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Abstract
Multidimensional numeric arrays are often serialized to binary formats for efficient
storage and processing. These representations can be stored as binary objects in exist-
ing relational database management systems. To minimize data transfer overhead
when arrays are large and only parts of arrays are accessed, it is favorable to split these
arrays into separately stored chunks. We process queries expressed in an extended
graph query language SPARQL, treating arrays as node values and having syntax for
specifying array projection, element and range selection operations as part of a query.
When a query selects parts of one or more arrays, only the relevant chunks of each
array should be retrieved from the relational database. The retrieval is made by auto-
matically generated SQL queries. We evaluate different strategies for partitioning the
array content, and for generating the SQL queries that retrieve it on demand. For this
purpose, we present a mini-benchmark, featuring a number of typical array access
patterns. We draw some actionable conclusions from the performance numbers.
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1 Introduction

Many scientific and engineering applications involve storage and processing of mas-
sive numeric data in the form of multidimensional arrays. These include satellite
imagery, climate studies, geosciences, and generally any spatial and spatiotemporal
simulations and instrumental measurements [1], computational fluid dynamics and
finite element analysis. The need for efficient representation of numeric arrays has
been driving the scientific users away from the existing DBMS solutions [2], towards
more specialized file-based data representations. The need for integrated and exten-
sible array storage and processing framework supporting queriable metadata are our
main motivations for the development of Scientific SPARQL: an extension of W3C
SPARQL language [3] with array functionality.

Within the Scientific SPARQL project [4–8], we define syntax and semantics
for queries combining both RDF-structured metadata and multidimensional numeric
arrays which are linked as values in the RDF graph. Different storage options are
explored: our prior publications cover storing arrays in binary files [6], and a special-
ized array database [7]. In this work we focus on storing the arrays in a relational
DBMS back-end. Scientific SPARQL Database Manager (SSDM) implements the
query language, in-memory and external array storage, along with the extensibility
interfaces. The software and documentation are available at the project homepage [9].

The contributions presented in this work are the following:

• A framework for processing array data retrieval queries, which allows adaptive
pattern discovery, pre-fetching of chunks from external storage;

• A mini-benchmark featuring the typical and diverse array access patterns;
• Evaluation of different array data retrieval strategies under different array data par-
titioning options and access patterns, and the conclusions drawn regarding the
workload-aware partitioning options, suggestions for building array processing
infrastructures, and estimates of certain trade-offs.

In this work we consider an SSDM configuration where array data is partitioned
into BLOBs in a back-end relational database. An SSDM server provides scalable
processing of SciSPARQL queries which can be expressed both in terms of metadata
conditions (pattern matching, filters) and functions over the numeric data (filters,
aggregation). SciSPARQL queries allow specifying array projection, element and
range selection operations over the arrays, thus defining (typically, sparse) access
patterns to the dense multidimensional arrays.

The techniques presented here are language-independent, and can be applied to the
processing of any array query languagewhich has these basic array operations. Typical
queries which benefit from these optimizations are characterized by (1) accessing
relatively small portions of the arrays, and (2) accessing array elements based on
subscript expressions or condition over subscripts, rather than the element values.

The rest of this paper is structured as follows: Sect. 2 summarizes the related
work, in Sect. 3 we begin with an example, and then give an overview of the array
query processsing technique, namely, array proxy resolution. Section 4 lists different
ways (strategies) to generate SQL queries that will be sent to the DBMS back-end to
retrieve the chunks, and Sect. 5 describes our Sequence Pattern Detector algorithm
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(SPD) used in one of these strategies. Section 6 offers the evaluation of different
array storage and array data retrieval strategies using a mini-benchmark, featuring
a number of typical array access patterns expressed as parameterized SciSPARQL
queries. Section 7 concludes the results and suggests the way they can be applied in
array storage and query processing solutions.

2 Background and related work

There are several systems and models of integrating arrays into other database
paradigms, in order ot allow array queries which utilize metadata context. There are
two major approaches: first is normalizing the arrays in terms of the host data model,
as represented by SciQL [10], along with its predecessor RAM [11], where array is
an extension of the relation concept. Data Cube Vocabulary [12] suggests a way to
represent multidimensional statistical data in terms of an RDF graph, which can be
handled by any RDF store. The second approach is incorporation of arrays as value
types—this includes PostgreSQL [13], recent development of ASQL [2] on top of
Rasdaman [14], as well as extensions to MS SQL Server based on BLOBs and UDFs,
e.g. [15].

We follow the second approach in the context of Semantic Web, offering separate
sets of query language features for navigating graphs and arrays. Surprisingly, many
scientific applications involving array computations and storage do not employ any
DBMS infrastructures, and hence cannot formulate array queries. Specialized file for-
mats (e.g. NetCDF [16]) or hierarchical databases (e.g. ROOT [17]) are still prevalent
in many domains. Parallel processing frameworks are also being extended to optimize
the handling array data in files—see e.g. SciHadoop [18]. Storing arrays in files has its
own benefits, e.g. eliminating the need for data ingestion, as shown by comparison of
SAGA to SciDB [19]. The SAGA system takes a step to bridge the gap between file-
resident arrays and optimizable queries. SciSPARQL also incorporates the option of
file-based array storage, as presented in the context of its tight integration into Matlab
[6]. Still, in the present technological context we believe that utilizing a state-of-the-
art relational DBMS to store massive array data promises better scalability, thanks to
cluster and cloud deployment of these solutions, and mature partitioning and query
parallelization techniques.

Regarding the storage approaches, in this work we explore two basic partitioning
techniques—simple chunking of the linearized form of array (which, we believe, is a
starting reference point for any ad-hoc solution), andmore advancedmultidimensional
tiling used e.g. in Rasdaman [20, 21], ArrayStore [22], RIOT [23], and SciDB [19]
which helps preserving access locality to some extent.We do not implement a language
for user-defined tiling, as this concept has been already explored in Rasdaman [20].
While cleverly designed tiling increases the chances of an access pattern to become
regular, it still has to be made manually and beforehand, with expected workload in
mind.With the SPD algorithmwe are able to discover such regularity during the query
execution.

In this work we only study sparce array access to the dense stored arrays and we
use a relational DBMS back-end to store the chunks, in contrast to stand-alone index
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data structures employed by ROOT [23] and ArrayStore [22]. Apart from utilizing
DBMS for scalability, does not make much difference in finding the optimal way to
access the array data. As the SAGA evaluation [24] has shown, even in the absence of
SQL-based back-end integration, the sequential access to chunks provides a substantial
performance boost over the random access.

3 The problem of retrieving array content

Scientific SPARQL, as many other array processing languages (Matlab, SciPy) and
query languages [14, 19, 10, 2] do, allows the specification of subarrays by supplying
subscripts or ranges independently for different array dimensions. We distinguish the
projection operations that reduce the array dimensionality, like ?A[i], selecting an
(n−1)-dimensional slice from an n-dimensional array bound to?A (or a single element
if ?A is 1-dimensional) and range selection operations like ?A[lo:stride:hi].
All array subscripts are 1-based, and hi subscript is included into the range. Any of
lo, stride, or hi can be omitted, defaulting to index 1, stride of 1, and array
size in that dimension respectively.

Let us consider the following SciSPARQL query Q1 selecting equally spaced ele-
ments from a single column of a matrix, which is found as a value of the :result
property of the : Sim1 node.

We assume the dataset includes the following RDF with Arrays triple, containing a
10×10 array as its value, as in Fig. 1a, the subset retrieved by Q1 is shown hatched.

In our relational back-end this array is stored in 20 linear chunks, containing 5
elements each (chunk ids shown on the picture). Figure 1b shows a variant of the
same dataset, where the array is stored in 25 2×2 non-overlapping square tiles. The
example (a) is used through the rest of this section, and we compare the two storage
approaches in Sect. 6.

In our setting the RDF metadata triples have considerably smaller volume than
the ‘real’ array data, so they can be cached in main memory to speedup match-
ing and joining the triple patterns. Our problem in focus is querying the big
ArrayChunks(arrayid, chunkid, chunk) table in the relational back-
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Fig. 1 An RDF with Arrays dataset using a linear and b multidimensional partitioning
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end, in order to extract data from the array. In general, we would like to (1) minimize
the number of SQL queries (round-trips) to ArrayChunks, and (2) minimize the
amount of irrelevant data retrieved.

3.1 Array query processing overview

There are a number of steps to be performed before the back-end will be queried for
the actual array content:

• Identifying the set of array elements that are going to be accessed while processing
an array query. Such sets of elements are described with bags of array proxy objects,
which represent derived arrays or single elements, which are stored in an external
system. We refer to the process of turning array proxies into in-memory arrays as
Array Proxy Resolution (APR).

• The array proxies accumulate array dereference and transposition operations. An
enumerable set of array proxies can be generated using free index variables, as
shown in by QT4 in the Table 2.

• Identifying fragments of the derived array to be retrieved that are contiguous in the
linearized representation of the original array in order to save on the number of
data-transfer operations.

• Identifying array chunks needed to be retrieved and formulating data transfer oper-
ations for each chunk. Buffering these chunk ids and data transfer operations.

• Formulating SQL queries to the back-end RDBMS, as explained in the next section.
• If the formulated SQL query is prediction-based (e.g. generated with SPD strategy,
as described below), switching between the phases of (I) simulation, i.e. translat-
ing elements/fragments to chunk ids, and buffering, (II) performing the buffered
operations, and (III) performing the further (unbuffered) operations, as long as the
prediction-based query yields the relevant chunks. This includes taking care of
false-positives and false-negatives.

As the input of this process is a stream of array proxies generated during SciS-
PARQL query execution, the output is the stream of corresponding in-memory arrays.
Essential parts of this process are described in our previous works [4, 5].

4 Strategies for formulating SQL queries during APR

There are a number of possible strategies to translate sets of chunk ids in the buffer to
SQL queries retrieving the relevant chunks. The basic one we are about to study are:

• NAIVE: send a single SQL query for each chunk id. This proves to be unacceptably
slow in realistic data volumes, due to interface and query processing overheads.

• IN (single): combine all the required chunk ids in a single IN list, sending a query
like
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This would work well until the SQL query size limit is reached.

• IN (buffered): an obviousworkaround is to buffer the chunk ids (and the description
of associated data copying to be performed), and send a series of queries containing
limited-size IN lists.

• SPD (sequence pattern detection): sending a query like

Here the condition expresses a certain cyclic pattern. Such a pattern is described
by origin (2 in the example above), divisor (4 in the example above), storing the total
periodicity of repetitions, and the modulus list (consisting of single 0 in the example
above), containing the repeated offsets. The size or complexity of a pattern is the length
of its modulus list. Section 5 describes our algorithm for detecting such patterns.

While most cases the SPD strategy will allow us to send a single query retrieving
all desired chunks. If the pattern was too complex to be inferred from the buffer (e.g.
there was no cyclic pattern at all), some extra chunks might also be retrieved. Still,
there are two problems with a straightforward application of SPD: (1) in cases when
there actually is a cyclic pattern it is unnecessary to identify all the relevant chunk
ids first—a small sample list of chunk ids is normally enough; and (2) in case of an
acyclic (random) access, like query QT6 defined in Sect. 6, the detected pattern might
be as long as the list of chunk ids, thus making it a similar problem as for IN (single).
Hence two versions of SPD:

• SPD (buffered): solving the two above problems by computing a small sample
sequence of the needed chunk ids, and then formulating and sending an SQL query
with the detected pattern. If the pattern covers all the chunks to be retrieved, the
single SQL query does all the work. Otherwise (on the first false-negative, or when
the false-positives limit is reached), the SQL query is stopped and the buffering
process is restarted. In the worst case (when there is no cyclic pattern), it will work
similarly to IN (buffered), otherwise, fewer queries will be needed to return the
same set of chunks.

• SPD-IN (buffered): the difference between IN and SPD-generated SQL queries is
that in IN, the chunkid values are explicitly bound to a list, which allows most
RDBMSs to utilize the (arrayid, chunkid) composite index directly. As
we have discovered in our experiments, neither MS SQL Server nor MySQL are
utilizing an index when processing a query with mod condition.

However, by comparing a pattern size (i.e. length of themodulus list) to the number
of distinct chunk ids in the buffer, we can easily identify if a realistic pattern was really
discovered, or should we generate an IN query instead.We currently use the following
rules to switch between IN and SPD buffer-to-SQL query translations:

(A) If the pattern size is less than half the number of distinct chunk ids, then the cycle
is not completely repeated, and is probably not detected at all.

(B) If the sample size is less than the buffer limit—then we have buffered the last
chunk ids for the query, so there is no advantage of using SPD either.
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5 Sequence pattern detector (SPD) algorithm

Once the buffer is filled with chunk ids, an SQL query needs to be generated based
on the buffer contents. An IN query is simple to generate, and the list of chunk ids
does not even need to be sorted (the RDBMS performs this sorting if using a clustered
index). In order to generate an SPD query, we first extract and sort the list of distinct
chunk ids from the buffer.

The following algorithm operates on an increasing sequence of numbers—in our
case—sorted chunk ids. Since we are detecting a cyclic pattern, we are not interested
in the absolute values of the ids in the sequence, we will only store the first id as the
point of origin, and the input values to the algorithm are the positive deltas between
the subsequent chunk ids.

Each input is processed as a separate step, as shown in Fig. 2. The state of the
algorithm is stored with the history and pattern lists, (initialized empty), and
the next pointer into the pattern list (initialized to an invalid pointer which will fail
any comparison operation).

The general idea is that each input either conforms to the existing pattern or
not. In the latter case the second guess for the pattern is the history of all inputs.
The input either conforms to that new pattern, or the new pattern (which is
now equal to history) is extended with the new input. In either case, input is
appended to history, and count is incremented.

pattern := history
next := First (pattern)

input == First (pattern)

next := Second (pattern)
append input to pattern
next := First (pattern)

append input to history
count++

true false

true false

input

input == next

cyclically advance next
through pattern

== true

Fig. 2 A step in the SPD algorithm
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The resulting pattern will have the form:

x ≥ x0 ∧ mod(x − x0, d) ∈ {0,m1, . . . ,mn−1}

where x is the chunk id value to retrieve, x0 is the first chunk id value generated
(i.e. ‘reference point’), d is the divisor, and m1,…,mn−1 is the modulus list. The
generated pattern is the sequence of offsets P� <p1,…,pn>. We will compute the
divisor as the total offset in the pattern, and each element in the modulus list is the
partial sum of offsets:

d �
n∑

i�1

pi , mk �
k∑

i�1

pi , k � 1, . . . , n − 1

In the next section we compare this strategy of formulating an SQL query with the
more straightforward approach of sending IN lists that was presented in Sect. 4.

6 Comparing the storage and retrieval strategies

For evaluation of the different storage approaches and query processing strategies
we use synthetic data and query templates for the different access patterns where
parameters control the selectivity. The synthetic arrays are populated with random
values, as data access performance is independent of these.

For simplicity and ease of validation, we use two-dimensional square arrays
throughout our experiments. More complex access patterns may arise when answering
similar queries to arrays of larger dimensionality. Still, as shown below, the two-
dimensional case already provides a wide spectrum of access patterns, sufficient to
evaluate and compare our array storage alternatives and query processing strategies.
We use parameterized SciSPARQL queries, which are listed in Table 2, for our exper-
iments. The queries involve typical access patterns, such as: accessing elements from
one or several rows, one or several columns, in diagonal bands, randomly, or in random
clusters.

The efficiency of query processing thus can be evaluated as a function of parameters
from four different categories: data properties, data storage options, query properties,
and query processing options, as summarized in Table 1. A plus sign indicates that
multiple choices were compared during an experiment, and a dot sign corresponds to
a fixed choice.

The structure of the data remains the same throughout the experiments. Namely, it
is the dataset shown on Fig. 1, containing a single 100,000×100,000 array of integer
(4-byte) elements, with total size~40 GB. The logical nesting order is also fixed as
row-major, changing it would effectively swap row queryQT1 and column queryQT2
while having no impact on the other query types from Table 2. The rest of the axes
are explored during our experiments, as Table 1 indicates.

Experiment 1 compares the performance of different query processing strategies
(including different buffer sizes), as introduced in Sect. 4, for different kinds of queries.
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Table 1 Summary of performance evaluation axes

Axis Experiment

1 2

Data properties Array shape and element type · ·

Data storage options Partitioning: linear/multidimensional + +

Chunk size · +

Nesting order of dimensions · ·

Array query properties Logical access pattern + ·

Intra-array selectivity + ·

Logical locality + ·

Query processing options Strategy: SPD/IN/hybrid + ·

Buffer Size + ·

Table 2 Query patterns

For each kind of query, cases of different selectivity are compared under either data
partitioning approach.

Experiment 2 explores the influence of chunk size on the query performance. There
is obviously a trade-off between retrieving too much irrelevant data (when the chunks
are big) and forcing the back-end to perform too many lookups in a chunk table (when
the chunks are small).

For both experiments, the selectivity is shown both as the number of array elements
accessed and the number of the relevant chunks retrieved. Our expectations that the
latter quantity has higher impact on overall query response time are confirmed.

The experiments were run with our SciSPARQL prototype and the back-end MS
SQL Server 2008 R2 deployed on the same HP Compaq 8100 workstation with Intel
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Core i5 CPU@2.80GHz, 8GBRAMand runningWindows Server 2008R2 Standard
SP1. The communication was done via MS SQL JDBC Driver version 4.1 available
from Microsoft.

6.1 Query generator

Similarly to the examples above, in each query template we identify an array-valued
triple directly by its subject and property, thus including a single SPARQL triple
pattern:

Each time we retrieve a certain subset of an array and return it either as a single
small array (QT1–QT3) or the single elements accompanied by their subscript values
(other queries). The templates listed in Table 2 differ only in the array access involved,
with conditions on variables for array subscripts.

For the randomaccess patterns, themainparameters are the randomarray subscripts.
Nodes of type :AccessIdx with :i and ?j properties are added into the RDF
dataset. Both data and query generators are part of the SciPARQL project, and are
available at the project homepage [9].

6.2 Experiment 1: Comparing the retrieval strategies

We compare the different query processing strategies and the impact of buffer sizes
for each query presented in Table 2, with different parameter cases resulting in the
varying selectivity (and, in case of QT3, logical locality). Each query and parameter
case is run against two stored instances of the dataset, differing in array partitioning
method:

• Linear chunks The array is stored in row-major order, in chunks of 40,000 bytes (10
chunks per row, 10,000 elements per chunk, 1,000,000 chunks total) using linear
partitioning.

• Square tiles The array is stored in 100×100 tiles, occupying 40,000 bytes each
(10,000 elements per tile, 1,000,000 tiles total—same as above) using multidimen-
sional partitioning.

We pick the strategies among the buffered variants of SPD, IN, SPD-IN, as
described in Sect. 4. The buffer size is also varied for the IN strategy, with values
picked among 16, 256, and 4096 distinct chunk ids. The SPD strategy is not affected
by the buffer size in our cases—it either discovers the cyclic pattern with the buffer
size of 16 or does not. We will refer to the SQL queries generated according to either
SPD (buffered) or SPD-IN strategy described in Sect. 4 as SPD queries, and similarly,
to the SQL queries generated according to IN (buffered) or SPD-IN strategy as IN
queries.

The query parameters are chosen manually, to ensure different selectivity (for
all query patterns) and absence of data overlap between the parameter cases (for
QT1–QT3). The latter is important to minimize the impact of the back-end DBMS-
side caching of SQL query results. A set of chosen parameter values for a SciSPARQL
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query will be referred to as a parameter case. Each query for each parameter case is
repeated 5 times, and the average time among the last 4 repetitions is used for com-
parison.

6.2.1 Results and immediate conclusions

The performance measurements are summarized in Table 3 below. For each query and
parameter case,we indicate the amount of array elements accessed, and averaged query
response times for different strategies. Chunk/tile access numbers shown with * are
slightly greater for SPD and SPD-IN strategies due to false positives, with **—also
differ for IN strategies due to advantages of sorting, shown for IN(4096).Here are the
immediate observations for each query pattern.

QT1: The SPD strategy becomes slightly better than IN(4096) in a situation of
extremely good physical locality (retrieving every chunk among the first 0.1% of the
chunks in the database). Under more sparse access, IN with a big enough buffer, also
sending a single SQL query, is preferable.

QT2:Worst case workload for the linear partitioning, given the row-major nesting
order. As expected, the performance is roughly the same as for QT1 in the case of
multidimensional partitioning, with the same maximum of 1000 square tiles being
retrieved (this time, making up for one column of tiles). The long and sparse range of
rows, given by QT2 access pattern, thus incurs slower-than-index SPD performance
(e.g. slower than the index lookups used by IN strategies). In contrast a short condensed
range (as for QT1) is faster-than-index—as a non-selective scan is generally faster
than index lookups.

QT3: In the case of multidimensional array partitioning and under certain grid
densities, this query becomes a worst case workload—retrieving a single element
from every tile. The IN strategy with a large buffer is the best choice in all cases,
regardless of the partitioning scheme.

QT4: Similarly to query QT2, this one is the worst case workload for linear chunk
partitioning, as the chunk access pattern, as detected by SPD changes along the diag-
onal, is initiating re-buffering and cyclic phase switching in our framework. The SPD
strategy sends only 10 SQL queries (or a single query in case of b� 1000, where it
captures the complexity of the whole pattern with a single access pattern), and SPD-
IN always chooses SPD. Multidimensional partitioning helps to avoid worst cases
for diagonal queries, helping to speed up the execution by factor of 55.4 (for the
unselective queries).

QT5: SPD obviously detects wrong patterns (since there are no patterns to detect),
leading to a serious slowdown. However, SPD-IN is able to discard most (but not all)
of these patterns as unlikely, almost restoring the default IN performance. And, by the
way, SPD is sending the same amount of 625 SQL queries as IN strategy does (for the
buffer size of 16). Since the distribution is uniform, there is practically no difference
between chunked and tiled partitioning,

QT6: The access coordinates are generated in clusters. For the test purposes we
generate 3 clusters, with centroids uniformly distributed inside the matrix space. The
probability of a sample being assigned to the cluster is uniform. Samples are normally
distributed around the centroids with variance 0.01*N–0.03*N (randomly picked for
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Table 4 Partitioning/workload best and worst cases (empty cells indicate cases which are neither best nor
worst, e.g. there’s no best/worst partitioning for truly random access)

Access pattern Linear partitioning Multidimensional partitioning

Row-major Column-major

QT1: single row Best Worst

QT2: single column Worst Best

QT3: regular grid Worst

QT4: diagonal Worst Worst

QT5: random (uniform)

QT6: random (clustered) Best

each cluster once). We deliberately use such highly dispersed clusters, as the effects
of logical locality already become visible at a certain selectivity threshold. Samples
produced outside the NxN rectangle are discarded, thus effectively decreasing the
weight of clusters with centroids close to the border.

For QT6, the effect of logical locality starts to play a role already when selecting
0.001% of the array elements. At the selectivity of 0.01% the number of chunks to
access is just 78% to the number of elements in the case of linear chunks, and 69%
in case of square tiles. We see that the square tiles better preserve the logical query
locality, especially for the unselective queries. We expect this effect to be even greater
for more compact clusters w.r.t. the tile size, and Experiment 2 below (where we vary
the chunk size) supports this idea.

6.2.2 Comparing linear chunks versus square tiles

In this experiment we have gathered empirical proof to a common intuition [13, 20,
21, 24, 25] that for every data partitioning scheme there is a possible worst-case and
well as best-case workload. These can be summarized by the following table, listing
QT1–QT6 as representative access patterns (Table 4).

The multidimensional partitioning has its only worst case (when a separate chunk
needs to be retrieved for each element) on sparse enough regular grids, Also, as shown
by QT6, the multidimensional partitioning is still more advantageous for random
access patterns, with even a small degree of locality. Overall, it can be regarded as
more robust, though having fewer best-case matches. Compact enough clusters that
can be spanned by a small number of tiles would obviously be a near-best-case access
pattern.

6.2.3 Comparing SPD versus IN strategies

The SPD approach in most cases allows packing the sequence of all relevant chunk ids
into a single SQL query, and thus skipping all the subsequent buffering. However, we
have discovered that the SPD queries generally do not perform so well in the back-end
DBMS as queries with IN lists. The last two cases show very clearly that in the case
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where there is no pattern, so that we have to send the same amount of SPD and IN
queries (for the same buffer size), the difference in query response time is greater than
order of magnitude.

An obvious explanation to this is index utilization. A query with an IN list involves
index lookups for each chunk id in the list, while a query with mod condition, as
generated with SPD strategy, is processed straightforwardly as a scan through the
whole ArrayChunk table.

We believe it could be highly advantageous to implement a simple rewrite on the
mod() function. A condition like ‘X mod Y � Z’ with Z and Y known, and X being
an attribute in a table (and thus having a finite set of possible bindings), could be easily
rewritten to generate a sequence of possible X values on the fly (thus making mod()
effectively a multidirectional function [26]).

This, however, would require a facility to generate non-materialized sequences in
the execution plan. In our prototype generators are used for all bag-valued functions.
We have run additional experiments with other RDBMSs, including PostgreSQL,
MySQL, Mimer [27], and found that even though some of these support table-valued
UDF, only the newer versions (tested 9.4.4) of PostgreSQL are capable of avoid-
ing materialization of complete sequences before use. We see this as an important
improvement in the present-day RDBMS architecture.

6.3 Experiment 2: Varying the chunk size

Here we evaluate the trade-off between the need to retrieve many small chunks in one
extreme case, and few big chunks (with mostly irrelevant data) in the other extreme
case. We chose QT6 as a query with certain degree of spatial locality especially with
tiled array partitioning.

We also study how well our back-end DBMS handles the requests for numerous
small or big binary values, thus using the IN strategy with buffer size set to 4096
distinct chunks. In each case we retrieve 10,000 array elements arranged into three
clusters, with variance chosen in range 0.01*N… 0.03*N.

Table 5 shows the results for both partitioning cases: even though big chunk size
(around 4 megabytes) results in a much smaller amount of chunks retrieved (only 1
SQL query is sent), the overall query time rises super-linearly to 612 s. Besides that,
smaller chunks result in slightly better performance in this case, since the amount of
‘small’ chunks retrieved stays approximately the same for the same sparse random
access.

Using the square tiles helps to leverage the access locality even better. However,
big tiles do not seem to pay off at this level of sparsity: retrieving 206 4-megabyte
tiles results in a factor of 81.4 larger binary data retrieval than 9886 1-kilobyte tiles,
and contributes to a factor of 9.26 longer query time.

This experiment shows that for the given access selectivity (10−6 of the total number
of array elements selected randomly in clusters), small chunks perform better than big
chunks, and the choice between linear chunks or square tiles is not important for small
chunk/tile sizes. However, there is apparently a significant overhead in retrieving
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Table 5 QT6 run time (s) for
linear chunks, IN strategy, with
chunk size varied

Chunk size Linear chunks Square tiles

Accessed Response
time, s

Accessed Response
time, s

1 k 9894 10.923 9886 10.945

6.4 k 9415 10.897 9393 10.846

40 k 9961 18.396 6916 13.022

4 M 1159 612.269 206 101.333
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Fig. 3 Amount of distinct linear chunks as a function of chunk size, results of simulating QT6 retrieving
10,000 elements clustered with different density

separate chunks, as a factor of 81.4 gross data transfer increase contributes to only a
factor of 9.26 query time increase.

Analytically, we would model the query response time as a function T (s) of chunk
size s: T (s)=P(s)N(s) where P(s) is the cost of transferring one chunk (given a fixed
total number of SQL calls), and N(s) is the amount of relevant chunks to be retrieved.
We expect P(s) to be linear after some ‘efficient chunk size’ threshold, while N(s)
should experience a steep fall, corresponding to the logical locality of the query, which
is saturated at some point. While the quantitative properties of P(s) depend largely
on the underlying DBMS, the middleware, and the operating system used (along with
hardware configurations),N(s) is statistical, and can be easily computed by simulation,
as presented below.

6.3.1 Amount of distinct chunks as a function of chunk size

Figures 3, 4 and 5 below show the simulation results of QT6 retrieving 10,000 random
elements, with clusters of element coordinates having the average variance of 0.2*N
(very dispersed) to 0.0002*N (very condensed). Figure 3 presents N(s), given the
linear chunks of varying size, and Figs. 4, 5 present N(s) for the square tiles.
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Fig. 4 Amount of distinct square tiles as a function of tile size, results of simulating QT6 retrieving 10,000
elements clustered with different density
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Fig. 5 Amount of distinct square tiles as a function of tile size, results of simulating QT6 retrieving 1000
elements clustered with different density

As we can see, the linear chunk case clearly exhibits a top ‘plateau’ for most of our
cases, and thus confirms our expectations stated above. This feature is not visible for
the square tiles case (Fig. 4), as the square tiles utilize the query locality much better.
In order to see the plateau, we have to re-run the simulation with a greater sparsity (so
that there is a greater probability of having single selected element per tile retrieved).
Figure 5 shows the result of such simulation, with QT6 retrieving this time only 1000
random elements.

Another interesting feature on Figs. 3 and 5 is a ‘middle plateau’ for the (not very)
dispersed access patterns. The beginning of such plateau should be considered as one
of the sweet spots when choosing the partitioning granularity, where chunk/tile size
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is adequate to the distribution of access densities. Of course, assuming the statistical
properties of the workload are known before the array data is partitioned.

Similarly, the earlier observations (Table 5) suggest that there is always a threshold
in access density after which the bigger chunks become more favorable. We estimate
it pays off to transfer 8 times more gross data from a back-end, if it results in retrieving
8 times lesser amount of chunks.

7 Summary

We have presented a framework for answering array queries, which identifies and
makes useof the array access patterns found in thosequeries.Wehave implemented this
approach in our software prototype supporting array query language (SciSPARQL) and
storing numeric arrays externally. Buffering array access operations and formulating
aggregated queries to the back-end has proven to be essential for performance.

We have compared two pure and one hybrid strategy for generating SQL queries to
the back-end based on the buffered set of chunk ids to be retrieved.One is putting a long
IN list into the query, and the other is creating an expression for a cyclic chunk access
pattern discovered. It turned out that even though the second approach allows accessing
an entire array with a single SQL query, and skipping further buffering in most cases;
it only pays off for very unselective queries, retrieving a large percentage of array’s
chunks. Apparently, current RDBMS optimization algorithms do not rewrite the kind
of conditional expressions we were using, in order to utilize existing indexes. Hence,
our general advice is to use long IN lists for the best performance of a contemporary
RDBMS as a back-end.

We have also investigated two distinct partitioning schemes—linear and multidi-
mensional—used to store large numeric arrays as binary objects in a relational database
back-end. Our mini-benchmark consists of six distinct parameterized query patterns,
and it becomes clear that for each partitioning scheme one can easily define best-case
andworst-case queries. For example, a diagonal access pattern worksmuch better with
square tiles than with any linear chunking, while the linear chunks in an array stored
row-by-row are perfect for single-row queries and worst for single-column queries.
As for the chunk size, we have empirically found a proportion when the overhead of
transferring more gross data balances out the overhead of retrieving more chunks.

The conclusion is that choosing the right partitioning scheme and chunk size is
crucial for array query response time, and the choices beingmade should be workload-
aware whenever possible. Though it might not be possible to know the expected
workload for long-term storage of scientific data, such knowledge can certainly be
inferred for materializations of intermediate results in cascading array computation
tasks. As one direction of the future work, a query optimizer that makes choices
on materializing intermediate results (e.g. common array subexpressions) should be
enabled to choose the storage options based on the downstream operations, guided by
the results of this study.
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