
Computing (2019) 101:1369–1390
https://doi.org/10.1007/s00607-018-0666-x

Competitive clustering of stochastic communication
patterns on a ring

Chen Avin1 · Louis Cohen2 ·Mahmoud Parham3 · Stefan Schmid4

Received: 4 December 2017 / Accepted: 20 September 2018 / Published online: 27 September 2018
© The Author(s) 2018

Abstract
This paper studies a fundamental dynamic clustering problem. The input is an online
sequence of pairwise communication requests between n nodes (e.g., tasks or virtual
machines). Our goal is to minimize the communication cost by partitioning the com-
municating nodes into � clusters (e.g., physical servers) of size k (e.g., number of
virtual machine slots). We assume that if the communicating nodes are located in the
same cluster, the communication request costs 0; if the nodes are located in different
clusters, the request is served remotely using inter-cluster communication, at cost 1.
Additionally, we can migrate: a node from one cluster to another at cost α ≥ 1. We
initiate the study of a stochastic problem variant where the communication pattern
follows a fixed distribution, set by an adversary. Thus, the online algorithm needs to
find a good tradeoff between benefitting from quickly moving to a seemingly good
configuration (of low inter-cluster communication costs), and the risk of prematurely
ending up in a configuration which later turns out to be bad, entailing high migra-
tion costs. Our main technical contribution is a deterministic online algorithm which
is O(log n)-competitive with high probability (w.h.p.), for a specific but fundamental
class of problems: namely on ring graphs.We also provide first insights in slightlymore
general models, where the adversary is not restricted to a fixed distribution or the ring.

Keywords Clustering · Repartition · Migration · Online algorithms · Randomization

Research supported by the German-Israeli Foundation for Scientific Research and Development,
G.I.F. No. I-1245-407.6/2014). Part of the research was done while the second author was visiting Ben
Gurion University and TU Berlin. A preliminary version of this paper was presented at the 5th
International Conference on Networked Systems (NETYS), Marrakech, Morocco, May 2017 [3].

B Mahmoud Parham
mahmoud.shahrood@gmail.com

1 Ben-Gurion University of the Negev, Beersheba, Israel

2 Ecole Normale Superieure Paris Saclay, Cachan, France

3 Aalborg University, Aalborg, Denmark

4 University of Vienna, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-018-0666-x&domain=pdf
http://orcid.org/0000-0002-7798-1711

1370 C. Avin et al.

Mathematics Subject Classification 68W20 Randomized algorithms · 68W27 Online
algorithms

1 Introduction

Modern distributed systems are often highly virtualized and feature unprecedented
resource allocation flexibilities. For example, these flexibilities can be exploited to
improve resource utilization,making it possible tomultiplexmore applications over the
same shared physical infrastructure, reducing operational costs and increasing profits.
However, exploiting these resource allocation flexibilities is non-trivial, especially
since workloads and resource requirements are time-varying.

This paper studies a fundamental dynamic resource allocation problem underlying
many network-intensive distributed applications, e.g., batch processing or streaming
applications, or scale-out databases. To minimize the resource footprint (in terms of
bandwidth) of such applications as well as latency, we want to collocate frequently
communicating tasks or virtual machines on the same physical server, saving com-
munication across the network. The underlying problem can be seen as a clustering
problem [4]: nodes (the tasks or virtual machines) need to be partitioned into different
clusters (the physical servers), minimizing inter-cluster communications.

The clustering problem is challenging as the detailed communication patterns are
often stochastic and the specific distribution unknown ahead of time. In other words,
a clustering algorithm must deal with uncertainties: although two nodes may have
communicated frequently in the past, it can turn out later that it is better to collocate
different node pairs. Accordingly, clustering decisions may have to be reconsidered,
which entails migrations.

Our contributions This paper initiates the study of a natural dynamic clustering prob-
lem where communication patterns follow an unknown distribution, chosen by an
adversary: the distribution represents the worst-case for the given online algorithm,
and communication requests are drawn i.i.d. from this distribution. Our goal is to
devise online algorithms which perform well against an optimal offline algorithm
which has perfect knowledge of the distribution. Our main technical contribution is
a deterministic online algorithm which, for a special but fundamental request pattern
family, namely the ring, achieves a competitive ratio of O(log n), with high probability
(w.h.p.), i.e., with probability at least 1 − 1/nc, where n is the total number of nodes
and c is a constant.

We also initiate the discussion of slightlymore general models, where the adversary
is not restricted to a fixed distribution or a ring, but can pick arbitrary requests from
a perfect partition. We present an O(n)-competitive algorithm for this more general
model of learning a perfect partition.

Novelty and challenges Our work presents an interesting new perspective on several
classic problems. For example, our problem is related to the fundamental statistical
problem of guessing the most likely distribution (and its parameters) from which a
small set of samples is drawn. Indeed, one natural strategy of the online algorithm
could be to first simply sample requests, and once a good estimation of the actual
distribution emerges, directly move to the optimal clustering configuration. However,

123

Competitive clustering of stochastic communication patterns… 1371

v1v2

v3

v4

v5

v6

v7

v8 v9 v10
v11

v12

v13

v14

v15

v16

v17
v18 v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v1

v2

v3

v4

v5

v6

v16

v8

v9

v10

v11

v12

v13

v14

v15

v7

v17

v18

Before swap: After swap:

Fig. 1 Example: Communication patterns drawn from a certain distribution (on the left, represented as a
communication graph) need to be learned and clustered. In this example, we have � = 2 clusters of size
k = 9. In the middle, a bad clustering is shown: there are four inter-cluster edges (“before swap”). However,
by swapping nodes v7 and v16, all inter-cluster edges can be removed (on the right in the figure). Note that
different edges can have different frequencies, which however are not depicted in this example

as we will show in this paper, the competitive ratio of this strategy can be very bad:
the communication cost paid by the online algorithm during sampling can be high.
Accordingly, the online algorithm is forced to eliminate distributions early on, i.e.,
it needs to migrate to seemingly low-cost configurations. And here lies another dif-
ference to classic distribution learning problems: in our model, an online algorithm
needs to pay for changing configurations, i.e., when revising the “guessed distribu-
tion”. In other words, our problem features an interesting combination of distribution
learning and efficient searching. It turns out that amortizing the migration costs with
the expected benefits (i.e., the reduced communication costs) at the new configuration
however is not easy. For example, if the request distribution is uniform, i.e., if all clus-
tering configurations have the same probability, the best strategy is not to move: the
migration costs cannot be amortized. However, if the distribution is “almost uniform”,
migrations are required and “pay off”. Clearly, distinguishing between uniform and
almost uniform distributions is difficult from an online perspective.

Organization The remainder of this paper is organized as follows. In Sect. 2, we
introduce our formal model. In Sect. 3, we provide intuition about our problem and
highlight the challenges. In Sect. 4, we present our deterministic online algorithm,
and we analyze it formally in Sect. 5. Next in Sect. 6, we present additional online
algorithms for more general models. After reviewing related work in Sect. 7, we
conclude our contribution in Sect. 8.

2 Model

We consider the problem of partitioning n nodes V = {v1, v2, . . . , vn} into � clus-
ters of capacity k each. We assume that n = � · k, i.e., nodes perfectly fit into the
available clusters, and there is no slack. We call a specific node-cluster assignment
a configuration c. We assume that the communication request is generated from a
fixed distribution D , chosen in a worst-case manner by the adversary. The sequence
of actual requests σ(D) = (σ1, σ2, . . . , σT), is sampled i.i.d. from this distribution:
the communication event at time t is a (directed) node pair σt = (vi , v j). Alterna-

123

1372 C. Avin et al.

tively, we represent the distribution D as a weighted graph G = (V , E). For an edge
(vi , v j) ∈ E(G), let the weight of the edge p(vi , v j) denote the probability of a com-
munication request from between vi and v j : each edge e ∈ E has a certain probability
p(e) and

∑
e∈E p(e) = 1. A request (i.e., edge in G) σt = (vi , v j) is called internal

if vi and v j belong to the same cluster at the current configuration (i.e., at the time of
the request); otherwise, the request (edge) is called external. We will assume that the
communication cost of an external request is 1 and the cost of an internal request is 0.

Note that each configuration uniquely defines external edges that form a “cut”,
interconnecting � clusters in G. Therefore in the following, we will treat the terms
“configuration” and “cut” as synonyms and use them interchangeably; we will refer to
them by c. Moreover, we define the probability of a cut (or identically a configuration)
c as the sum of the probabilities of its external edges: p(c) = ∑

e∈c p(e). We also note
that there are many configurations which are symmetric, i.e., they are equivalent up
to cluster renaming. Accordingly, in the following, we will only focus on the actually
different (i.e., non-isomorphic) configurations.

To reduce external communication costs, an algorithm can change the current con-
figuration by using node swaps. Swapping a node pair costs 2α (two node migrations
of cost α each). Since the request probability of different configurations/cuts differs,
the goal of the algorithm will be to quickly guess and move toward a good cut, a
configuration that reduces its future cost. Figure 1 shows an example.

In particular, we are interested in the online problem variant: we assume that the
distributionD of the communication pattern (and hence the σ we observe is generated
from) is initially unknown to the online algorithm. Nevertheless, we want the perfor-
mance of an online clustering algorithm,ON, to be similar to the one of a hypothetical
offline algorithm,OFF, which knows the request distribution as well as the number of
requests in σ , henceforth denoted by |σ |, ahead of time. In particular, OFF can move
before any request occurs or σ is generated.

We aim to minimize the competitive ratio, the worst ratio of the online algorithm
cost divided by the offline algorithm cost (for a given distribution D and the same
starting configuration co):

ρ = max
σ(D)

ON(σ (D))

OFF(σ (D))

Here, the cost ON(σ (D)) of any algorithm ON for a sequence σ(D) is the sum of the
overall communication costs and the migration costs. Note that for a given D , ON,
OFF and ρ are probabilistic and hence we consider bounds on ρ with high probability.

As a first step, we focus on partitioning problems where � = 2. We consider a
fundamental case, the ring communication pattern. That is, the communication graph
G is the cycle graph (a ring) and the event space is defined over the edges E =
{(v1, v2), (v2, v3), . . . , (vn−1, vk), (vn, v1)}.Moreover,we assume configurations that
minimize the cut, that is nodes are partitioned according to contiguous subsequences of
the identifier space. Each cluster is (up tomodulo) of the form, {(vi , vi+1, . . . , vi+k−1}.
This communication pattern is not only fundamental but also captures the aspects
and inherent tradeoffs rendering the problem non-trivial. In this model, an algorithm
changes configurations using rotations (either clockwise or counter-clockwise). A

123

Competitive clustering of stochastic communication patterns… 1373

w18v1v2

v3

v4

v5

v6

v7

v8 v9 v10
v11

v12

v13

v14

v15

v16

v17
v18

w16

w1

w2

w3

w4

w5

w6

w7

w8 w9 w10

w11

w12

w13

w15

w14

w17

v2

v3

v4

v5

v6

v7

v8

v9

v10

v1

v18

v17

v16

v15

v14

v13

v12

v11

w2

w3

w4

w5

w8

w7

w9

w6

w10

w11

w12

w13

w14

w15

w16

w17

w18

w1

v1

v2

v3

v4

v5

v6

v7

v8

v9

v18

v17

v16

v15

v14

v13

v12

v11

v10

w1

w2

w3

w4

w7

w6

w8

w5

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

Fig. 2 Weighted ring communication pattern: frequently used edges (in bold) should not be part of the cut.
The cut can be changed using rotations: in the figure, a counter-clockwise rotation leads from the middle
to the right configuration

rotation swaps two nodes incident to opposite cut edges (hence incurring the cost 2α).
See Fig. 2.

3 The challenge of dynamic clustering

In order to acquaint ourselves with the problem and understand the fundamental chal-
lenges involved in dynamic clustering, we first provide some examples and discuss
naive strategies. Let us consider an example with n = 2k nodes divided into � = 2
clusters of size k. There are k possible configurations/cuts: {c0, c1, . . . , ck−1}. At one
end of the algorithmic spectrum lies a lazy algorithm which never moves, let’s call it
LAZY. At the other end of the spectrum lies a very proactive algorithm which greedily
moves to the configuration which so far received the least external requests, let’s call
it GREEDY. Both LAZY and GREEDY are doomed to fail, i.e., they have a large com-
petitive ratio: LAZY fails under a request distribution where the initial external cut has
probability 1, i.e., p(c0) = 1 and for any i > 0, p(ci) = 0: LAZY pays for all requests,
while after a simple node swap all communication costs would be 0. GREEDY fails
in uniform distributions, i.e., if p(ci) = 1/k for all i : the best configuration is contin-

123

1374 C. Avin et al.

uously changing, and in particular, the best cut is likely to be at distance �(k) from
the initial configuration c0: GREEDY quickly incurs migration costs in the order of
�(α · k), while staying at the same location would cost 1/k per request. Thus, the
competitive ratios grow quickly in the number of requests and in the number of nodes.

Another intuitive strategy could be to wait in the initial configuration c0 for some
time, simply observing and sampling the actual distribution, until a “sufficiently
accurate” estimation of the distribution is obtained. Then, we move directly to the
(hopefully) optimal configuration. Thus, the problem boils down to the classic statisti-
cal problem of estimating the distribution (and its parameters) from samples. However,
it is easy to see that waiting for the optimal distribution to emerge is costly. Imagine
for example a scenario where the initial configuration/cut c0 has a high probability,
and there are two additional cuts c1 and c2 which have almost the same low probability
(for example polynomially low probability) . Clearly, waiting at c0 to learn whether
c1 or c2 is better is not only very costly, but it may also be pointless: even if the online
algorithm ended up at c1 although c2 was a little bit better, the resulting competitive
ratio could be still small.

Thus, the key challenge of our problem lies in its required joint optimization of
learning and searching: while learning the distribution, an efficient search algorithm
must be employed to minimize reconfiguration costs. In particular, the following cri-
teria need to be met:

1. Migrate early…: An online algorithm should migrate away from a suboptimal
configuration early, possibly long before the optimal configuration can be guessed.

2. …but not too early…:An online algorithm should avoid frequent migrations, e.g.,
due to a wrong or poor estimate of the actual request distribution.

3. … and locally: Especially if the length of σ is small (small number of requests),
it may not make sense to migrate to an optimal but faraway location, even if the
distribution is known: even OFF would not move there.

4 Deterministic and competitive clustering

With these intuitions and challenges in mind, we present our solution. Let us first
start with the offline algorithm. It is easy to see that OFF, knowing the distribution as
well as the number of requests, only moves once in time (i.e., one move consisting of
multiple migrations or node swaps): namely in the beginning and to the configuration
providing an optimal expected cost-benefit tradeoff. Concretely, OFF computes for
each configuration ci , its expected cost-benefit tradeoff: the communication cost of
configuration ci is |σ | · p(ci) and the cost of moving there is 2α · d(c0, ci), where
d(·, ·) is the rotation distance between the two configurations (the smallest number of
rotation moves to reach the other configuration). Thus, OFF will move to cOFF :=
argminci |σ |.p(ci) + (2α · d(c0, ci)) (note that this configuration is not necessarily
unique). In the following, we will use the short form di = d(c0, ci) to denote distances
relative to c0, the initial configuration.

The online algorithm is more interesting. The competitive and deterministic online
algorithm presented in this paper relies on three key ideas:

123

Competitive clustering of stochastic communication patterns… 1375

– Eliminating bad configurations: We define conditions for configurations which,
if met, allow us to eliminate the corresponding configurations once and for all.
In particular, we will guarantee (w.h.p.) that an online algorithm be competitive
(even) if it never moves back to such a configuration anymore in the future. In other
words, our online algorithm will only move between configurations for which this
condition is not true yet.

– Localmigrations and growing-radius search strategy: In order to avoid highmigra-
tion costs, our online algorithm is local in the sense that it only moves to nearby
cuts/configurations once the condition of the current configuration is met and it
needs to be eliminated. Concretely, our online algorithm is based on a growing-
radius search strategy: we only migrate to valid configurations lying within the
given radius. Only if no such configurations exist, the search radius is increased.

– Amortization: The radius growth strategy alone is not sufficient to provide the
necessary amortization for being competitive. Two additions are required:

1. Directed search: An online algorithm may still incur a high migration cost
when frequently moving back-and-forth within a given radius, chasing the
next best configuration. Therefore, our proposed online algorithm first moves
in one direction only (clockwise), and then in the other direction, bounding
the number of times the c0 configuration is crossed.

2. Lazy expansion: Even once all configurationswithin this radius have been elim-
inated, the online algorithm should not immediately move to configurations
in the next larger interval. Rather, the algorithm waits until a certain amount
of requests have been accumulated, allowing to amortize the migrations (an
“insurance”).

With these high-level ideas in mind, we now describe the algorithm in detail
(cf. Algorithm 1). We consider a time t , and assume that the online algorithm is
at configuration ct . The algorithm maintains an array r [] where it counts, for each
possible configuration c0, . . . ck−1, the number of samples that hit an external edge of
the corresponding cut; in other words, r [] is used to estimate the distribution of the
communication pattern. Let E be the set of the eliminated configurations, and let E
be the complement of E : the set of configurations not eliminated yet. R is the search
radius, initially R = 1. Upon each request, σt , we first increment the value of the corre-
sponding configuration in the sampling array r [] (only one configuration is affected by
a given external request). We then compare all configurations not eliminated yet to the
“seemingly best configuration”: the configuration which received the least (external)
requests so far (i.e., argminci r [ci]). Let rmin := minci r [ci] be the minimum value.
We now eliminate any configuration c j for which the conditionCond(r [c j], rmin, ε) is
fulfilled: c j is too far from the optimum. Concretely, w.l.o.g. assume that r [c j] > r [ci]
and let γ = r [ci]/r [c j] < 1. Then for ε > 0 (a parameter for the error probability),
we use the following condition:

Cond(r [c j], r [ci], ε) :=

⎧
⎪⎨

⎪⎩

True r [c j] ≥ 2 ln
(
1
ε

)

1+γ
(
2 ln

(
2γ

γ+1

)
−1

)

False otherwise
(1)

123

1376 C. Avin et al.

If on this occasion, we eliminated our own current configuration c(t), i.e. Cond(c(t),
cmin, ε) evaluates to True, then at line 11 we decide where to move next (unless all
configurations have been eliminated). The distance from the suggested next configu-
ration cnext to c0 (the initial configuration) may be greater than the current radius R,
in which case we double R until R ≥ dnext . However, before moving, we also test
whether min{dnext<R}(r [cnext]) ≥ α · R. Only if this is fulfilled, we can move to the
new configuration cnext ; otherwise, we lazily stay on the current configuration.

Algorithm 1 Online Algorithm ON (upon receiving request σ(t) and current config-
uration c(t))

Initialize: r := [0, .., 0], E := {}, E := {− k
2 + 1, . . . , k

2 }, R := 1 ε := 1
n2

1: c j := c(σ (t)) (* configuration to which σ(t) is external *)
2: r [c j] + +
3: rmin := min{r [i] | i ∈ [1, k]}
4: if c j ∈ E then
5: if Cond(r [c j], rmin, ε) then
6: remove c j from E
7: add c j to E
8: end if
9: end if
10: if c(t) ∈ E then
11: cnext := The next configuration ci ∈ E on the searching path
12: while dnext > R do
13: R = 2R
14: end while
15: if r [c(t)] ≥ α · dnext then
16: move from c(t) to cnext
17: c(t) := cnext
18: end if
19: end if

Let us nowelaboratemore on themoving strategy.Before going into the details how-
ever, let us note that for ease of presentation, we will use two different but equivalent
numbering schemes to refer to configurations: depending on what is more useful in the
current context. In particular, while talking about the number of requests, r [], we often
enumerate configurations globally, 0, 1, 2, . . . , k. When discussing moving strategies,
we often enumerate configurations relative to c0, i.e., −1, 1,−2, 2, . . . , ck/2, depend-
ing on whether they are located clock- or counter-clock wise from c0.

Given this remark, let us consider a simple migration strategy: we could always
move to the closest not eliminated configuration next. However, we can show that this
strategy is flawed. To see this, consider the following distribution:

∀i ∈
[

1,
k

2

]

: p(ci) = 1

ki
, p(c0) =

⎛

⎜
⎜
⎝1 −

∑

i∈
[
1; k2

]
p(ci)

⎞

⎟
⎟
⎠ ,

∀i ∈
(

−k

2
,−1

]

: p(ci) = 0

123

Competitive clustering of stochastic communication patterns… 1377

In such a situation, we have to move away from the configuration c0 as soon as
possible: we pay a cost close to 1 on this configuration, for each request. In particular,
we cannot wait until we even observe the first request on c1: we would incur high
communication costs. Now, however, the algorithm may move in the wrong direction:
e.g., to c1, and then to the closest configuration not eliminated, c2. Thus, eventually all
configurations in [c0, ck/2[may be visited before reaching the minimal configurations.

This is reminiscent of classic line searching [13] type problems like “the goat
searches the hole in the fence”-escape problems: moving in one direction only, the
goat may risk missing a nearby hole in the other direction. That is, moving greed-
ily in one direction is �(F) competitive only, where F is the circumference of the
fence, which in our case means that the competitive ratio is �(k). Accordingly, some
combination of search-left and search-right is required. Our search radius R is cen-
tered around c0 at any time during the execution of the algorithm, and we always first
explore all remaining non-eliminated configurations in one direction, and then explore
the remaining configurations in the other direction. In other words, starting from
c0, we alternate the search between the positive and negative configurations follow-
ing the sequence: (0,−1,−2, 1, 2, 3, 4,−3,−4, . . . ,−8, 5, . . . , 16, . . . ,−22i−1 −
1, . . . ,−22i+1, 22i + 1, . . . , 22i+2, . . .). Thus, configuration c0 is crossed only a con-
stant number of times per given radius R. We call this sequence the searching path.

Given a moving strategy, we next note that we should not move too fast: we intro-
duce a second condition for when it is safe to move. When in a configuration 22i and
before we want to explore configurations in [−22i+1,−22i−1], we wait in the config-
uration cmin between configurations −22i−1 and 22i , until this configuration fulfills
r [cmin] ≥ α ·22i+1. Similarly, when moving from the configuration−22i+1 to explore
the configurations in [22i , 22i+2], we will wait at cmin between [−22i+1, 22i], until
r [cmin] ≥ α · 22i+2.

5 Analysis

We first make some general observations on our elimination condition. Subsequently,
we will present a cost-breakdown which will be helpful to analyze the competitive
ratio of ON : we will show that each cost component is competitive with respect to the
optimal offline algorithm. We first prove the following helper claim.

Claim 1 Assume ci and c j are hit with probabilities p(c j) ≤ p(ci). Let random
variables Ri and R j represent the respective number of hits. After a total of a+ b hits
on these two configurations for any b > a, it holds that

Pr
(
Ri ≤ a and R j ≥ b

)
≤

(
e−δ

(1 − δ)1−δ

)X

where δ = b−a
b+a and X = a

1−δ
= b

1+δ
.

123

1378 C. Avin et al.

Proof The proof idea is to consider two probabilities using known Chernoff
Bounds [17]) (since Ri and R j are sum of i.i.d’s):

Pi := Pr(Ri ≤ (1 − δ′)E[Ri]) ≤
(

e−δ′

(1 − δ′)1−δ′

)E[Ri]
and (2)

Pj := Pr(R j ≥ (1 + δ′)E[R j]) ≤
(

eδ′

(1 + δ′)1+δ′

)E[R j]
, 0 ≤ δ′ < 1. (3)

The two events (Ri ≤ a and R j ≥ b) are not independent, but we can bound
the probability for the intersection of the two events by the minimum of the two
probabilities. Towards this objective, we find out which one of the bounds is smaller.
Let

Bi := e−δ′

(1 − δ)1−δ′ and Bj := eδ′

(1 + δ′)1+δ′ .

In order to determine the smallest of the bounds in (2) and (3), we first study the
function:

F
(
δ′) := Bi

B j
= e−2δ′ ·

(
1 + δ′)1+δ′

(
1 − δ′)1−δ′ .

We obtain that for 0 ≤ δ′ < 1, F(δ′) ≤ 1, therefore Bi ≤ Bj . Since E[Ri] ≥
E[R j], we have BE[Ri]

i ≤ B
E[R j]
j :

(
e−δ′

(1 − δ′)1−δ′

)E[Ri]
≤

(
eδ′

(1 + δ′)1+δ′

)E[R j]
. (4)

Next, we study E[Ri]. We know that in a random subsequence of length �, E[Ri] =
� · p(ci). In order to prove the claim, we need to consider a random subsequence of
length a + b in which each request hits either ci or c j . Given this assumption, the
probability of hitting either configurations scales up by 1

p(ci)+p(c j)
. Therefore,

E[Ri] = (a + b) · p(ci)

p(ci) + p(c j)
≥ (a + b)

2
= b

1 + δ
= a

1 − δ
= X , (5)

where the inequality is due to the assumption p(c j) ≤ p(ci).
Using the smaller bound [left-hand side in (4)] as the upper bound, we conclude

the claim:

Pr
(
Ri ≤ a and R j ≥ b

)
≤ Pr

(
Ri ≤ a

)

= Pr
(
Ri ≤ (1 − δ)X

)
(6)

123

Competitive clustering of stochastic communication patterns… 1379

≤ Pr
(
Ri ≤ (1 − δ)E[Ri]

)
(7)

≤
(

e−δ

(1 − δ)1−δ

)E[Ri]
(8)

≤
(

e−δ

(1 − δ)1−δ

)X

:= B〈a, b〉, (9)

where (6) holds by definition, (8) is the lower tail Chernoff bound in (2), and (7) and
(9) hold due to the fact X ≤ E[Ri].

End of Proof of Claim 1

The next lemma provides an intuition of our algorithm and its condition.

Lemma 1 Let ε > 0, then if Cond(r [c j], r [ci], ε) = True,

Pr
(
p(c j) > p(ci)

) ≥ 1 − ε.

Proof Equivalently, we prove that whenever p(c j) ≤ p(ci), Pr
(
Cond(r [c j], r [ci], ε)

= True) ≤ ε. Using Claim 1, if p(c j) ≤ p(ci) and r [c j] > r [ci] then

Pr
(
Cond(r [c j], r [ci], ε) = True

)

≤ Pr
(
Ri ≤ r [ci] and R j ≥ r [c j]

) ≤ B〈r [ci], r [c j]〉.

We want that B〈r [ci], r [c j]〉 ≤ ε:

(
e−δ

(1 − δ)1−δ

) r [c j]
1+δ

≤ ε ⇐⇒ r [c j]
1 + δ

(−δ − (1 − δ) ln(1 − δ)) ≤ ln(ε)

⇐⇒ r [c j] ≥ (1 + δ) ln(ε)

(−δ − (1 − δ) ln(1 − δ))
= (1 + δ) ln

(1
ε

)

δ + (1 − δ) ln(1 − δ)
.

Now let γ = r [ci]
r [c j] < 1, so δ = 1−γ

1+γ
, and we have:

r [c j] ≥
(
1 + 1−γ

1+γ

)
ln

(1
ε

)

(
1−γ
1+γ

)
+

(
1 − 1−γ

1+γ

)
ln

(
1 − 1−γ

1+γ

)

=
(

2
1+γ

)
ln

(1
ε

)

(
1−γ
1+γ

)
+

(
2γ
1+γ

)
ln

(
2γ
1+γ

) = 2 ln
(1

ε

)

(1 − γ) + 2γ ln
(

2γ
1+γ

)

= 2 ln
(1

ε

)

1 + γ
(
2 ln

(
2γ

γ+1

)
− 1

) ,

which concludes the proof of the lemma. ��

123

1380 C. Avin et al.

5.1 A cost breakdown

It is convenient to break down the algorithm costs into different components. In case
of OFF, the situation is fairly easy: OFF simply incurs a migration cost, hencefoth
denoted byOffmig, ofOffmig = 2α ·dOFF tomove to the optimal location cOFF , where
dOFF is the rotation distance between c0 and cOFF , plus an expected communication
cost Offcomm of |σ | · p(cOFF).

In case of ON, the situation is more complicated. In particular, while we do not
distinguish between different migration costs for ON either, we consider three types
of communication costs for ON : Onelim is the elimination cost, i.e., the total commu-
nication cost incurred while ON is waiting on every configuration that has not been
eliminated yet, until the condition Cond(j, i, ε) is fulfilled for the current configura-
tion. Onins is the “insurance” cost paid by ON when waiting in an already eliminated
configuration, until being allowed to actually move beyond the current radius to a
non-eliminated configuration. Finally, Onfinal is the communication cost paid by ON
once it reached its final configuration and all other configurations have been elimi-
nated. (Note that the cost incurred at the final configuration while there are still other,
non-eliminated configurations, is counted toward elimination costs.)

The total communication costOncomm is the sum of these three costs. In the follow-
ing, we will prove that all these cost components are competitive compared to OFF’s
overall costs, from which the bound on the competitive ratio is obtained.

5.2 Competitive ratio

We now prove that our online algorithm ON performs well with high probability
(w.h.p.). That is, we derive a competitive ratio of O(log k)which holdswith probability
at least 1 − 1/nq for some constant q.

Theorem 1 The competitive ratio achieved by ON is ρ ∈ O(log n) with high proba-
bility.

The remainder of this section is devoted to the proof of this theorem. In particular,we
will use our cost breakdown, and express the competitive ratio as (where σ = σ(D)):

ρ = max
σ

(
On(σ)

Off(σ)

)

= max
σ

(
Onmig(σ) + Onelim(σ) + Onins(σ) + Onfinal(σ)

Offcomm(σ) + Offmig(σ)

)

Wewill prove that each cost component inOn is competitive toOFF’s overall cost,
therefore resulting in an O(log n · Off(σ)) bound.

5.2.1 Elimination costs

To calculate the elimination cost (the total cost resulting from waiting at different
configurations until Cond() holds for the current configuration), we divide all config-
urations into two sets: configurations c for which p(c) ≤ 20pmin and configurations
c′ for which p(c′) > 20pmin. We consider the elimination cost for these two sets in
turn.

123

Competitive clustering of stochastic communication patterns… 1381

All configurations c for which p(c) ≤ 20pmin. We will consider again two cases.
Let e[c] the cost of elimination on a position c (number of requests served until the
condition of elimination of c is fulfilled). Either e[c] ≤ 20 log n or e[c] > 20 log n. In
the first case we can just say that the number of configuration we have to eliminate is
in O(Onmigr) and so

∑
e(ci)≤20 log n e(ci) ≤ O(log n · Onmigr) = O(log n · Off).

For the other case, where e(ci) > 20 · log n, we use the following claim:

Claim 2 Let
 = [t1, t2] be a time interval. We note r [c](
) = r [c](t2) − r [c](t1),
where r [c](t) is the number of requests on the configuration c at the time t. Then:

If p(c j) ≤ 20p(ci) and r [c j](
) ≥ 20 log n then w.h.p. r [c j](
) ≤ 40r [ci](
).

Proof First note that from the bound of Eq. (3) w.h.p. r [c j](
) ≤ 2E[r [c j](
)]. Sim-
ilarly since E[r [ci]] ≥ 1

20 E[r [c j]] we have that w.h.p. r [ci](
) ≥ 1
2 E[r [ci](
)] ≥

1
40 E[r [c j](
)]. So w.h.p. r [c j](
) ≤ 40r [ci](
). ��
From Claim 2 and union bound over at most n states we get that w.h.p. r [c j](
 j) ≤
40r [cmin](
 j) for all such configurations, with
 j denoting the time interval where
we stayed on the configuration c j , and c j was not eliminated (which means

⋃
c j
 j =

[0, |σ |]).
So

∑

e(c j)>20 log n

e(c j) =
∑

e(c j)>20 log n

r [c j](
 j) ≤
∑

e(c j)>20 log n

40r [cmin](
 j)

≤ 40r [cmin]([0, |σ |]) = 40r [cmin] ≤ O(OFFcomm)

In conclusion as Onelim≤20 = ∑

e(ci)≤20 log n
e(ci) + ∑

e(ci)>20 log n
e(ci) we have w.h.p.:

Onelim≤20(σ)

Off(σ)
= O(1).

– All configurations c′ for which p(c′) > 20pmin. For this we claim:

Claim 3 If p(c j) ≥ 20p(ci) and r [c j] ≥ 20 log n then w.h.p. r [c j] > 5r [ci] and
Cond(r [c j], r [ci], ε) is True for ε = 1

n2
.

Proof Since r [c j] ≥ 20 log n w.h.p. E[r [c j]] ≤ 2r [c j]. If r [ci] > 1
5r [c j] then w.h.p.

E[r [ci]] > 1
10r [c j], but this contradicts the assumption that E[r [ci]] ≤ 1

20 E[r [c j]].
So we have r [ci]

r [c j] ≤ 1
5 and Cond(j, i, ε) holds for ε = 1

n2
. ��

Now since the number of configurations On needs to eliminate is lower than
Onmig/α ≤ Onmig, the total cost On paid is O(Onmig · log n). But since Onmig(σ)

Off(σ)
=

O(1) (as we show next) we have:

Onelim>20(σ)

Off(σ)
= O(log n)

To conclude Onelim = Onelim≤20 + Onelim>20, and: Onelim(σ)/Off(σ) = O(log n).

123

1382 C. Avin et al.

5.2.2 Migration cost

We distinguish two cases. Let cfar be the farthest configuration reached by our online
algorithm. Either dfar (the distance between cfar and c0) is lower than dOFF , or it is
greater than dOFF .

– In the first case, dOFF ≥ dfar , we can prove

Lemma 2 if dOFF ≥ dfar then Onmig ≤ 6 · Offmig(σ).

Proof ∃x ∈ N 22x ≤ d f ar < 22x+2. Then, in the worst case, we have to go to
22x+2. Moreover, after completing the search within radius 2i we double the radius
and continue without changing direction. Therefore, the rotation distance 2i is charged
at most 3 times.

Onmig(σ) ≤
2x+1∑

i=0

3 · 2i · α ≤ 6 · 22x+1 · α ≤ 6dfarα ≤ 6 · dOFF · α ≤ 6 · Offmig(σ)

��
– If dOFF < dfar , then from Claims 2 and 3 with
 = [0, |σ |] it follows that
w.h.p. r [cOFF] ∈ �(α · dfar): Recall that in our algorithm (line 15) we only move
beyond the current radius if the corresponding costs have been amortized. Hence
Onmig ≤ Offcomm.

In conclusion, in both cases: Onmig(σ)/Off(σ) = O(1).

5.2.3 Insurance costs

For the insurance cost we also consider several cases. Let cfar be the farthest config-
uration reached by our online algorithm. Let cOFF denote the location of the offline
algorithm. We split Onins into two parts: Onins<far and Onins=far . Onins<far is the
insurance cost up to (not including) cfar while Onins=far is the insurance cost paid on
cfar . The last insurance cost, paid before the last migration to cfar , is αdfar , so we have
Onins<far ≤ O(Onmig) = O(Off) (see the migration cost analysis).

The only possible problem is therefore Onins=far . Now we consider two cases:

– cOFF is in E (eliminated configuration). Since cOFF was eliminated before cfar
if follows from Claims 2 and 3 that w.h.p. r [cOFF] > �(r [cfar]) so Onins=far <

O(Offcomm).
– cOFF is in E . In this case because of our searching path and the selection of cnext ,
we have dOFF ≥ dnext/2. Therefore Onins=far ≤ O(Offmig).

Overall we have: Onins(σ)/Off(σ) = O(1).

5.2.4 Final costs

By definition, in the final configuration, all other configurations have been eliminated.
Thus, our condition, Cond(r [c j], r [ci], ε), has been fulfilled at some point for any c j ,

123

Competitive clustering of stochastic communication patterns… 1383

with respect to some ci . The probability that we eliminate a minimum configuration
and end up at a suboptimal configuration is small. This follows from Lemma 1, when
setting ε := 1

n2
: once we stopped in a configuration, it is, with high probability, a (not

necessarily unique) minimal configuration. Since OFF directly moves to a minimum
configuration (which may not be unique),ON cannot incur a higher cost thanOFF on
a specific minimum configuration, i.e., not more than r [cmin]. As the offline algorithm
moved from the start to a configuration cOFF and r [cmin] is the configuration with the
lowest number of requests, r [cOFF] ≥ r [cmin]. Thus, Onfinal(σ) ≤ Off(σ), and also
Onfinal(σ)/Off(σ) = O(1).

5.2.5 Overall costs

In conclusion, with high probability:

ρ ≤ max
σ

(
Onmig(σ) + Onelim(σ) + Onins(σ) + Onfinal(σ)

Offcomm(σ) + Offmig(σ)

)

= O(log n).

6 Beyond stochastic adversary

So far we assumed that the adversary is restricted to sample requests i.i.d. from a
distribution of its choice. In this sectionwemake a first attempt to relax this assumption
and consider an adversary who can adapt the communication frequencies depending
ON’s deterministic choices. However, we require that the requests come from a perfect
partition in the following sense: there exists a configuration without any inter-cluster
communications. An optimal offline algorithm may hence simply move to such a
perfect partition (the closest one from the initial configuration), and the goal of the
online algorithm is to learn a perfect partition.

6.1 Ring communication pattern

We start by assuming that the perfect partition is a subset of a ring communication
pattern (but frequencies can change arbitrarily over time). Observe that in this model,
ON must move as soon as a remote request hits the current configuration: otherwise
the adversary will simply repeat this request arbitrarily. A naive strategy would be to
move to the next configuration, e.g., in clockwise direction. This algorithm is O(k)-
competitive: If dF = d(c0, cF) ≥ 1 (where cF is the perfect partition closest to the
initial configuration), OFF pays at least�(α) to reach cF , whereasONmay pay O(αk)
if the optimal configuration is in counter-clockwise direction.

We can improve this algorithm by replacing the search strategy, in the spirit of our
previous algorithms. Starting from c0, ON visits all configurations within the current
radius R before moving to a configuration ci s.t. R < d(c0, ci) ≤ 2R. Concretely, ON
moves according to the sequence (0, 1,−1,−2, 2, 3, 4,−3,−4, . . . ,−8, 5, . . . , 8,
. . . , 2i−1 + 1, . . . , 2i ,−2i−1 − 1, . . . ,−2i , . . .) when the current radius is R = 2i

and i > 0 is even. Similarly, for j > 0 being odd, the search sequence within the

123

1384 C. Avin et al.

current radius R = 2 j is−2 j−1−1, . . . ,−2 j , 2 j−1+1, . . . , 2 j . Notice that whenever
the search within the current radius R = 2h is complete, we extend the search to the
next radius 2h+1 without changing direction.

Note that ON crosses c0 exactly once for each radius and this follows an extension
from the previous radius. Thus, the cost of ON consists of the cost of extension and
the cost incurred while crossing c0. More precisely, ON pays for at most

�log dF �∑

i=0

(
2i − �2i−1�

)
+ 2i+1 ∈ �(dF)

rotations. Note that ON rotates away from a configuration on the first hit and it does
not wait on any configuration that is already examined. Thus, the communication cost
is also in �(dF). Finally, since OFF rotates dF times, the competitive ratio is in �(1).

6.2 More general communication pattern

Let us now remove the constraint that requests need to come from a ring, but allow
the adversary to choose request sequences from an arbitrary perfect partition. Again,
the goal of the online algorithm is to learn this perfect partition, at low cost.

As the adversary reveals communication edges one by one, we must take the best
decision based on the current partially revealed graph. Towards this end, we propose
the online algorithm PPL which mimics balanced offline partitioning algorithms and
keeps track of (connected) components, based on the communication history. Our
online algorithm is detailed in Algorithm 2. It initiates at line 1 by creating compo-
nents, each containing a single node. The first time two nodes communicate, wemerge
the corresponding components into a single component (line 5). If the merging com-
ponents are located on different clusters, then we “rebalance”, in order to fit everything
perfectly once again into clusters of equal size.

Algorithm 2 PPL: Perfect Partition Learner
Input: clusters A andB and initial partitions AI and BI
1: for each node v create a singleton component Cv and add it to C
2: on each communication σt = {u, v}:
3: Let C1 � u and C2 � v be the container components
4: if C1 �= C2 then
5: unite the two components into a single component C ′ and C = (C \ {C1,C2}) ∪ {C ′}
6: if cluster(C1) �= cluster(C2) then
7: Rebalance()
8: end if
9: end if

We specify the re-balancing separately as sub-routines in Algorithm 3.
The re-balancing implements a standard dynamic program known from Partition

or Subset Sum problems. In addition, “rebalance()” embeds a heuristic necessary
to achieve a good competitive ratio. Specifically, we compute the specific partitions

123

Competitive clustering of stochastic communication patterns… 1385

Algorithm 3 Sub-algorithm for partitioning nodes in A ∪ B
1: Rebalance () {
2: m = |C | � number of current components
3: n = 2k � number of nodes
4: P = empty table of (k + 1) × (n + 1) integers set to ∞ � P(i, j)=̂ partition of size i on the first j components
5: initialize the top row of P to zero, i.e. P(0, ∗) = 0
6: for i = 1 to k do
7: for j = 1 to m do
8: if |C j | > i then � if the j th component does not fit in the given size
9: continue; � skip the j th component
10: end if
11: s = |C j |
12: if j ∈ AI then � then not taking the j th component for A′ must increase d(A′, AI)

13: (P(i, j), x) = min
(
P(i, j − 1) + s, P(i − s, j − 1)

)
� the minimum and its index (0 or 1)

14: else � else, taking the j th component for A′ must increase d(A′, AI)

15: (P(i, j), x) = min
(
P(i, j − 1), P(i − s, j − 1) + s

)
� the minimum and its index (0 or 1)

16: end if
17: if x == 0 then � the sub-solution does not take j th component (for A′)
18: pred(i, j) = (i, j − 1)
19: else � the sub-solution takes j th component (for A′)
20: pred(i, j) = (i − s, j − 1)
21: end if
22: end for
23: end for
24: (A′, B′) = ConstructPartition (pred) � compute the new partition
25: A′′ = ⋃

j∈A′ C j

26: B′′ = ⋃
j∈B′ C j

27: swap the nodes in A ∩ B′′ with B ∩ A′′ � update clusters
28: } � End of Rebalance()
29:
30: ConstructPartition (pred) {
31: A′ = ∅; B′ = ∅ � sets for storing partitioned component IDs
32: (i, j) = (k,m)

33: while (i, j) �= (0, 0) do
34: (i ′, j ′) = pred(i, j)
35: if i �= i ′ then � then the j th component is assigned to A′
36: A′ = A′ ∪ { j}
37: else � else, the j th component is not assigned to A′ (i.e., assigned to B′)
38: B′ = B′ ∪ { j}
39: end if
40: end while
41: Return (A′, B′)
42: } � End of ConstructPartition()

that are closest to the initial configuration, denoted by AI . Let (A′, B ′) be the current
configuration (i.e. the content of the clustersA andB). We define the current distance
as d(A′, AI) = |A′�AI |.

The lines 13 and 15 reflect this choice of partitioning.More technically, the dynamic
program inAlgorithm 3 computes theminimumdistance partition for all possible clus-
ter sizes (up to k),which is stored as sub-solutions P(i, j). Each sub-problem identified
by the pair (i, j) corresponds to a min-distance partition of the first j components into
two clusters of size i . Each P(i, j) is computed by considering whether to take the last
component C j for the clusterA or not. If the component originally was located onA

123

1386 C. Avin et al.

(i.e. j ∈ AI) then not putting it back there increases the distance by |C j |. Conversely,
relocating a component toA knowing that it was not initially there also increases the
distance in a similar way.

Next, at line 24, the algorithm traces the dynamic program choices in reverse direc-
tion beginning with the topmost solution P(k,m) and constructs the new partition.
Eventually at line 27, the actual re-balancing takes place by swapping nodes between
the clusters until nodes that belong to the same component are collocated on the same
cluster.

We have the following result.

Theorem 2 The online Algorithm 2 has a competitive ratio in O(k) and runs in poly-
nomial time (per request).

Proof For the sake of the proof, we assume the final configuration,KF = (AF , BF),
partitions all the nodes into two types: a-nodes ∈ AF b-nodes ∈ BF . Additionally, we
color the nodes in red or black according to their initial location, that is, either cluster
A or cluster B (Fig. 3). Formally,

a-nodes =
{
aR
i ∪ aB

i

∣
∣ aR or B

i ∈ AF , aR
i ∈ AI , a

B
i ∈ BI , i ∈ [k]

}

b-nodes =
{
bRi ∪ bBi

∣
∣ bR or B

i ∈ BF , bRi ∈ AI , b
B
i ∈ BI , i ∈ [k]

}

Moreover, assume both PPL and OFF start with the same configuration KI =
(AI , BI):

AI =
{
bR1 , . . . , bRx , aR

x+1, . . . , a
R
k

}
, BI = {

aB
1 , . . . , aB

x , bBx+1, . . . , b
B
k

}
,

(a) (b) (c) (d) (e)

Fig. 3 This example illustrates how PPL decides to collocate nodes on a simplistic request sequence that
targets b-nodes first. It begins with the initial partition of k red and k black nodes (i.e. singleton components)
into (AI , BI), collocates the communicating nodes (shown in bold), and converges to the final partition
(AF , BF). Observe that in 3d, PPL decides to swap the components bk−1 and a1 because with any other
swap the new distance would be higher: ∀A k

2
�= AF : d(A k

2
, AI

)
> d(AF , AI). Also, OFF moves to the

final partition in one swap since d(AF , AI) = 2. a (AI , BI). b (A1, B1). c (A2, B2) d
(
A k

2−1
, B k

2−1

)
.

e (AF , BF)

123

Competitive clustering of stochastic communication patterns… 1387

and they aim to reach KF = (AF , BF):

AF =
{
aB
1 , . . . , aB

x , aR
x+1, . . . , a

R
k

}
, BF = {

bR1 , . . . , bRx , bBx+1, . . . , b
B
k

}
.

First, observe that the final configuration KF is only x swaps away from KI .
Furthermore, PPL knows only the colors but not the node types, whereas OFF knows
also the types. Therefore, OFF moves toKF paying for only 2x migrations.

For any intermediate configuration K ′, we define the distance measure as
dist(K ′,KI) = d(A′, AI) = |A′�AI |. Obviously, dist(KF ,KI) = d(AF , AI) =
2x .

Since any inter-cluster communication is followed by a re-balancing, we only need
to bound the migration cost PPL pays over the course of all requests until it reaches
KF . Let PPLmig() denote the number of nodes that migrate during the re-balancing
triggered by σt . First, note that there are at most 2(k−1) calls to rebalance(). Because,
after each occurrence, the number of components decreases by at least 1 and there are
initially k components of each typewhich eventually collocate in two large components
(of size k). Now we analyze the worst-case cost of the re-balancing upon a request σt ,
i.e. PPLmig(σt).

Recall that due to the lines 12–16, PPL chooses a partition (At , Bt) that minimizes
the distance d(At , AI). Now we argue that PPLmig(σt) ≤ 4x . For the sake of con-
tradiction, assume PPLmig(σt) > 4x . This implies that during the re-balancing more
than 2x nodes migrate to A . Consider the color of majority among these 2x nodes.
Clearly, the number of nodes with that color is more than x . There are two cases:

1. the majority are black. In this case, after the re-balancing, there are more than
x black nodes on cluster A which means the same number of red nodes exist
on cluster B. This in turn implies that the distance is more than 2x after the re-
balancing, i.e., d(At , AI) > 2x . On the other hand, we know by assumption that
moving to the configuration KF would yield the distance exactly 2x . Thus, the
partition (A′, B ′) = (At , Bt) computed by Algorithm 3 is not optimal.

2. the majority are red. Since these red nodes are on B before re-balancing (i.e.
in Bt−1), the same number of black nodes exist in At−1. Therefore, the distance
before re-balancing is d(At−1, AI) > 2x . Similar to the first case (but for time
t − 1), this contradicts the optimality of Algorithm 3.

Thus, we conclude PPLmig(σt) ≤ 4x and
∑

t PPLmig(σt) ≤ 4x · 2(k − 1). The
competitive ratio is therefore at most 4x ·2(k−1)

2x = 4(k − 1).
It remains to show the polynomial runtime. It is easy to see that the running time

is dominated by line (7) when PPL computes a new partition. The dynamic program
computes a table of (k + 1) · (2k + 1) ∈ �(k2) integers. Then we trace the optimal
path in the table in time �(k). Thus, the total computation for each request takes time
in �(k2). ��
7 Related work

Our paper takes a novel perspective on a range of classic problems. First, clustering and
graph partitioning problems as well as repartitioning problems [22] have been studied

123

1388 C. Avin et al.

for many years and in many contexts. These problems are usually NP-complete and
even hard to approximate [2]. Especially partitioning problems for two clusters (� = 2
in our case), known as minimum bisection problems [10], have been studied inten-
sively. Minimum bisection problems are known to allow for good, O(log1.5 n)-factor
approximations [14]. Problem variants with k = 2 correspond to maximum matching
problems, which are polynomial-time solvable. In contrast to our work however, these
models assume an offline perspective where the problem input is given ahead of time.
In the online world, our problem is related to page (resp. file) migration [5,7] and
server migration [6] problems: in these problems, a server needs to be migrated close
to requests occurring on a graph, trading off access and migration costs. In the former
problemvariant,migration costs relate to distance; in the latter,migration costs relate to
the available bandwidth along migration paths. Moreover, in our problem, a ski-rental
resp. rent-or-buy like tradeoff betweenmigration and communication costs needs to be
found. However, migrations do not occur along a graph but between clusters, and mul-
tiple nodes can bemigrated simultaneously. The large configuration space also renders
solutions based onmetrical task system approaches [8] inefficient. Another interesting
connection exists to k-server problems [12], where multiple servers can “collabora-
tively” serve requests. In some sense, our problem can be seen as the opposite problem,
where rather than aiming to move servers to the locations where the requests occur,
we aim to move away and avoid configurations (i.e., cuts) where requests occur. More
importantly, compared to classic online migration problems where requests define a
unique optimal location from which they can be served at minimal cost (namely at the
corresponding graph vertex), in our case, a request only reveals very limited informa-
tion about the optimal (minimal cost) configuration. In other words, a single request
only contains very limited information about how good a current clustering is, and
how far (in terms of migrations) we are from an optimal offline location.

Our model can be seen as a generalization of online paging [11,15,16,21,23], and
especially its variants with bypassing [1,9]. However, in general, in our model, the
“cache” is distributed: requests occur between nodes and not to nodes, and costs can
be saved by collocation.

Our problem also has connections to online packing problems, where items of
different sizes arriving over time need to be packed into a minimal number of bins [19,
20]. In contrast to these problems, however, in our case the objective is not to minimize
the number of bins but rather the number of “links” between bins, given a fixed number
of bins.

The paper closest to ours is [4] which studies online partitioning problems from
a deterministic perspective, i.e., σ is generated in a deterministic manner. In this
setting, it has been shown that the competitive ratio is inherently high, at least linear
in k, and even if the online algorithm is allowed to user larger clusters than the offline
algorithm (scenariowith augmentation).We in this paper initiate the study of stochastic
models where request patterns are drawn from an unknown but fixed distribution, and
show that polylogarithmic bounds can be achieved under ring patterns, even without
augmentation.

In general, we believe that a key conceptual contribution of our model itself regards
the underlying combination of learning and searching. Indeed, while the fundamen-
tal problem of how to efficiently learn a distribution has been explored for many

123

Competitive clustering of stochastic communication patterns… 1389

decades [18], our perspective comes with an additional locality requirement, namely
that searching induces costs (i.e., migrations).

8 Conclusion

This paper initiated the study of a natural cluster learning problem where the search
procedure entails costs: communication costs occur in “suboptimal” clustering con-
figurations and migration costs occur when switching between configurations. In
particular, we presented an efficient online clustering algorithm which performs well
even if compared to an offline algorithm which knows the distribution of the commu-
nication pattern ahead of time. Indeed, the O(log k) competitive ratio is interesting as
k is likely to be small in the applications considered in this paper: k corresponds to the
number of virtual machines that can be hosted on the same server, e.g., the number
of cores. Moreover, we believe that our online approach is interesting in practice as it
does not rely on any assumptions on the communication distribution, which may turn
out to be wrong.

We believe that our work sheds an interesting new light on multiple classic prob-
lems, and opens an interesting field for future research. In particular, it would be
interesting to know whether similar competitive ratios can be achieved even for more
general communication patterns. Moreover, so far we have only focused on deter-
ministic algorithms, and the exploration of randomized algorithms constitutes another
interesting avenue for future research.

Acknowledgements Open access funding provided by University of Vienna. Research supported by the
German-Israeli Foundation for Scientific Research and Development (GIF), Grant no. I-1245-407.6/2014.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adamaszek A, Czumaj A, Englert M, Räcke H (2012) An O(log k)-competitive algorithm for gener-
alized caching. In: Proceedings of 23rd SODA, pp 1681–1689

2. Andreev K, Räcke H (2006) Balanced graph partitioning. Theory Comput Syst 39(6):929–939
3. Avin C, Cohen L, Schmid S (2017) Competitive clustering of stochastic communication patterns on

the ring. In: Proceedings of 5th international conference on networked systems (NETYS)
4. Avin C, Loukas A, Pacut M, Schmid S (2016) Online balanced repartitioning. In: Proceedings of 30th

international symposium on distributed computing (DISC)
5. Bartal Y, CharikarM, Indyk P (2001) On pagemigration and other relaxed task systems. Theor Comput

Sci 268(1):43–66 Also appeared in Proc. of the 8th SODA, pages 43–52, 1997
6. Bienkowski M, Feldmann A, Grassler J, Schaffrath G, Schmid S (2014) The wide-area virtual service

migration problem: a competitive analysis approach. IEEE/ACM Trans Netw 22:165–178
7. BlackDL,SleatorDD(1989)Competitive algorithms for replication andmigrationproblems.Carnegie-

Mellon University, Department of Computer Science, Pittsburgh, USA
8. Borodin A, Linial N, Saks ME (1992) An optimal on-line algorithm for metrical task system. J ACM

39(4):745–763 Also appeared in Proc. of the 19th STOC, pages 373–382, 1987

123

http://creativecommons.org/licenses/by/4.0/

1390 C. Avin et al.

9. Epstein L, Imreh C, Levin A, Nagy-György J (2015) Online file caching with rejection penalties.
Algorithmica 71(2):279–306

10. Feige U, Krauthgamer R (2002) A polylogarithmic approximation of the minimum bisection. SIAM J
Comput 31(4):1090–1118

11. Fiat A, Karp RM, Luby M, McGeoch LA, Sleator DD, Young NE (1991) Competitive paging algo-
rithms. J Algorithms 12(4):685–699

12. Fiat A, Rabani Y, Ravid Y (1994) Competitive k-server algorithms. J Comput Syst Sci 48(3):410–428
13. Franck W (1965) An optimal search problem. SIAM Rev 7(4):503–512
14. Krauthgamer R, Feige U (2006) A polylogarithmic approximation of the minimum bisection. SIAM

Rev 48(1):99–130
15. McGeoch LA, Sleator DD (1991) A strongly competitive randomized paging algorithm. Algorithmica

6(6):816–825
16. Mendel M, Seiden SS (2004) Online companion caching. Theor Comput Sci 324(2–3):183–200
17. MitzenmacherM, Upfal E (2005) Probability and computing: randomized algorithms and probabilistic

analysis. Cambridge University Press, New York
18. Pöschel T, Ebeling W, Rosé H (1995) Guessing probability distributions from small samples. J Stat

Phys 80(5–6):1443–1452
19. Ramanan PV, Brown DJ, Lee CC, Lee DT (1989) On-line bin packing in linear time. J Algorithms

10(3):305–326
20. Seiden SS (2002) On the online bin packing problem. J ACM 49(5):640–671
21. Sleator DD, Tarjan RE (1985) Amortized efficiency of list update and paging rules. Commun ACM

28(2):202–208
22. Vaquero L, Cuadrado F, Logothetis D,Martella C (2013) Adaptive partitioning for large-scale dynamic

graphs. In: Proceedings of 4th annual symposium on cloud computing (SOCC), pp 35:1–35:2
23. Young NE (1991) On-line caching as cache size varies. In: Proceedings of the 2nd ACM-SIAM

symposium on discrete algorithms (SODA), pp 241–250

123

	Competitive clustering of stochastic communication patterns on a ring
	Abstract
	1 Introduction
	2 Model
	3 The challenge of dynamic clustering
	4 Deterministic and competitive clustering
	5 Analysis
	5.1 A cost breakdown
	5.2 Competitive ratio
	5.2.1 Elimination costs
	5.2.2 Migration cost
	5.2.3 Insurance costs
	5.2.4 Final costs
	5.2.5 Overall costs

	6 Beyond stochastic adversary
	6.1 Ring communication pattern
	6.2 More general communication pattern

	7 Related work
	8 Conclusion
	Acknowledgements
	References

