Varma V (2017) Perils of opportunistically reusing software module. Softw Pract Exp
47(7):971–984

30. LampropoulosA,AmpatzoglouA,Bibi S, ChatzigeorgiouA, Stamelos I (2018) REACT—aprocess for
improving open-source software reuse. In: 11th international conference on the quality of information
and communications technology, QUATIC 2018, Coimbra, Portugal, September 4–7, 2018, IEEE
Computer Society, pp 251–254

31. Lanergan RG, Grasso CA (1984) Software engineering with reusable designs and code. IEEE Trans
Softw Eng 10(5):498–501

32. LentzM, SchmidHA,Wolf PF (1987) Software reuse through building blocks. IEEE Softw 4(4):34–42
33. McIlroy MD (1968) Mass produced software components. In: Naur and Randell (eds) Software engi-

neering: report of conference sponsored by the NATO science committee, Garmisch, Germany, Oct
7–11, 1968, pp 79–85

34. Mikkonen T, Taivalsaari A (2019) Software reuse in the era of opportunistic design. IEEE Softw
36(3):105–111

35. Naur P, Randell B (1969) Software engineering: report of a conference sponsored by the NATOScience
Committee (Garmisch, Germany, Oct 7–11, 1968). NATO Scientific Affairs Division, Brussels

36. Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly Media
37. Paschali ME, Ampatzoglou A, Bibi S, Chatzigeorgiou A, Stamelos I (2017) Reusability of open source

software across domains: a case study. J Syst Softw 134:211–227
38. Pfleeger SL, Kitchenham BA (2001) Principles of survey research: part 1: turning lemons into lemon-

ade. ACM SIGSOFT Softw Eng Notes 26(6):16–18
39. Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software

engineering. Empir Softw Eng 14(2):131–164
40. Schmidt DC (1999) Why software reuse has failed and how to make it work for you. C++ Report

11(1):1999
41. ShawM (1995) Architectural issues in software reuse: it’s not just the functionality, it’s the packaging.

ACM ACM SIGSOFT Softw Eng Notes 20:3–6
42. Steyaert P, Lucas C, Mens K (1997) Reuse contracts: making systematic reuse a standard practice.

https://www.semanticscholar.org

123

https://www.semanticscholar.org


2408 N. Mäkitalo et al.

43. Taivalsaari A, Mikkonen T (2018) On the development of IoT systems. In: 2018 third international
conference on fog and mobile edge computing (FMEC). IEEE, pp 13–19

44. Taivalsaari A,MäkitaloN,MikkonenT (2019) Programming the tip of the iceberg: software reuse in the
21st century. In: 2019 EUROMICRO conference on software engineering and advanced applications.
IEEE

45. Thompson K (1984) Reflections on trusting trust. Commun ACM 27(8):761–763
46. Tizzei LP, dos Santos MN, Segura VCVB, Cerqueira RFG (2017) Using microservices and software

product line engineering to support reuse of evolving multi-tenant SaaS. In: Cohen MB, Acher M,
Fuentes L, Schall D, Bosch J, Capilla R, Bagheri E, Xiong Y, Troya J, Cortés AR, Benavides D
(eds) Proceedings of the 21st international systems and software product line conference, SPLC 2017,
volume A, Sevilla, Spain, September 25–29, 2017. ACM, pp 205–214

47. Tracz W (1995) Confessions of a used-program salesman: lessons learned. In: Samadzadeh MH,
Kazerooni-Zand M (eds) Proceedings of the ACM SIGSOFT symposium on software reusability,
SSR@ICSE 1995(April), pp 23–30 (1995) Seattle. WA, USA, ACM, pp 11–13

48. Trendowicz A, Punter T et al (2003) Quality modeling for software product lines. In: Proceedings of
the 7th ECOOP workshop on quantitative approaches in object-oriented software engineering

49. Turner M, Budgen D, Brereton P (2003) Turning software into a service. Computer 36(10):38–44
50. Yin RK (2014) Case study research design and methods, 5th edn. Sage, Thousand Oaks
51. Zax D (2012) Many cars have a hundred million lines of code. MIT Technology Review
52. ZimmermannM, Staicu CA, Tenny C, Pradel M (2019) Small world with high risks: a study of security

threats in the NPM Ecosystem. 28th USENIX security symposium. Santa Clara, CA, pp 995–1010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On opportunistic software reuse
	Abstract
	1 Introduction
	2 Background and motivation
	3 Opportunistic reuse as a new trend
	4 An industrial example
	4.1 Architecture design
	4.2 Analysis on reuse and its effectiveness

	5 Research method
	6 Evidence gathered from university projects
	7 Survey design
	7.1 Setting up the survey
	7.2 Survey results
	7.3 Impact on the architecture

	8 Implications for practitioners and researchers
	9 Threats to validity
	10 Related work
	11 Conclusions
	Acknowledgements
	Appendix: Survey on opportunistic reuse practice
	References




