Computing (2020) 102:865-892
https://doi.org/10.1007/s00607-019-00767-8

®

Check for
updates

A probabilistic model for assigning queries at the edge

Kostas Kolomvatsos'@® - Christos Anagnostopoulos’

Received: 24 May 2019 / Accepted: 4 November 2019 / Published online: 18 November 2019
© The Author(s) 2019

Abstract

Data management at the edge of the network can increase the performance of appli-
cations as the processing is realized close to end users limiting the observed latency
in the provision of responses. A typical data processing involves the execution of
queries/tasks defined by users or applications asking for responses in the form of ana-
Iytics. Query/task execution can be realized at the edge nodes that can undertake the
responsibility of delivering the desired analytics to the interested users or applications.
In this paper, we deal with the problem of allocating queries to a number of edge nodes.
The aim is to support the goal of eliminating further the latency by allocating queries
to nodes that exhibit a low load and high processing speed, thus, they can respond
in the minimum time. Before any allocation, we propose a method for estimating the
computational burden that a query/task will add to a node and, afterwards, we proceed
with the final assignment. The allocation is concluded by the assistance of an ensemble
similarity scheme responsible to deliver the complexity class for each query/task and
a probabilistic decision making model. The proposed scheme matches the characteris-
tics of the incoming queries and edge nodes trying to conclude the optimal allocation.
We discuss our mechanism and through a large set of simulations and the adoption of
benchmarking queries, we reveal the potentials of the proposed model supported by
numerical results.

Keywords Edge computing - Edge nodes - Queries allocation - Ensemble similarity
scheme - Probabilistic model

Mathematics Subject Classification 68U01 - 68T20

B4 Kostas Kolomvatsos
kostas.kolomvatsos @ glasgow.ac.uk

Christos Anagnostopoulos
christos.anagnostopoulos @ glasgow.ac.uk

School of Computing Science, University of Glasgow, Lilybank Gardens 17, G12 8RZ Glasgow,
Scotland, UK

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-019-00767-8&domain=pdf
http://orcid.org/0000-0002-9442-3340

866 K. Kolomvatsos, C. Anagnostopoulos

1 Introduction

The Internet of Things (IoT) offers a vast infrastructure where numerous devices have
the opportunity to autonomously act in order to support applications and end users.
IoT devices can collect and process data from their environment while being intercon-
nected to exchange information and knowledge. Data can be processed at the devices
themselves, at the edge of the network (Edge/Fog) or at the Cloud. We can envision
a multi-layered infrastructure where data are moving from the IoT devices upwards
to the Cloud. As we move to the upper layers, we observe improved computational
resources, however, the latency increases as well. Any part of this infrastructure is a
potential data processing point. The decision of where data will be processed to deliver
analytics depends on the time and resource requirements imposed by end users or appli-
cations. Current research efforts (e.g., [7]) focus on the data streams management at
the edge to reduce the latency experienced by end users. It becomes obvious that in
such cases, the power of data processing and knowledge production is transferred to
the edge nodes instead of relying on Cloud or a central data warehouse.

In the discussed vast infrastructure, we can observe a number of Edge Nodes (ENs)
where data can be collected and processed. In these nodes, through the reporting of
IoT devices, a number of distributed datasets are formulated becoming the basis for
the upcoming processing, i.e., the provision of responses to a set of queries/tasks (form
this point forward, we refer in queries) coming either from applications or end users.
Data can refer in specific monitoring activities, e.g., temperature, humidity, pollution as
realized by the application domain. Every dataset is characterized by specific statistics
delivered by the unknown distribution of the collected data. The efficient management
of the incoming queries will characterize the success of the supported applications.
Queries asking for analytics should be responded on top of data that ‘match’ to queries
conditions. For instance, if we ask for temperature values in the interval [0, 10], it does
not have any meaning to execute the query on a dataset where its statistics indicate that
the collected values are in the interval [30, 40]. Without loss of generality, we consider
a set of entities responsible to receive and allocate the incoming queries. We call such
entities as Query Controllers (QCs). QCs rely on the middle between the requestors
and the ENs and should conclude the final allocations in the minimum time. ENs can
receive queries from multiple QCs, thus, we can envision an ecosystem of QCs-ENs
and study their interactions.

Multiple research questions arise in the aforementioned scenario. One of them is
how we can select a (sub)set of ENs and allocate a query. In this paper, we deal with
the query allocation problem like in our previous efforts [34—37]. Queries are reported
through streams into QCs where the final allocation takes place. We take into consid-
eration multiple characteristics of queries and ENs and adopt the research presented
in [35] to have the basis for our model. We compare the requirements of each query
with the ENs’ load and speed of processing and decide if any allocation is efficient.
Contrary to our previous research efforts, we propose the use of a probabilistic model
that estimates the expected load of each EN and match it against the requirements of
queries. The aim of the current paper is to try to support the minimization of latency
when starting the processing of every query (we target to ENs exhibiting a low load);
a time that affects the total time for providing the final response. The proposed model

@ Springer

A probabilistic model for assigning queries at the edge 867

through the use of statistical methods offers an ordered list of the available ENs and
allocates every query to the most appropriate one. Allocations take into consideration
the current status of ENs, i.e., their load (the number of queries waiting for process-
ing) and the deadline in which query responses should be provided (e.g., time critical
applications could require the final response in ms). The following list reports on
the contributions of our work: (i) we provide a modelling process for different types
of queries; (ii) we provide an ENs selection scheme based on a probabilistic model,
(iii) we provide an extensive experimental evaluation of our scheme. With the current
effort, we extend our work in the field focusing on the aforementioned probabilistic
approach. Our probabilistic approach is based on the queries-ENs matching process
as presented in [35], however, it differs in the following aspects:

— we do not rely on any stochastic modeling (e.g., the optimal stopping process
adopted in [34]), thus, we avoid any complex calculations and reasoning. In that
sense, the current scheme relies on the same basis, however, it is a completely
different theoretical model;

— we extend the work in [35] and propose the envisioned probabilistic decision
making to detect the appropriate ENs where every query should be allocated. We
avoid the complicated processing related to the final matching process of [35] to
further reduce the time required for the provision of the final response;

— we do not adopt any learning model like in [36,37], thus, we do not have to: (i)
rely on specific data to train the model; (ii) spend time for the training process;
(iii) be affected by the prediction error.

The paper is organized as follows. Section 2 presents the related work while Sect. 3
discusses the problem under consideration and reports on the characteristics of queries,
edge nodes and query processors. Section 4 describes the envisioned allocation process
through the adoption of the proposed probabilistic model while Sect. 5 reports on our
experimental evaluation. Finally, Sect. 6 concludes our paper by giving insights in our
future research directions.

2 Related work

The IoT is characterized by the distributed nature of data collection and processing.
The spatio-temporal context of the collected data should play an important role in
their processing as any analytics result and decision making should be aligned with
these two dimensions. The identified challenges in the domain have to do with the
efficient management not only of data but also of the numerous devices. A set of
efforts try to reveal opportunities for the management of the distributed nodes/data
present in IoT. Dragon [33] focuses on the efficient identification of nodes that can
reply to user requests based on static criteria, i.e., criteria describing nodes themselves
or their data. The most significant challenge is to have a view on nodes’ characteristics
as well as the statistics of the available data. However, IoT and edge nodes may exhibit
different characteristics not only in the hardware but also in the software (e.g., their
middleware). In [27], the authors propose a Distributed Data Service (DDS) supporting
functionalities for collecting and processing data. The main target is to enable multiple

@ Springer

868 K. Kolomvatsos, C. Anagnostopoulos

and distinct IoT middleware systems to share common data services, thus, to cover
interoperability issues.

The parallel execution of queries could increase the speed of processing, thus,
it can efficiently serve applications. However, for realizing the parallel execution,
data should be separated. This setting is the usual case when we talk about the edge
infrastructure (nodes). A number of efforts try to deliver data separation algorithms
on top of streams or batches. In [8], the authors adopt a sliding window approach.
Streams are partitioned on the fly taking into consideration the query semantics. A
multi-route optimizer is proposed in [13]. The optimizer exploits the intra- and inter-
stream correlations to produce effective partitions. The authors in [66] propose the
separation of streams into a set of sub-streams over which query operators are executed
in parallel. Another effort that focuses on splitting functions is reported in [22]. The
proposed partitioning functions are characterized by a set of properties, i.e, balance
properties (e.g., memory, processing, communication balance), structural properties
(e.g., compactness, fast lookup), and adaptation properties (e.g., fast computation,
minimal migration).

Currently, a set of commercial systems have been already proposed for the man-
agement of the data life cycle in edge and fog nodes. Some example tools are: the
Edge Fog Fabric (EFF) Cisco platform,! the Segment platform,? the IBM Watson IoT
platform for edge analytics® and the Axon Predict platform.* Such tools aim to deliver
automated models for data management close to end users. The focus could be on
‘typical’ relational models or, due to the large amount of the collected data, to some
types of warehousing environments [26]. In any case, the huge volumes of data impose
various constraints/requirements that should be handled to have the desired responses
in the minimum time [4]. For facing large scale data, researchers have proposed data
reduction. An example is related to compression-based approaches assisting in reduc-
ing the overall volume of data that could be easily handled during in-network data
movement [1,29]. The drawback of these models is the cost for the decompression.
Approximate computing has been also explored in the context of distibuted data ana-
lytics [59]. The most known approximate processing is sampling usually adopted for
batch processing. These systems show that it is possible to leverage the benefits of
approximate computing in the distributed big data analytics settings [59]. In the edge
computing era, as already noted, the main objective is the minimization of latency
while processing (geo-distributed) data. The optimization of data placement as well
as the allocation of queries/tasks could assist in the provision of immediate responses.
In [48], a system called Iridium adopts an online heuristic to re-distribute data among
the available nodes before queries arrive. Other solutions involve the separation of
large scale data and the transfer of the extracted information to the Cloud [56], the
incorporation of models for handling data redundancy [55] or the combination of
multiple data management algorithms and the selection of the most appropriate one
[47]. In [61], the authors discuss a system named RedEdge which is responsible to

1 https://www.cisco.com/c/en/us/products/cloud-systems-management/edge-fog-fabric/index.html.
2 https://segment.com/.
3 https://www.ibm.com/internet-of- things/solutions/iot- platform/watson-iot-platform.

4 https://greenwavesystems.com/solutions/axon-predict-edge-analytics/.

@ Springer

https://www.cisco.com/c/en/us/products/cloud-systems-management/edge-fog-fabric/index.html
https://segment.com/
https://www.ibm.com/internet-of-things/solutions/iot-platform/watson-iot-platform
https://greenwavesystems.com/solutions/axon-predict-edge-analytics/

A probabilistic model for assigning queries at the edge 869

manage big data streams and the unavailability of computational and battery power
resources at the devices. In case of limited resources, the proposed system decides to
offload the incoming data streams in a near mobile edge device or to Cloud. Finally,
in [16], the DART framework is presented. DART targets a geospatially distributed
environment of heterogeneous devices and supports a number of tools for giving users
the opportunity to author, execute and monitor their services.

Researchers working in the database community have provided a number of solu-
tions for identifying the similarity between queries. Queries can be represented at the
intentional [60] or at the extensional level [52]. Other techniques involve Information
Retrieval (IR) models, i.e., queries can be depicted by vectors of features [5] or a
set of fragments [3] or graphs [64]. Example schemes deal with the inner product
of vectors [52], the cosine distance [52] or the Jaccard coefficient [15]. Other more
‘sophisticated’ solutions focus on the adoption of Support Vector Machines (SVMs)
[65]. SVMs aim to learn the ranking function applied on queries. This way, we are
able to sort queries and get the top-k of them. Most existing top-k query processing
algorithms like [12] and [28] assume that the ranking function is defined over absolute
attribute values or they are monotonic. The exploitation of the similarity can involve
index structures (e.g., B-trees) to access the scoring of a sub-region. Other efforts, e.g.,
[67], focus on relaxing the monotonicity assumption to incorporate functions whose
scores can be bounded in the given attribute value range.

Other efforts focus on the problem of workload/tasks scheduling at the edge of the
network. Researchers take into consideration the limitations of hardware in scheduling
activities to provide an optimal solution. Task scheduling is a widely studied problem
for computer systems [20]. In-depth studies on several task scheduling algorithms for
Cloud computing have also been conducted [2,43]. In [58], the authors focus on the
task scheduling not only at the edge but also at the Cloud. More specifically, they
propose the HealthEdge, a model that sets various processing priorities for different
tasks based on the collected human health data. Based on these data, the algorithm
can determine whether a task must be executed on a local device or at the Cloud.
Additional efforts adopt Markovian approaches (e.g., [40]) and model the problem
as an optimization process. Computation tasks are scheduled based on the queuing
state of the adopted buffer, the execution state of a local processing unit, and the state
of a transmission unit. In [62], the authors propose a novel methodology through the
establishment of a decoupling property of the Markovian decision process reduced
to two independent processes on disjoint state spaces. Then, using the technique of
Lyapunov optimization over renewals, they design an online control algorithm for
the decoupled problem that is cost-optimal. In [44], the authors propose a Greedy
Best Availability (GBA) mechanism to identify the optimal task scheduling strategy
and reduce the queuing time of services by giving priorities to tasks based on their
completion time. In [49], the performance of a Round-Robin (RR) algorithm adopted in
Cloudis analyzed. The authors reveal that the RR scheduling fairly allocates computing
resources among tasks of the same priority by using a time slicing approach. The
authors of [41] propose a Cloud Assisted Mobile Edge computing (CAME) framework,
in which Cloud resources are leased to enhance the system computing capacity. Mobile
workload scheduling and Cloud outsourcing are further devised. An optimization
problem is formulated to minimize the system delay and cost. The model presented

@ Springer

870 K. Kolomvatsos, C. Anagnostopoulos

in [51] focuses on a score-based edge service scheduling algorithm that evaluates
both network and computational capabilities of edge nodes and outputs the maximum
scoring mapping between services and resources. The aim is to allocate the requested
tasks to the best possible nodes reducing the latency and increasing the performance.
A gateway-based edge computing service model aiming at reducing the latency of
data transmission and the network bandwidth from and to the Cloud is presented
in [54]. On-demand computing resource allocation is the main target accomplished
by adjusting the task schedule of the edge gateway via a lightweight virtualization
technology (i.e., Docker). The authors of [21] trying to respond to question of how
to distribute workload to available machines propose a workload scheduling strategy
that is based on a graph partitioning algorithm. The proposed scheduler is application
agnostic and builds on the data related to the communication behavior of running
applications. In [23], the authors address the requirements of workload management
in Femto Clouds to provide a service to tasks initiators that is similar to that provided
by a centralized Cloud service. The authors present an adaptive workload management
mechanism and algorithms to manage resources and effectively mask churn. Finally,
in [14], an analysis of the impact of workload distribution in a smart grid application
is discussed. The aim is to reveal if we can increase processing rates by leveraging
each time more powerful edge node processors.

3 Problem description

In the following sub-sections, we describe our problem, its parts and provide specific
formulations based on which we deliver the proposed solution. Table 1 presents a short
description for each parameter adopted in our description.

3.1 Data collection at the edge

Current developments in IoT involve the installation of various devices at the edge
of the network for processing the collected data close to end users. The final aim is
to reduce the latency in delivering the final analytics. ENs may vary concerning their
computational resources and range from simple routers to small servers. We consider a
set of ENs (see Fig. 1) ,i.e., EN = {eny, ..., enjg s} placed at various locations (e.g.,
in a smart city). IoT devices (e.g., smartphones, sensors) are ‘connected’ with ENs
to send their data and the produced knowledge. Knowledge can be extracted through
lightweight processing over the collected data. IoT devices are also characterized
by limited computational and processing capabilities, thus, they should avoid the
execution of any intensive tasks that may jeopardize the ‘health’ of their resources.
ENs, on top of the collected data, can build knowledge and support decision making
while they transfer data/information to the upper level, i.e., the Fog/Cloud, when
necessary. A Query Processor (QP) is adopted in every EN placed in front of the
collected data/knowledge being responsible to respond to any incoming query. Hence,
we have a set of QPs, i.e., QP = {qpl, qpa, ..., qp‘gm} ‘exposed’ to the upper
level, i.e., the QCs. A specific interface is adopted where applications or even end

@ Springer

A probabilistic model for assigning queries at the edge 871

Table 1 Nomenclature

Parameter Short description

EN The set of the edge nodes

[EN]| The number of edge nodes

en; The ith edge node

P The set of the available query processors placed in every edge node

qpi The ith query processor at the ith edge node

D; The i dataset avail;able at the ith edge node

X The multivariate data vector reported by the IoT devices

Qi The ith query stream reported at the ith query controller

q;j The jth query reported through a stream

cap The set of the query processors characteristics

cl‘.’p The ith characteristic of a query processor

B The load of an edge node/query processor

T The speed of an edge node/query processor

Omax The maximum size of queues in the edge nodes/query processors

c1 The set of the queries characteristics

C:‘] The ith query characteristic

0 The complexity class of a query

¢ The deadline of a query

® The set of the pre-defined complexity classes

0; The ith complexity class

Op The queries’ training set

Sk The statement part of a query

qs The vector depicting the ‘similarity’ between a query and every class in &

& The set of the adopted similarity metrics

e The ith similarity metric

2 The aggregation operator adopted to produce the similarity between a query and a
complexity class

[0} The fuzzy aggregation operator that returns the final similarity value on top of
multiple metrics

TS The vector depicting the execution steps for each complexity class

Tg The expected number of processing steps for a query

AE The expected load for a query

users can define their queries aiming to receive data from the corresponding EN.
Without loss of generality, when we refer to applications communicating with ENs,
we consider either applications or end users. We consider two types of applications,
i.e., (i) applications that demand responses in (near) real time; (ii) applications that
do not define any time constraints (i.e., a deadline) for getting the final response. The
former type is more demanding meaning that the QPs should respond immediately,
thus, they have to rely on efficient query response techniques. For instance, they could
be based on progressive analytics models or they should apply efficient query response

@ Springer

872 K. Kolomvatsos, C. Anagnostopoulos

qPen|

en, ‘D:‘

en, |,

‘ en; \ 5, | en gy, (e |

<Xyy Xgy ooy Xp> | <Xyy Xy e x|>] <Xyy Xy e xp] <Kyy Xy vy Xp> I <Xy, Xgy ooy Xp> |

=0 =20 =0 =0z0 =0=0 =0|. =0 =0

Fig. 1 The generic architecture under consideration

plans. The latter type of applications do not demand immediate responses, however,
QPs should not delay the return of the final result as responses can become obsolete.
In our research, we focus on applications requiring the result of each query in the
minimum time in order to support (near) real time services.

In each EN, a dataset is formulated by the collected data defining a geo-distributed
local data repository. As 10T devices report data at high rates, their volumes could
become huge. Each dataset, D;, present at the ith EN, stores multivariate data, i.e.,
vectors in the form of: x = (x{, x2, ..., x;) where [is the number of dimensions.
D;s are continuously updated over time as streams report data at high rates creating
a very dynamic setup where efficient decision making should be realized. Responses
produced for a query at time ¢ based on D; may differ if they are produced at time
t 4+ 1. The aforementioned example depicts the first point of the dynamic update in
our scenario. We cannot have any view on data present in D;s and do not adopt any
separation algorithm of the collected data. Also, we do not have any view on the
statistics of data in advance.

In the upper layer (i.e., the Fog/Cloud), there is a number of QCs responsible
to manage the incoming queries. Queries are also reported through streams Q; =
{q1, q2, ...} to the corresponding QCs. After that, QCs undertake the responsibility
of allocating queries to a (sub)set of QPs and collect their responses. The final step
is to return the final, possibly aggregated, response to end users or applications. QCs
are intelligent entities that perform the selection of the appropriate ENs/QPs and
the final aggregation of the ‘partial’ responses. As partial response, we define the
response retrieved by an EN/QP that should be aggregated with the remaining results.
QCs may receive results that may contradict each other and they should solve these
‘conflicts’. The aim of QCs is to support (near) real time applications, thus, they should
immediately allocate queries and finalize the appropriate response.

@ Springer

A probabilistic model for assigning queries at the edge 873

Motivating example Let us focus on the setup presented in Fig. 1 and assume the
Smart Grid (SG) infrastructure. In the SG, numerous smart meters (devices) can be
adopted to record and monitor the energy consumption of consumers in a location
based approach. Smart meters (i.e., the IoT devices) can have a two way interaction
with the energy distribution infrastructure that consists of the edge devices (close to
smart meters) and the Cloud back end system. Wide-area network (WAN) internet
protocols can be utilized to realize this two-way communication. Smart meters are
capable of collecting energy consumption data transferring them to the Cloud back
end through the edge nodes. Smart meters report multivariate data (e.g., consumption
values, timestamps) that can be stored at the edge infrastructure for delivering spatio-
temporal analytics in short time. Edge nodes can enable energy utilities or distribution
operators with advanced real time monitoring and analytics capabilities on top of the
distributed energy data. In the back end system, operators, utilities administrators and
energy policy makers may want to instruct queries for generating analytics on top of the
entire network. This scenario depicts the need of our mechanism, i.e., our model can
facilitate the allocation of the discussed queries to the appropriate node(s) to have the
final response in the minimum possible time. These responses will be valuable when
we want to build real-time monitoring functionalities and react to any malfunctioning.
In our scenario, we try to manage the ecosystem of QCs - ENs/QPs and define mod-
els for the efficient allocation of the incoming queries. Our model tries to ‘match’:
(a) queries ¢1, g2, . . . reported in the corresponding streams with; (b) the available
ENs/QPs gp1,qp2, ..., qpien)- The matching process is significant for the final
response as it should not only match queries with the appropriate dataset but also
queries with the appropriate QPs (their performance plays an important role in the
support of real time applications). In addition, the matching process could deliver a
(sub)set of the available QPs based on a complex rationale that every QC adopts.

3.2 Edge nodes and query processors

Every EN/QP exhibits specific characteristics C%7 = {c{”, 3", ...}, e.g., C?P =
{load, speed}. A detailed discussion on the QPs characteristics can be found in [46].
These characteristics can be discerned in centralized or distributed systems and catego-
rized in high or low levels. High level features are the type (e.g., single or two phase>)
or the performance calculated on top of historical values. Low level characteristics
are [46]: (i) the input language; (ii) the types of the performed optimizations; (iii) the
optimization timing; (iv) the effectiveness of processors as depicted by statistics; (v)
the decision sites; (vi) the exploitation of the network topology; (vii) the exploitation
of replicated fragments; (viii) the use of semi-joins. The aforementioned characteris-
tics are closely related to the underlying features of datasets. We propose to extend the
list and incorporate more ‘dynamic’ parameters that are related to high level features
like the load and the speed of each QP. Such characteristics are delivered as a more
detailed view of QPs performance depicting their current state. In the current work,
we focus on these two additional characteristics, i.e., (QP1) the load 8; and (QP2) the

5 https://www.ibm.com/support/knowledgecenter/en/SSDP9S_11.1.0/com.ibm.swg.im.iis.fed.classic.
overview.doc/topics/iiyfcstogp.html.

@ Springer

https://www.ibm.com/support/knowledgecenter/en/SSDP9S_11.1.0/com.ibm.swg.im.iis.fed.classic.overview.doc/topics/iiyfcstoqp.html
https://www.ibm.com/support/knowledgecenter/en/SSDP9S_11.1.0/com.ibm.swg.im.iis.fed.classic.overview.doc/topics/iiyfcstoqp.html

874 K. Kolomvatsos, C. Anagnostopoulos

speed . We consider that every QP maintains a queue where the incoming queries
are placed and wait to be processed. The size of the queue is adopted to define the
parameter 8 € [0, 1] which represents the percentage of the maximum load that can
be afforded by the corresponding QP. For having 8 € [0, 1], we consider a maximum
queue size Qax — Omax can differ in QPs. When 8 — 1 means that the correspond-
ing QP exhibits a high load. The load is also directly ‘connected’ with the throughput
of each QP and the velocity with which queries arrive in the corresponding queue.
Apart from g, we also focus on T which represents the speed of each QP. 7 is, again,
related to the throughput of QPs. Actually, T represents the number of queries present
in the aforementioned queue that can be served in a time unit. The higher the 7 is, the
higher the performance of the corresponding QP becomes. It should be noted that
is related to t and the rate of the delivery of queries in each QPs’ queue. When the
rate is higher than t, the QP will face increased load as its queue will be overloaded.
Finally, 7 is related not only with the ‘internal’ characteristics of the QPs and their
type of processing but also on the complexity of the executed query. A complex query
(e.g., a join query) may demand more time and resources to be responded compared
with a simple query (e.g., a select query). Usually, a complex query requires a high
number of steps to be executed (a discussion on the query execution plans and the
required steps can be found in the upcoming sections). Both, § and t should be taken
into consideration, when allocating queries to the available ENs/QPs. The reason is
that we should avoid the overloading of processors, thus, get the final response as
soon as possible. A matching process is realized through the matching between QPs’
characteristics and queries’ characteristics as described below. 8 and 7 are matched
against the complexity and the deadline of the incoming queries, respectively. This
way, the allocation process is aligned not only with the queries needs but also with the
dynamic characteristics and the status of each QP. 8 and t are continually updated as
more queries arrive in the queue and the throughput is updated. It should be noted that
every QP is ‘connected’ with multiple QCs, thus, it receives requests (in the form of
queries) from multiple locations.

3.3 Query characteristics

Every query reported to a QC has a set of characteristics depicted by C? =
{cl.c3....}. eg.. C1 = {class, deadline}. According to [24], ‘generic’ queries
characteristics are: (i) the type of the query (e.g., repetitive, ad-hoc); (ii) the query
shape; (iii) the size of the query (e.g., simple, medium, complex). Based on these
characteristics specific execution plans could be defined in the form of a processing
tree [24]. Leaf nodes represent base relations while internal nodes depict operations on
data. A study on the processing of queries and their optimization can be found in [46].
QPs undertake the responsibility of hiding the complexity of the query optimization
process. We propose to extend the aforementioned list and incorporate more parame-
ters that depict the complexity and the need for instant response. Such characteristics
affect queries’ execution in terms of the required resources. In our work, we focus
on the following query characteristics: (Q/) the query class 6; and (Q2) the query
deadline ¢. 6 is adopted to depict the complexity of a query. Various research efforts

@ Springer

A probabilistic model for assigning queries at the edge 875

in the databases community deal with studies on how we can reason on the complexity
of queries [6,17,45]. Usually, 6 is aligned with the complexity performed by the oper-
ations required for producing the final result. For instance, the operations required by
a select query may be fewer than the operations required by a Cartesian product query.
¢ isrelated to the time interval where a response should be delivered. ¢ can be defined
in time units (e.g., sec or ms) being related to the urge of the operation and the time
criticality of the application. It is adopted to apply ‘anxiety’ in the corresponding QCs
and QPs to conclude the process as soon as possible. QCs taking into consideration ¢
should select QPs that ‘estimate’ their quick response.

4 The allocation process

In the above presented discussion, QPs are characterized by data related to QP1 and
QP2 and queries by Q1 and Q2. We enhance QCs with a probabilistic decision making
mechanism for concluding the final queries allocation through the matching between
pairs of characteristics, i.e., QP1-Q1 and QP2-Q2. The matching process should be
realized in the minimum time, however, with the maximum performance as will be
depicted by the final response (the retrieved responses should perfectly match queries’
conditions). The evaluation of the quality of the final response is beyond the scope
of the current paper. Our proposed model does not deal with and does not affect the
quality of the response; it tries to detect the ENs/QPs that will return the outcome in
the minimum time.

4.1 Query classes and complexity

Initially, we have to assign the incoming query to a class indicating its complexity. For
this, we adopt the methodology proposed in our previous effort presented in [35]. The
assignment of a query to a complexity class retrieved by a set of predefined classes,
it is a typical classification task. The final complexity should be defined based on
quantitative (e.g., number of constraints / conditions) and qualitative (e.g., type of
operations / constraints) characteristics. For handling this complicated process, we
adopt a ‘fuzzy’ approach and define a Fuzzy Classification Process (FCP). The FCP
is the process of grouping individuals having the same characteristics into the same
fuzzy set. The FCP is based on a membership function that indicates whether a query
is a member of a class representing a specific complexity. A training set of pre-defined
queries together with their corresponding classes is available for the FCP. The training
dataset is common to the entire set of QCs. Every tuple depicts the correspondence of
an example query to a specific class. A class may be involved in multiple tuples, thus,
in multiple queries. The training set is defined by database experts and its definition
is beyond the scope of the current work.

Let ® = {91, 6, ..., 6|@‘} be the set of the pre-defined classes where a query
can/should be classified and QO p be the training dataset containing tuples in the form
of: (s, 6k),Vk € {1,2,...,|0Opl}. sk represents the query’s statement and 6; € ©.

@ Springer

876 K. Kolomvatsos, C. Anagnostopoulos

An example query statement could be
{select price from stocks where id =" RBS’}

We define a function f that gets the query ¢; and based on Qp delivers a vector
that depicts the ‘similarity’ of ¢; with every classin @, i.e., f(¢;; Op) = ¢° € RI®I.
The discussed vector contains values in the interval [0,1] forming the basis of our FCP.
Let an example vector be q° = (0.2, 0.8, 0.3) for three example classes

{61 = O(nlogn), 6, = O(n), 63 = O(n*))

q° shows that g is by 20% of the first type of complexity, by 80% of the second and
by 30% of the third. Based on these values, we should extract the final complexity
class and match it with QPs characteristics as already noted.

For calculating q°, we can be based on various efforts in the domain for finding
the similarity between queries. The interested reader can refer in [39] for a review
and experimentation with various query similarity techniques. Based on our previ-
ous work, we adopt the use of an ensemble scheme for evaluating the final similarity
between ¢; and every tuple (si, 6¢) in O p. It should be noted that for calculating the
similarity with a class 6k, we process all tuples in Q p classified to 6. The ensemble
scheme adopts the set & = { e, ey, ..., e|g‘} of similarity metrics. These metrics are
applied on each tuple classified to 6 aggregated to a successive step towards the final-
ization of g}, i.e., the final similarity of g; with 6. Formally the ‘two-dimensional
aggregation’ is calculated as follows, q,ﬁ = 2(w {ei (g, {sk, Ok))} , Vi, and all tuples
(sx, 6x) belonging in 6. The function w has the ‘responsibility’ of realizing the envi-
sioned ensemble similarity scheme while the aggregation operator §2 produces the
kth similarity value between g; and the kth class on top of multiple @ values. For
w, we consider that every single similarity result (i.e., e; (g, (s, O)) represents the
membership of ¢; to a ‘virtual’ fuzzy set depicted by each of the similarity metrics.
Actually, we deal with |£] membership degrees combined to get the final similarity for
the kth tuple. For instance, for three metrics, if we get 0.2, 0.5 and 0.3, g; ‘belongs’
to the fuzzy set defined by the 1st metric by 0.2, to the set depicted by the 2nd metric
by 0.5 and to the fuzzy set depicted by the 3rd metric by 0.3. w is a fuzzy aggregation
operator that takes into consideration the membership to every fuzzy set and returns
the final value. w is a |£|-place function, i.e., : [0, 1]'5| — [0, 1] called general
aggregation operator giving as a result a real number. The ‘performance’ of aggre-
gation operators is well studied in various research efforts [9,19,25]. Through a high
set of experiments [19,25], a number of aggregators are identified to exhibit the best
performance, i.e., the Einstein product, the algebric product, the Hamacher product
[25] as well as the Schweizer-Sklar metric [19]. The £2 function is adopted to result
the final similarity value between g; and 6. It builds on top of w values produced
for each tuple ‘belonging’ to 6;. Let wy, wa, ..., w, be the similarity values for each
tuple in 6. For the aggregation of the m values, we rely on the Quasi-Arithmetic

mean [18],i.e.,q; = [% > a)f‘] “ where « is a parameter that ‘tunes’ the function.

For instance, if we get « = 1, the function is the arithmetic mean, when o = 2, the

@ Springer

A probabilistic model for assigning queries at the edge 877

function is the quadratic mean and so on and so forth. After calculating the final values
for each class, we get ¢* = (21, 22, ..., R2j0)).

The next step is to estimate the required processing steps to conclude the response
of g;, thus, to be able to identify if the response can be retrieved in the pre-defined
deadline. As already seen, q° represents the probabilities of having the incoming query
in the specific class. We consider an additional vector TS = (T, T», . . ., Tje|) which
represents a ‘typical’ number of processing steps (an upper bound) for each class. The
most common approach for the execution of queries is the creation of the execution
tree where the required steps are connected.® Example steps could be table access,
index range scan, etc. Based on the above, the expected number of processing steps
is defined by Tg = 1@1 §2; T;. Based on Tg, we reason on the expected load Ag.
We consider that 7,4, depicts the maximum possible number of steps for any class.
Hence, A g for g; is defined as follows: Ap = b

Tmax '

4.2 The final allocation

Having A g and Tg, we can calculate the probability of the allocation of g; to any of
the available QPs. As QPs are continuously processing queries coming from differ-
ent QCs, the probability of the allocation depends on their future load and if a QP
can support the execution of the query. Initially, we focus on the estimation of the
expected load E () for each QP. Recall that incoming queries are placed at the queue
in front of each QP. Let the size of the queue be u and the rate of reporting queries
to each QC be annotated with A1, A2, Each query stream reported to the jth QP
follows a Poisson distribution. The Poisson distribution is widely adopted in queuing
systems and involves a ‘memoryless’ waiting time until the arrival of the next query.
In addition, the Poisson model has several advantages over the multinomial model,
including naturally accommodating per-term smoothing and allowing for more accu-
rate background modeling as proved in [42]. If Z; is the Poisson random variable
depicting the query stream reported by the ith QC, the distribution of the size of the
queue in front of each QP also follows a Poisson distribution which is the sum of the
‘individual’ distributions [53]. Every QC after the reception of a query decides the
QP where the query will be allocated based on the probability of the allocation as we
describe below. This probability depends on the ‘similarity” between the ¢; and the
corresponding QP as concluded by focusing on load and speed. Assume that, QCs
equally distribute queries to the available processors, i.e., a Uniform distribution is
adopted. This approach can be adopted by QCs to distribute the load of the allocated
queries (a load balancing strategy); they may adopt the dogma, a low load may lead
to a fast response. Furthermore, such an approach will reduce the resources required
for processing historical data and result the ENs/QPs where queries will be allocated.
From QCs perspective, every QP will ‘receive’ \;TI queries. Such a methodology
may be efficient when data replication is adopted to spread the data into the network
aiming to avoid the transfer of queries to the appropriate nodes. However, the study
of data replication techniques is beyond the scope of the current research effort. Now,

6 https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL186.

@ Springer

https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL186

878 K. Kolomvatsos, C. Anagnostopoulos

from the QPs perspective, in the average case, they will receive I?% for the 1st QC,
lg)‘Tzl for the 2nd and so on and so forth.

Lemma 1 The expected load of an EN/QP is E(B) = \SWZIlQAm

Proof For the random variable Z, the following equation holds true (recall that Z
depicts the size of the queue and is the sum of the ‘individual’ Poisson distributions

Z”Z()

bility mass function of Z. Hence, 1f we follow the theoretical analysis of the Poisson
distribution, we can easily conclude the expected size of the queue in front of a QP,

as noted in [53]) : pz(z) = for A = W pz(z) denotes the proba-

ie., E(u) = ZW”- Moreover, we can also have the probability mass function of the

load for each QP that is based on the expected queue size as calculated above . The
probability mass function of § is defined as follows (B is the random variable depict-

! nA
ez’ ’Z[()‘i)
T BOmax

. Z Ai
as follows: E(B) = TN O ’

ing the load of a QP): pp(B) = . Hence, the expected load of each QP

Based on Tg, and taking into consideration 7 (the speed) for each QP, we can
calculate the conclusion time for g ;. Actually, the conclusion time is defined by p; =

TE . We consider that both ¢ and p; are defined in time units (ms, sec, etc). Moreover,
We have to notice that we select p not depicting the queuing time as we want to focus
only on the performance of the system when it tries to respond to analytics queries
and not on the underlying data and queries ‘management’ mechanisms.

The probability of allocating ¢; to a specific QP is delivered through a simple
rewarding mechanism. We propose the use of multiple rewards, i.e., R = {r,- j} €
Rt i=1,2,...,|EN],j=1,2,...one for each parameter affecting the matching
process. For 8, we consider that when Ag < 1 — E (), we gain a reward r1; otherwise
we pay a penalty equal to 71. The same approach stands also for p. When p; < ¢,theith
processor will get a reward equal to r; otherwise, the ith processor gets a penalty equal
torp. Finally, we pay attention on the past behavior of QPs. If in the past allocation, a QP
manages to complete the final response in the deadline indicated by ¢, it gains a reward
r3; otherwise, it pays a penalty equal to 3. In general, the reward/penalty/cost, for the
ithQPisequaltor; = leﬂl sgn(rij)rij, where sgn(r;;) is the positive sign, if the r;;
deals with areward; otherwise, itis the negative sign. It should be also noted that r;; is a
real number calculated over the difference between the discussed pairs of parameters,
ie., 1 — E(B) — Ag and 1; - p;. For depicting the final result, we apply a sigmoid

function /" = ;.3 m where y and § are parameters adopted to ‘calibrate’
its shape. In addition, y represents the difference between the aforementioned pairs of
parameters, i.c.,y € {1 — E(B) — Ag, y'} withy’ = max (¢ — p;, 0). When y — oo,

inal inal
r:f — r;; otherwise, rf

; — 0. The higher the difference is, the higher the reward
becomes. For instance, we need L. << 1— E(f), thus, the corresponding QP exhibits
a low load and it has the room for the execution of g;. With the use of the sigmoid

function, we aim to ‘enhance’ the reward of each QP, if it exhibits a limited load

@ Springer

A probabilistic model for assigning queries at the edge 879

and an increased speed. The final probability of allocation in the ith processor, p;, is
calculated by the softmax function or normalized exponential function [10]. p; is given

rfll‘lll[

by: pi = W qj is allocated in QPs that their probability of allocation exceeds
i €l

the pre-defined threshold pr. We adopt an ordered list of the available QPs based on

pi to conclude an optimal decision making. The Probability Ranking Principle [30]

dictates that if QPs are ordered by decreasing p; on top of the available data, the

system’s effectiveness is the best to be gotten for those data.

4.3 Existence of the optimal node

Let us now focus on the probability of having QPs that satisfy both conditions, i.e.,
they fulfill load’s and speed’s requirements (in the analysis below, we do not take
into consideration the historical performance of QPs). The probability of getting both
rewards is defined by P(Ag < 1 —B)P(p; < ¢).For getting the final analytical result,
we have to calculate the following probabilities: (i) P1: probability of satisfying B, i.e.,
P(hp <1 —B) = Fg(l —Ag)(F is the cdf of B); (ii) P2: probability of satisfying
rie, P <0) = P(XE < 0) = P(Tp < ¢1) = P(EI @ T; < ¢o).

Lemma 2 The probability Pl, i.e., the probability of satisfying the condition for B, is
givenby P(B <1 —Ap) = % szil % (1 +erf (Lj{ﬁ’» with er f () being the

error function of the Gaussian distribution.

Proof If we focus on f historical values, we can adopt the Kernel Density Estimation
(KDE) [57] to have a view on the probability density function (pdf) of 8. KDE is a
non-parametric methodology for estimating the pdf of an unknown random variable
(B in our case). The aim is to model the statistics of the unknown distribution and adopt

them in our analysis. Let {8,_1, B;—2, ..., Br—w]} be the last W g realizations. The
Kernel estimator of the 8 distribution is defined by: Bg x) = g%w Zlv‘; 1 K X_Tﬁ"
where K () is the Kernel function (e.g., Gaussian, Triangular, Epanechnikov) and g is

the bandwidth of the kernel. If we adopt the Gaussian kernel, we can easily get the
x—P; 2
T

pdf as follows: Pg(x) = g~LW ZIZ 1 \/;2716 2w2 | Based on the pdf, we can calculate

the cumulative density function (cdf), thus,

w

1 1 1— — B
P(ﬂfl—AE)=WZ§(1+erf<)\#’8>>

i=1
with erf() being the error function of the Gaussian distribution, i.e., erf(x) =~

_ 4/7r+ax2
sgn(x)V1—e e (a = 0.14 [50]). O

Lemma 3 The probability P2, i.e., the probability of satisfying the condition for t, is

given by P(L,2) 2Ty = ¢0) = g Si55 (<D () gw —)lTherel,

@ Springer

880 K. Kolomvatsos, C. Anagnostopoulos

Proof The second probability represents the event that the required number of steps
calculated for g; can be executed in the pre-defined deadline, i.e., . Hence, we get:
Ppi <) =PIt <¢) = P(Tg < ¢v) = P(X)) 27 < ¢v). The probability
P2 depends on the £2 values which are extracted through the above described pro-
cess (see [35] for more details). If we consider the £2 random variable that depicts
the result of the aggregation process and that £2 follows a Uniform distribution in
[0,1] (it is not a trivial process to statistically model the §2 results), we can deliver a
closed form for the probability P2. Based on the probability theory, the sum of mul-
tiple Uniform distributions follows the Irwin-Hall distribution with a pdf pyx(x) =
m le.(ii)(—l)i(‘(:.)l)(x —)@= 1gen(x —i) where sgn(x —i) = {—1, 0, 1} when
{x <i,x =1i,x > i}, respectively. Based on the pdf, we can conclude the probability

P2, ie., P(L2) @T; < ¢0) =y LG (<D () e r — iy Therel, 0

Having calculated a closed form for the desired probabilities as depicted by the two
above presented Lemmas, we can deliver the probability of assigning a query to the
optimal QP, in the time where the decision is made.

Lemma 4 The probability of getting both rewards, i.e., a QP statisfies and t require-
ments, is given by

1 L 1 —ap—B;

i=1

¢t
1 (161 .
’ EXl Z(_l) (;)({T_l)gl

i=0

Proof The proofis easily delivered through the combination of the two above described
Lemmas. O

5 Experimental evaluation
5.1 Experimentation setup

We execute a high number of simulations adopting real and synthetic traces aiming at
revealing the pros and cons of the proposed approach. Our simulator is written in Java
and manages a number of queries retrieved by a real dataset. Our simulator is simple
and involves a set of classes that dictate the behavior of the main ‘actors’ present
in our scenario, i.e., queries, QCs and ENs/QPs. A main class realizes the simulator
and utilizes the remaining aforementioned classes. We rely on two benchmarking
query datasets, i.e., TPC-DS and TPC-H (http://www.tpc.org/). TPC-DS is the de-
facto industry standard benchmark for measuring the performance of decision support
solutions. The TPC-H is a decision support benchmark that consists of a suite of
business oriented ad-hoc queries. Both datasets incorporate SQL queries, e.g., create,
select, update, delete or inset commands applied into example tables with a set of

@ Springer

http://www.tpc.org/

A probabilistic model for assigning queries at the edge 881

example constraints. For each of the adopted queries, we define its class as described
in [63] (experts define the process for deriving complexity). We classify our evaluation
queries in six (6) classes (|@| = 6). Itis worth noticing that the aforementioned datasets
are adopted only for classifying queries into the pre-defined set of complexity classes.

We provide a comparative assessment between the proposed scheme and other
models found in the literature. Initially, we compare the proposed scheme with one of
our previous efforts discussed in [35]. This model adopts only the similarity process
described in Sect. 4.1 and does not rely on any probabilistic approach that is the focus
of the current paper. We also compare our model with other mechanisms found in the
relevant literature:

— the Greedy Fast Processing (GFP) model presented in [44]. The model selects the
EN offering the best processing time for each query. The model is also met in [31]
named as the myopic best response selection algorithm and in [11] named as the
performance aware allocation scheme. We have to notice that the model presented
in [11] allocates queries to the best idle nodes; if not any idle nodes are available,
the model performs a random allocation (see the RTS model below);

— the Greedy Best Availability (GBA) model proposed in [44]. This model allocates
queries to ENs exhibiting the shortest waiting time in the corresponding queue;

— the Random Task Scheduling (RTS) model proposed in [11]. The model selects
ENs without taking into consideration any contextual information. Queries are
randomly allocated in the available ENs.

For the evaluation of our model, we rely on the following performance metrics:

— the time required for concluding a query allocation ¥ (in sec). The lower the ¥
is, the more efficient the model becomes. The time required for the allocation
of queries should be minimum, thus, QCs will be able to eliminate a part of the
turnaround time till the final responses are provided to the requestor;

— the difference between B of the first selected QP compared to the lowest S in the
group of QPs =, i.e., & = Bselected — Blowest- & — 0 means that the proposed
model selects the best possible QP concerning 8 . & aims at revealing the capability
of the proposed model to ‘guess’ the QP with the lowest load, thus, to try to
eliminate the time required for executing the allocated query in the selected QP;

— the difference between t of the first selected QP compared to the highest 7 in the
group of QPs @, i.e., @ = Tpighest — Tselected- We Want @ close to zero which
means that the proposed model selects the best possible QPs concerning their
speed. @ depicts the ‘attitude’ of the proposed model to ‘identify’ the highest
possible speed in the available QPs.

— the number of queries M allocated in every EN. M exhibits the total number of
allocated queries in a run. The best possible performance is depicted by a balanced
M among the available ENs realizing the principles of a ‘load balancing’ approach.

& and @ depict the correct matching between g; and the available QPs. We have
to notice that the best possible performance is identified when, at the same time, we
observe =, @ — 0. For presenting this aspect of the evaluation for our model, we
adopt the metric 7. T depicts the parallel achievement of the optimal result for =
and @. 7 is defined as the linear combination of the aforementioned metrics, i.e.,

@ Springer

882 K. Kolomvatsos, C. Anagnostopoulos

T =€¢Z + (1 —€)® withe € [0,1]. T — O represents the optimal performance
scenario. With the ‘assistance’ of €, we could pay more attention on a single metric. For
instance, when € = 0.1, we pay attention on the performance of our model related to
@, i.e., the speed of the selected QPs. In our experimental evaluation, we take € = 0.5
to pay equal attention on both metrics.

We get |EN| € {10, 100, 1000, 10000} and consider 8, T and ¢ following: (a)
the Uniform; and (b) the Gaussian distributions. With the Uniform distribution, we
simulate a very dynamic environment where the adopted parameters continuously
change. The Gaussian distribution assumes a ‘smooth’ environment where abrupt
changes in the parameters are absent. In addition, we experiment with a synthetic trace
(we name it Testing Synthetic Trace - TST) where we focus on low variations of 8 & t
compared to their previous values. For instance, we randomly increase/decrease 8 &
T adding/subtracting a very low value, e.g., 0.05 or 0.1, to their previous realizations.
With this dataset, we aim at simulating ‘smooth’ and limited updates on the load and
speed of the available QPs. In each simulation, at every run, we randomly select a
query, dynamically produce values for 8 7 & ¢ and apply the proposed model. The
adopted parameters are as follows: a = 0.14, « = 10.0, r; = r» = r3 = 10.0,
Omax = 10, A; € [1, {200, 2000}].

5.2 Performance assessment

We evaluate our model concerning the time required for concluding the allocation of
a query. We have to notice that in the provided figures, especially for the outcomes of
¥ and & metrics, we adopt the intervals [0,0.6] and [0,0.1], respectively, for visibility
issues. For the remaining metrics, we adopt the interval interval [0, 1]. In Fig. 2, we
present our results. We observe that the proposed scheme manages to deliver results
in the minimum time, thus, it is capable of providing (near) real time responses.
The highest time is required when |EA/| — 10, 000. In this case, our model should
process a high number of QPs available to host the incoming queries. When |EN| <
10, 000, the proposed scheme manages to deliver the result requiring below 0.1 sec
which is judged as efficient. Our model can manage and allocate above 10 queries per
second, approximately. When |EN| — 10, 000, the discussed allocation rate becomes
2 queries per second, approximately. In addition, we observe that the distribution
that is adopted to ‘generate’ the values of our parameters does not mainly affect the
final results. The proposed scheme exhibits efficiency no matter the dynamics of the
environment as depicted by the adopted distributions for producing the values of the
envisioned parameters. It should be noted that the above discussed results refer in QCs
reporting rate equal to 200.

In Fig. 2, we also provide results for the & metric. Our observations lead to the
conclusion that the proposed model manages to select a node with a load very close to
the lowest possible load. These results refer in the mean difference values that is below
0.1 for all the adopted datasets. Every query is assigned to a node that exhibits a low
load and it can get it from the queue and process it in a reasonable time. The first target
of the proposed model is achieved, i.e., to reduce the time for which a query should
wait in the processing queue of a QP. In this set of experiments, we see that the use of

@ Springer

A probabilistic model for assigning queries at the edge 883

0.6 T T

-o-Uniform
~-Gaussian
04
= TST 3
=
0.2F -
—
10 100 1000 10000
[EN]
0.1 T T
--Uniform
~Gaussian
=TST
[1] 0.05F]
10 100 1000 10000
[EN]

Fig.2 Experimental results for ¥ and = metrics (A; € [1, 200])

the Uniform distribution leads to better results compared to the Gaussian distribution.
The proposed scheme can efficiently handle a dynamic environment where there is not
any ‘stability’ in the adopted parameters realizations as represented through the use of
the Uniform distribution. In any case, the differences in the results (use of the Uniform
vs use of the Gaussian) are very low. The interesting is that our model exhibits the
best performance when the TST ‘feeds’ our parameters. Recall that the TST depicts
a scenario where f and t are characterized by limited fluctuations compared to their
values in the previous run (allocation). In this case, our model manages to select the EN
with the lowest load when |EN| — 10, 000. It is capable of identifying the optimal
choice no matter if it has to do with a high number of nodes.

Recall that the @ metric depicts the difference in the speed between the selected
node and the highest speed in the network. It should be noted that, in our experiments,
the speed of each node is randomly selected in [1,100]. In Fig. 3, we see that the use
of the Gaussian distribution leads to better results compared to the use of the Uniform
distribution. When the Gaussian is the case, the maximum difference with the ‘optimal’
node is 43.54. Recall that the proposed model tries to ‘reason’ over the entire set of
the characteristics of queries and nodes before it concludes the final allocation. Again,
the use of TST leads to the best performance among all datasets. In this case, @ is
below 0.5 which means that our model is capable of selecting an EN that exhibits the
best possible processing speed.

As already described, through the use of 7", we combine the retrieved results for
& and @ trying to figure out if the proposed scheme is capable of achieving the best
performance for both metrics at the same time. Recall that 7" should be very close to
zero to depict the best possible performance. In Fig. 4, we present the corresponding
results. We observe that 7" is below 23.0 for the Uniform and the Gaussian distribu-
tions. Among the two (Uniform - Gaussian), the adoption of the Gaussian leads to
better results. In any case, these results are affected by the @ metric. The adoption
of TST leads to the best performance depicted by Y values below 0.220. The limited
fluctuations of B & t positively affect our model that is capable of detecting the best

@ Springer

884 K. Kolomvatsos, C. Anagnostopoulos

100 T T T T
[Juniform
%0 m |
[]Gaussian
801 MTsT J
70 .
60 .
KA 50 -
40 .
30 -
20 .
10 .
0
10 100 1000 10000

IEN]

Fig.3 Experimental results for @ and ; € [1, 200]

50 T T T

T

[lUniform
a5 [JGaussian| 7
ol Wrst ||

35 1

30 -

20~ -

10 100 1000 10000
IEN]

Fig.4 Experimental results for 7" and ; € [1, 200]

possible EN. Based on these observations, we conclude that our attempt to minimize
the turnaround time as far as the elimination of waiting time in the processing queue
is successful if no significant variations in the speed of nodes are present.

In the following set of experiments, we alter the reporting rate of QCs and get A; €
[1,2000]. In Fig. 5, we present our results for ¥ and & metrics, respectively. Now, the
use of the Uniform distribution leads to a high required time when |EN/| — 10, 000.
In the remaining experimental scenarios (i.e., |[EN/| € {10, 100, 1000}), the required
time is again below 0.1 sec. Concerning the & metric, again the difference with the
‘optimal’ load is limited. These results confirm our previous observations leading to the
conclusion that the proposed mechanism is capable of managing increased reporting
rate from QCs. The best performance is achieved by the use of the TST leading the
model to correctly detect the best possible EN when |[EN| — 10, 000. In Fig. 6,

@ Springer

A probabilistic model for assigning queries at the edge 885

0.6 T T

-©-Uniform 5
0.4 |- [**Gaussian]

= =TST
0.2 -
010 1;0 000 10000
1
[EN]
0.1 T T
f—e-Uniform

*GaUSSianW
[1] 0.056—=TST 5
o \\

10 100 |5N‘ 1000 10000

Fig.5 Experimental results for ¥ and = metrics (A; € [1, 2000])

100 T T T

T
ool [Juniform | |
[lGaussian
e WrsT ||

70 -

60 - 5
KX 50 d
40+ -
30 .

20~ -

10 100 1000 10000
IEN]

Fig. 6 Experimental results for @ and 1; € [1, 2000]

we observe that, now, the difference with the ‘optimal’ speed is lower than in our
previous results (when the Uniform is the case). The opposite stands for the Gaussian
distribution. Concerning the TST, the retrieved results are also better and below 0.350
no matter the |EN.

Our results for the 7" metric are depicted by Fig. 7. A low number of QPs leads to the
best performance, i.e., our model is capable of selecting QPs exhibiting a low load and
a high speed for concluding the final allocation of the incoming queries. Our results
are below 21.0 & 22.0 when we adopt the Uniform and the Gaussian distributions,
respectively (for |EN| < 10, 000). In the case of the TST, Y is below 0.175 which is
the best performance outcome among all the adopted evaluation traces.

In Fig. 8, we present our results for M. Actually, we depict the histograms of M
when |EAN| = 10 and adopt the Uniform and the Gaussian distributions to ‘feed’ our
parameters. We have to notice that, in this set of experiments, we do not consider a
maximum queue size but simply count the number of queries allocated in every EN.

@ Springer

886 K. Kolomvatsos, C. Anagnostopoulos

50 T

[lUniform
45 [lGaussian||
w0l MTsT i

35 —

30~ =

20~ =

151 .
101 .
s5- 4
0

10 100

1000 10000
IEN]
Fig.7 Experimental results for 7" and A; € [1, 2000]
|Q| =100 |Q| = 1000 |Q| = 10000
3 3 3
_2 — 2 — 2
= = =
N w w
CMAr 0L B
0 0 0
5 10 15 80 90 100 110 120 950 1000 1050 1100
M M M
|| =100 |Q| = 1000 |Q| = 10000
3 3 3

= 2 = 2 = 2
W W w3
LMo et
0 0 0
0 5 10 15 80 90 100 110 120 900 950 1000 1050
M M M

Fig.8 The histograms of M for Uniform and Gaussian Distributions

We also experiment with different number of queries as depicted in the captions of
each figure, i.e., |Q| € {100, 1000, 10000}. We observe that the proposed mechanism
results a ‘fair’ allocation as M is around the average number of queries per node
M = E‘%). The design of our scheme is not focusing on the load balancing of the
allocations, however indirectly, through the detection of ENs exhibiting a low load,
we succeed in this aspect. This means that the proposed model is capable of avoiding
the overloading of the ENs that could jeopardize the provision of the final results in
limited time.

We compare our model with the scheme presented in [35]. Our comparative out-
comes are depicted by Tables 2 and 3 when adopting the Uniform and the Gaussian
distributions, respectively (we focus only on very dynamic environments, thus, the
TST is excluded in this comparison) . We observe that our model outperforms the

@ Springer

A probabilistic model for assigning queries at the edge 887

Table2 Comparison between the proposed scheme and the model presented in [35] (Uniform Distribution)

[EN]| v g
Our scheme Model in [35] Our scheme Model in [35]
10 0.008 0.008 0.039 0.230
100 0.010 0.012 0.040 0.260
1000 0.010 0.055 0.040 0.290
10000 0.360 0.251 0.040 0.350

Table3 Comparison between the proposed scheme and the model presented in [35] (Gaussian Distribution)

[EN]| 'Z 1)
Our scheme Model in [35] Our scheme Model in [35]
10 0.008 0.008 0.035 0.290
100 0.010 0.010 0.060 0.330
1000 0.060 0.370 0.060 0.340
10000 0.270 0.276 0.060 0.360

performance of the scheme in [35]. The interesting is that the proposed model man-
ages to approach the ‘optimal scenario’ (the node with the lowest load) better than
the model in [35]. There is a high difference in the = results no matter the adopted
distribution. Enhancing the query complexity class evaluation with the probabilistic
approach, proposed in this paper, positively affects the performance of nodes.

We also compare our model (we name it as Model) with GFP, GBA and RTS
schemes. It is worth noticing that: (i) the GFP is the baseline model for 7. Recall
that it selects ENs based on the best available processing speed. Hence, the GFP will
conclude @ = 0.0; (ii) the GBA is the baseline model for g. It allocates queries to
ENs with the lowest load. Hence, the GBA will conclude & = 0.0. In Table 4, we
present our performance outcomes for the & metric comparing the Model with the
GFP. We observe that the Model outperforms the GFP all the adopted datasets. The
difference in the performance is high as the GFP does not take into consideration
the load of ENs. However, as already ‘exposed’ by our performance evaluation, any
model should focus on both aspects, i.e., the waiting time and the processing speed to
conclude efficient allocations. In Table 5, we provide our comparative results between
the Model and the GBA and for the @ metric. Again, the Model outperforms the GBA
in the majority of the experimental scenarios.

Finally, in Figs. 9, 10, 11, we present our comparative results between the Model
and the RTS for all the adopted datasets. We observe the Model outperforming the
RTS in all the experimental scenarios. The difference in = outcomes is high especially
when the Uniform and the Gaussian distributions feed our simulator. This indicates,
as already concluded above, a good performance in dynamic environments taking
into consideration multiple parameters. The Model provides a ‘multivariate’ decision

@ Springer

888

K. Kolomvatsos, C. Anagnostopoulos

Table4 Comparison between
the proposed scheme and the
GFP for &

Table 5 Comparison between
the proposed scheme and the
GBA for @

09r

081

071

061

03r

0.2r

01F

[1] o5f]
044 1

IEN| Uniform Gaussian TST
Model GFP Model GFP Model GFP
10 0.039 0.410 0.035 0.414 0.032 0.159
100 0.040 0.510 0.060 0.439 0.028 0.215
1000 0.040 0.482 0.060 0.518 0.015 0.314
10000 0.040 0.456 0.060 0.498 0.000 0.337
IEN| Uniform Gaussian TST
Model GBA Model GBA Model GBA
10 38.540 40.830 37.500 43.004 0.391 0.316
100 43.610 47.288 40.660 42.168 0.265 0.344
1000 44220 50.469 41220 47.423 0.306 0.511
10000 44.180 48.337 43.540 51.233 0.239 0.490
60 : .
-©-Model -©-Model
<RTS || <RTS

L

0
10 100

1000 10000

IEN]

40t

10

100

Fig.9 Comparison between the model and the RTS-uniform distribution

IEN]

1000 10000

making mechanism. The RTS is affected by the ‘randomness’ in the decision making
being not able to detect the ENs with the best possible performance. Hence, it is natural
to have the number of nodes affecting the performance of the RTS, i.e., a high number
of nodes leads to the worst results. The significant with our Model is that, especially
for Z, it is not negatively affected by |EN]. In the first places of our future research
plans it is the adoption of more parameters into our decision making also focusing
on the data present in every dataset. In this direction, we will be able to provide a
‘holistic’ mechanism that will result efficient allocations on top of all characteristics

of queries and ENs.

@ Springer

A probabilistic model for assigning queries at the edge 889

1 . . 60 . .
-©-Model -©-Model

0.9 <-RTS ~RTS

0.8 1 551

07t
06
[1] 05 /—__x/

0.4 1
03t

0.2}

01t

L e

o ‘ ‘ ‘ ‘

10 100 1000 10000 10 100 1000 10000
[EN] [EN]

Fig. 10 Comparison between the model and the RTS-Gaussian distribution

1 T T 1 . :
—-Model —e-Model

osf ~RTS 08} —~RTS
081 1 0.8f
0.7r 1 0.7}
0.6 1 061

[1] os5F < KA o.sm

04r 1 0.4 :
03 f 03 \/\

02y 1 02f
0.1F 1 0.1r
>‘9\9\
o ° 0 . .
10 100 1000 10000 10 100 1000 10000
[EN] [EN]

Fig. 11 Comparison between the model and the RTS-TST

6 Conclusions and future work

The efficient management of queries adopted to provide analytics comes, more inten-
sively, into scene in the IoT era. The reason is the vast infrastructure of numerous
devices interconnected to exchange data and knowledge. In such scenarios, users or
applications can define numerous queries demanding for analytics. Queries should be
immediately and efficiently responded to support high quality services. In addition,
the discussed queries should be allocated and executed in a set of nodes where data
collected by IoT devices are stored. In this paper, we discuss a setting where queries
are allocated in the most appropriate edge nodes. With the term appropriate, we depict
a node that exhibits a low load and a high processing speed to immediately process
the incoming queries and return the final responses to the requestor. We propose a

@ Springer

890 K. Kolomvatsos, C. Anagnostopoulos

probabilistic decision making model for concluding the envisioned allocations. Our
model matches queries and edge nodes characteristics and delivers the probability of
an allocation. Our model does not impose any training process and does not require
an increased time to deliver the final result. Our evaluation process reveals the pros
of the model and through numerical results confirms the increased performance. Our
future research plans involve the incorporation of more parameters into the decision
making process.

Acknowledgements This research received funding from the European’s Union Horizon 2020 research
and innovation programme under the Grant Agreement No. 745829.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ackermann K, Angus SD (2014) A resource efficient big data analysis method for the social sciences:
the case of global IP activity. PCS 29:2360-2369
2. Akilandeswari P, Srimathi H (2016) Survey and analysis on task scheduling in cloud environment.
Indian J Sci Technol 9(37):1-6
Aligon J et al (2014) Similarity measures for OLAP sessions. Knowl Inf Syst 39:463-489
4. Almeida F, Calistru C (2012) The main challenges and issues of big data management. Int J Res Stud
Comput 2:11-20
Antara G et al (2002) Plan selection based on query clustering. VLDB Endow 23:179-190
6. Artail H, E1 Amine H, Sakkal F (2008) SQL query space and time complexity estimation. Int J Intell
Inf Database Syst 2(4):460—480
7. Aujla G, Kumar N, Zomaya A, Ranjan R (2018) Optimal decision making for big data processing at
edge-cloud environment: an SDN perspective. IEEE Trans Ind Inf 14(2):778-789
8. Balkensen C, Tatbul N (2011) Scalable data partitioning techniques for parallel sliding window pro-
cessing over data streams. In: 8th International DMSN
9. Beliakov G, Warren J (2001) Appropriate choice of a Aggregation operators in fuzzy decision support
systems. IEEE TFS 9(6):773-784
10. Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin
11. Breitbach M, Schafer D, Edinger J, Becker C (2019) Context-aware data and task placement in edge
computing environments
12. Bruno N et al (2002) Evaluating top-k queries over web-accessible databases. In: ICDE
13. Cao L, Rundensteiner EA (2013) High performance stream query processing with correlation-aware
partitioning. VLDB Endow 7(4):265-276
14. Carvalho O, Garcia M, Roloff E, Carreno E, Navaux P (2017) IoT workload distribution impactbetween
edge and cloud computingin a smart grid application. In: Proceedings of CARLA
15. Chatzopoulou G et al (2011) The QueRIE system for personalized query recommendations. IEEE Data
Eng Bull 34(2):55-60
16. Choi J-H, Park J, Park HD, Min O (2017) DART: fast and efficient distributed stream processing
framework for internet of things. ETRI J 39(2):202-212
17. Cosmadakis SS (1983) The complexity of evaluating relational queries. Inf Control 58(1-3):101-112
18. Detyniecki M (2001) Fundamentals on aggregation operators. Berkeley Initiative in Soft Computing.
University of California, California
19. Farahbod F, Eftekhari N (2012) Comparison of different T-norm operators in classification problems.
IJFLS 2(3):1
20. Fan C, Deng H, Wang F, Wei S, Dai W, Liang B (2015) A survey on task scheduling method in
heterogeneous computing system. In: Proceedings of the 8th international conference on intelligent
networks and intelligent systems, pp 90-93

(95}

W

@ Springer

http://creativecommons.org/licenses/by/4.0/

A probabilistic model for assigning queries at the edge 891

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

Fischer L, Bernstein A (2015) Workload scheduling in distributed stream processors using graph
partitioning. In: Proceedings of the IEEE international conference on big data

Gedik B (2014) Partitioning functions for stateful data parallelism in stream processing. VLDB J
23(4):517-539

Habak K, Ammar M, Zegura E, Harras K (2017) Workload management for dynamic mobile device
clusters in edge femtoclouds. In: Proceedings of the second ACM/IEEE symposium on edge computing
Hameurlain A, Morvan F (2009) Evolution of query optimization methods. Trans Large-Scale Data
Knowl Cent Syst I 3:211-242

Hossain KMM, Raihan Z, Hashem MMA (2013) On appropriate selection of fuzzy aggregation oper-
ators in medical decision support system

Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: s technology
tutorial. IEEE Access 2:652-687

Huacarpuma RC et al (2017) Distributed data service for data management in internet of things mid-
dleware. Sensors 17(5):977

Hwang S, Chang K (2005) *Optimizing access cost for top-k queries over web sources: a unified
cost-based approach. In: ICDE

Jalali B, Asghari MH (2014) The anamorphic stretch transform, putting the squeeze on big data. Opt
Photon N 25:24-31

Jones S et al (2000) A probabilistic model of information retrieval: development and comparative
experiments. IPM 36(6):779-808

Josilo S, Dan G (2019) Decentralized algorithm for randomized task allocation in fog computing
systems. IEEE/ACM Trans Netw 27(1):85-97

Kandula S et al (2016) Quickr: lazily approximating complex ad-hoc queries in big data clusters. In:
SIGMOD

Kolcun R, McCann JA (2014) Dragon: data discovery and collection architecture for distributed IoT.
In: IoT

Kolomvatsos K (2018) An intelligent scheme for assigning queries. Springer Appl Intell. https://doi.
org/10.1007/s10489-017-1099-5

Kolomvatsos K, Anagnostopoulos C (2018) An edge-centric ensemble scheme for queries assignment.
In: 8th CIMA

. Kolomvatsos K, Hadjiefthymiades S (2017) Learning the engagement of query processors for intelli-

gent analytics. Appl Intell J 46(1):1-17

Kolomvatsos K, Anagnostopoulos C (2017) Reinforcement machine learning for predictive analytics
in Smart Cities. Informatics 4(3):16

Krishnan DR et al (2016) IncApprox: a data analytics system for incremental approximate computing.
In: 25th WWW

Kul G, Luong TA, Xie T, Chandola V, Kennedy O, Upadhyaya S (2018) Similarity metrics for SQL
query clustering. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2018.2831214

Liu J, Mao Y, Zhang J, Letaief, K (2016) Delay-optimal computation task scheduling for mobile-edge
computing systems. In: Proceedings of the IEEE international symposium on information theory, pp
1451-1455

Ma X, Zhang S, Li W, Zhang P, Lin C, Shen X (2017) Cost-efficient workload scheduling in cloud
assisted mobile edge computing. In: IEEE/ACM 25th international symposium on quality of service
(IWQoS)

Mei Q, Fang H, ZHai C (2007) A study of poisson query generation model for information retrieval.
In: Proceedings of the 30th annual international ACM SIGIR conference on research and development
in information retrieval, pp 319-326

Meriam E, Tabbane N (2016) A survey on cloud computing scheduling algorithms. In: Proceedings of
the 2016 global summit on computer and information technology, pp 42-47

Mijumbi R, Serrat J, Gorricho J, Bouten N, De Turck F, Davy S (2015) Design and evaluation of
algorithms for mapping and scheduling of virtual network functions. In: Proceedings of the 1st IEEE
conference on network softwarization, pp 1-9

Ngo H, Porat E, Re C, Rudra A (2018) Worst-case optimal join algorithms.] ACM 65(3):16

Ozgu MT, Valduriez P (2011) Overview of query processing. Princ Distrib Database Syst 3:205-220
Papageorgiou A, Cheng B, Kovacs E (2015) Real-time data reduction at the network edge of Internet-
of-Things systems. In: Proceedings of the 11th international conference on network and service
management (CNSM)

@ Springer

https://doi.org/10.1007/s10489-017-1099-5
https://doi.org/10.1007/s10489-017-1099-5
https://doi.org/10.1109/TKDE.2018.2831214

892

K. Kolomvatsos, C. Anagnostopoulos

48.

49.

50.

51.

52.
53.

54.
55.
56.
57.

58.

59.

60.

62.

63.

64.
65.

67.

Pu Q, Ananthanarayanan G, Bodik P, Kandula S, Akella A, Bahl P, Stoica I (2015) Low latency
geo-distributed data analytics. In: Proceeding of the ACM SIGCOMM

Samal P, Mishra P (2013) Analysis of variants in Round Robin Algorithms for load balancing in cloud
computing. Proc Int J] Comput Sci Inf Technol 4(3):416-419

Satyala NT, Pieper RJ (2008) A unified approach for predicting long and short-term capability indices
with dependence on manufacturing target bias. Int J Qual Stat Reliab

Scoca V, Aral A, Brandic I, De Nicola R, Uriarte R (2018) Scheduling latency-sensitive applications
in edge computing. In: Proceedings of the CLOSER

Stefanidis K et al (2009) You may also like results in relational databases. In: PersDB

Teerapabolarn K (2014) Poisson approximation for random sums of poisson random variables. [JPAM
95(4):543-546

Tseng C, Tseng F, Yang Y, Liu C, Chou L (2018) Task scheduling for edge computing with agile VNFs
on-demand service model toward 5G and beyond. Wirel Commun Mobile Comput 2018:13

Wan S, Lu J, Fan P, Letaief K (2019) Minor probability events detection in big data: an integrated
approach with Bayes detection and big data. IEEE Commun Lett 23:418-421

Wan S, Lu J, Fan P, Letaief K (2019) Towards Big data processing in IoT: network management for
online edge data processing. Preprint, arXiv:1905.01663v1 [cs.NI]

Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London

Wang H, Gong J, Zhuang Y, Shen H, Lach J (2017) HealthEdge: Task scheduling for edge computing
with health emergency and human behavior consideration in smart homes. In: Proceedings of the 2017
IEEE international conference on big data, pp 1213-1222

Wen Z et al (2018) ApproxIoT: approximate analytics for edge computing. In: 38th ICDCS, pp 411421
Yao Q, An A, Huang X (2005) Finding and analyzing database user sessions. In: DASFAA

. Ur Rehman M, Jayaraman P, Malik S, Khan A, Gaber MM (2017) RedEdge: a novel architecture for

big data processing in mobile edge computing environments. J Sens Actuator Netw 6:17

Urgaonkar R, Wang S, He T, Zafer M, Chan K, Leung K (2015) Dynamic service migration and
workload scheduling in edge-clouds. Perform Eval 91:205-228

Vashistha A, Jain S (2016) Measuring query complexity in SQLShare workload. In: Proceedings of
the 2019 international conference on management of data

Yang X et al. (2009) Recommending join queries via query log analysis. In: ICDE

Yu H et al (2011) Exact indexing for support vector machines. ACM SIGMOD 3:709-720

Zeitler E, Risch T (2010) Scalable splitting of massive data streams. In: DASFAA

Zhang Z et al (2006) Boolean + ranking: querying a database by k-constrained optimization. In: ACM
SIGMOD

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/1905.01663v1

	A probabilistic model for assigning queries at the edge
	Abstract
	1 Introduction
	2 Related work
	3 Problem description
	3.1 Data collection at the edge
	3.2 Edge nodes and query processors
	3.3 Query characteristics

	4 The allocation process
	4.1 Query classes and complexity
	4.2 The final allocation
	4.3 Existence of the optimal node

	5 Experimental evaluation
	5.1 Experimentation setup
	5.2 Performance assessment

	6 Conclusions and future work
	Acknowledgements
	References

