
Computing (2013) 95 (Suppl 1):S661–S673
DOI 10.1007/s00607-012-0275-z

Efficient visualization of 3D models by web browser

Bartosz Sawicki · Bartosz Chaber

Received: 13 October 2012 / Accepted: 20 December 2012 / Published online: 8 January 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The article presents software module designed for efficient and convenient
visualization of 3D models inside the web browser environment. It is written purely
in JavaScript and takes advantages of the new HTML 5 standard. The authors focus
on mobile devices, so special attention is given on efficiency and low network usage.
Proposed solution based on progressive mesh streaming is compared with server side
rendering approach. The results of usability tests performed on real-life random users
group will be discussed.

Keywords 3D visualization · Mesh streaming · HTML 5 · Mobile devices

Mathematics Subject Classification 68U05 Computing methodologies and
applications; Computer graphics; computational geometry · 68U35 Computing
methodologies and applications; Information systems (hypertext navigation,
interfaces, decision support, etc.) · 68M20 Computer system organization;
Performance evaluation; queueing; scheduling

1 Introduction

The visualization of 3D models is an essentially important tool for today’s numerical
simulation science. Since the eyesight is the main sense for humans, it’s not surprising
that researchers want to visually investigate results of calculations and easily share

This work was partially supported by Polish Ministry of Science and Higher Education (research grant no.
N N510 148838).

B. Sawicki (B) · B. Chaber
Institute of Theory of Electrical Engineering, Measurments and Information Systems,
Faculty of Electrical Engineering, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warsaw, Poland
e-mail: Bartosz.Sawicki@ee.pw.edu.pl; sawickib@gmail.com

123



S662 B. Sawicki, B. Chaber

them with others. Mobile devices (smartphones, tables) are natural tools for this kind
of presentation, but many new challenges has to be overcome, mainly related with its
limited computational power and transmission channel [7,12,19].

The most of numerical simulations take advantage of computational power con-
centrated in server clusters. There are two groups of techniques for displaying remote
models: server side rendering and client side rendering. This basic division has some-
times different names (for example image-based vs. simplification [15]), but its impor-
tance should be understood. In the first solution, servers render 3D scene, compute view
and send it as a image to the client, in the second approach, mesh data are transmitted
to the client which finally renders it. The main advantage of server side rendering is
that mesh doesn’t have to be sent over the network, which is especially important when
we deal with large scale models. On the other hand client side rendering could utilise
hardware acceleration, and provide more natural user navigation. Unfortunately large
meshes can’t be rendered on the client side, because its computational power would
be exceeded. That’s where progressive mesh algorithms are applied [10,11].

Both, server and client rendering modes are subject of a wide scientific research.
While investigations for first solution are focused on powerful rendering infrastruc-
ture [14] and image compression algorithms [7], the second approach more often linked
with progressive meshes [4] and their transmission protocols [1]. It also describes pro-
gressive way of displaying 3D models, but please mind that this progressive method
is very different from the progressive meshes method defined in [4].

Thinking about mobile devices connected with mobile network, we should take
care of the bandwidth consumed by the visualization system. This topic is usually
studied for games or augmented reality applications [12,19]. Smooth displaying of
realistic 3D worlds on thin, mobile clients requires special techniques (mesh streaming,
compressed meshes, server rendering). As it was shown by Pasman [15] optimal
methodology should be a combination of above algorithms.

There are many, well established technologies for very efficient handling of pre-
sentation of 3D scenes, such as OpenGL, DirectX, GPU. However, to use them user is
forced to install specialised software or even upgrade his computer hardware. In this
paper we present different approach. Whole interaction with 3D model is done inside
standard, modern HTML browser. This way we get unusual accessibility of developed
software module, since web browser are nowadays present in virtually every device.
Web3D consortium long time ago introduced technologies like VRML and X3D, but
new HTML 5 standard is opening new possibilities for visualizing 3D objects. Build-
in WebGL and Canvas components controlled by JavaScript code running inside the
browser window can vanish last differences between desktop and web applications.
Presented software module is just a block which can be used for building advanced
cloud computing system. Authors have successfully used it in system devoted for
bioelectromagnetical simulations [17].

Authors created software module capable to interactively display 3D mesh on
devices running web browsers supporting HTML 5 standard (see Fig. 1). We were
concentrated to provide natural 3D experience even for unprepared user. All para-
meters are automatically adapted to the size of processed mesh and mobile device
capabilities. Since the core of mesh streaming algorithm was discussed in previous
works [16], novelty of this paper lays in application of the concept to the web browser

123



Efficient visualization of 3D models by web browser S663

Fig. 1 Screen shot of developed
web component while
displaying hinge model

Fig. 2 Scheme of the system architecture. The MVC model is supported by Three.js [18] 3D rendering
library

environment. Original contribution of the paper mainly consists of a network usage
measurements analysis, the real usability tests and intuitive multi-mode interface.

Structure of this article goes as follows. The general technical overview of the devel-
oped web-component is presented in Sect. 2. Sections 3 and 4 are devoted to the most
important elements (3D user interaction and progressive meshes implementation).
Results of network usage tests are contained in Sect. 5, while real life validation for
usability is described in Sect. 6.

2 General overview of the application

Developed system works in classic client-server regime, typical for web-applications.
An AJAX transmission is used to send mesh in the JSON format. General view of
system architecture is shown in Fig. 2. Model-View-Controller (MVC) programming
pattern was adapted to make design simple and separate different layers of system.

Three.js [18] library was chosen as a rendering engine. It is a lightweight 3D
JavaScript library which handle rendering of 3D scene into 2D view (scene, camera,
lighting). Three.js provides three different renderers: canvas, svg and WebGL. Thus
designed system will be flexible and portable. Three.js is the base for two MVC layers:

123



S664 B. Sawicki, B. Chaber

Fig. 3 Three connected components displaying the same model with different angles

a Model and a View. Model, in our case mesh, used by Three.js had to be extended
by providing specialized functions for mesh streaming (described in Sect. 4). View,
which is responsible for rendering view, was completed by the 3D user interaction
(described in Sect. 3).

Our default renderer is based on simple Canvas element, it could be surprising for
those who know that new HTML 5 technology introduced WebGL (JavaScript API
to OpenGL framework). That’s true, WebGL is hardware accelerated standard for 3D
scene creation inside browser window. Very promising, but still very far from wide
popularity. According to webglstats1 only 2 % of the browsers on mobile devices
supports this standard. We believe that the next few years will change completely this
statistics, but it is currently not possible to rely on WebGL technology.

The controller (viewController prototype in JS code) is the main part of
the system. It is designed to be standalone component of any webpage. The main
HTML document namespace is not polluted, so several instances of the web3dviewer
component can independently co-exists on the same page.

Components can be independent, but it is also possible to connect them and share
mesh model data. By setting different default views one can build interesting three
views panel (see Fig. 3), where model can be seen simultaneously from different
angles. Lets take three connected components case and describe it as an example of
usage:
<html> ...
<body onload="web3dviewer_init();">
<script type="text/javascript" src="web3dviewer.js"></script>
<div class="web3dviewer" id="main" mesh="MODEL" view="front"></div>
<div class="web3dviewer" master="main" view="top"></div>
<div class="web3dviewer" master="main" view="left"></div>
... </html>

Each of the components is simple div element with class web3dviewer. Ele-
ments of this class are automatically found byweb3dviewer_init() function and
initialized. The second obligatory property is mesh, which is set to the name of the
model to be displayed. Properties id and master can be used to connect components
and point where mesh data are assigned.

1 www.webglstats.com, Florian Boesch, 2012.

123

www.webglstats.com


Efficient visualization of 3D models by web browser S665

Table 1 Navigation using three different interfaces: mouse pointer, touch and multi-touch

Mouse pointer Touch interface Multi-touch

Pivot Left-click and Move Touch and move Single-touch and move
Zoom Roller +/− buttons Double-touch and distance
Pan Right-click and move Arrows buttons Double-touch and move

For convenience and compactness, the whole code of the component is compiled
into single file web3dviewer.js. JavaScript Closure compiler is used to perform
this tasks. Compiled code is shorter, and usually runs faster.

3 User interaction in 3D

Basic interface for inspection of 3D models has to provide at least three operations
(pivot, zoom and pan) [2]. Designing intuitive and natural user interface require to
follow ”principle of least astonishment”, which says that user shouldnt be surprised by
application behaviour. Such standard behaviour is well established for classic desktop
computers, where mouse is used as a pointing device. However new mobile devices
are usually operated by the touch or multitouch interfaces. The 3D interaction has
to be redefined in this new environment [5]. Table 1 presents summary of actions
implemented for different interfaces.

Presented system implements complete scene transformation which are needed to
provide interaction to the user. Zoom and pan operations are simply translated into
camera moves. For zoom-in camera goes closer, zoom-out camera goes back. The pan
mode moves camera sideways. More complicated is implementation of pivot (rotation)
of the model. It is convenient for user to automatically locate centre of rotation in the
center of the model. Also one have to remember that rotation should to be done by the
axis related with camera, which is natural for the user.

Multi-touch interfaces are supported by the most of modern browsers, and
accessible by JavaScript events. API interface TouchEvent defines events
onTouchStart, onTouchMove, onTouchEnd, which are handeled in our sys-
tem. List of coordinates of touching fingers can be found in attribute array touches.

Another important aspect of 3D interface is so called supervised navigation [6].
Inexperienced user can easily get lost in the 3D virtual reality. To prevent such situation,
interaction should be supervised by the system. Reduction of misunderstanding could
be achieved by introducing limitations in navigation space or by the simple reset
button. In our case ‘Reset view’ button (as seen in Fig. 1) restore default scene settings
and ensure that model will be visible.

4 Mesh streaming

In order to provide user an responsive interface for 3D objects inspection regardless
of presenting device, smart client-server architecture has been used. Using server for
streaming 3D objects to client enables better control over data sent to client.

123



S666 B. Sawicki, B. Chaber

Fig. 4 Three snapshots during the progressive mesh loading of a hand: a base mesh with 525 faces,
b model with 815 faces, c final model with 16,215 faces

Fig. 5 Illustration depicting
reversibility of edge collapse of
edge between n1 − n2

Streaming 3D surface meshes is very similar to streaming JPEG files. At first,
client receives very coarse version of original file, without neither all details nor good
resolution. However, after rendering this image, user is ready to make first decision,
e.g. to open another image. If image seems to have acceptable content user can wait
while picture is being enhanced, and more features are visible (see Fig. 4).

Progressive meshes introduced by Hoppe in 1996 [3] define entity called base mesh.
The base mesh is analogous to first, coarse version of JPEG compressed image. It is
a simplified version of original mesh reflecting its main features. Beside base mesh,
progressive mesh holds also sequence of operations increasing details of presented
mesh. This way, after all operations are applied user is presented original mesh which
has all detail. It must be stated, that user is able to inspect mesh just after base mesh is
received. Then, even while mesh is rotated, translated or scaled details are appearing
and whole mesh is refined.

Figure 5 shows how edge-collapse and vertex-split operations work, and com-
plement each other. This way, by performing edge collapse operations, details are
detached from base mesh, stored in intermediate way in sequence of edge collapse
operations and therefore can be transmitted separately.

This paper is not focused on the details of processing 3D surface meshes into pro-
gressive format as it has been already described in [16]. Algorithm presented previous
papers is enhanced version of Hoppe’s method for compression and decompression of

123



Efficient visualization of 3D models by web browser S667

surface meshes. Here, compression process is performed on the server side as it was
done previously, so details will be omitted. In this work, we have revised JavaScript
implementation of vertex split operation in order to improve its performance and
correctness.

One of the main important aspects of mesh simplification is choosing correct order
of edges to collapse. Original Hoppe approach took advantage of global energy func-
tion which was minimized. Our algorithm is more local and efficient [16]. It takes
into account change of the volume introduced by particular edge collapse. Because
volume difference can be easily calculated using only points adjacent to considered
edge this method is very fast and provides good results. Similar solution can be found
in [9], however their method of calculating the volume change is different.

Transmission of progressive mesh to the client is complicated process than consists
of four basic stages:

1. standard mesh has to be converted into progressive format (can be done off-line
and only once per single mesh file),

2. base mesh is sent to the client (just like original mesh),
3. bundle of vertex split operations are iteratively sent to the client,
4. client apply vertex split operations and progressively restore original mesh quality.

Fortunately, the most heavy computations are performed on server side (in stage 1)
which should be capable of handling such a big jobs. Operations 2–4 are performed on
each client. This type of processing is well suited into server–client communication.
What is more, process of unfolding/vertex splitting is straightforward and does not
requires much of computational power. In our paper we present implementation of
enhancing mesh geometry and topology implemented in plain JavaScript.

The main aspect of splitting vertex into an edge is reconnection of some of faces
adjacent to splitting vertex to new vertex which will form a new edge. In fact, to be able
to reconstruct such connection one has to know 8 parameters: two indexes of vertices
forming edge a − b, two indexes of vertices originally connected to collapsed edge
(c0, c1), one direction vertex d determining which faces have to be reconnected and
three components of displacement vector. Displacement vector is a vector representing
translation between original position of vertex and it’s position after edge collapse.
It is worth noting that every edge is collapsed to one vertex which is located in the
geometric center of the edge so single vector is sufficient for calculating position of
both edge’s vertices. Figure 6 presents the idea of first five parameters of vertex split
operation. More details regarding vertex splitting algorithm are presented in [16].

Fig. 6 Vertex split operation of vertex a = 1 into edge a − b (b = 2). Common vertices c0 = 3, c1 = 6,
and direction node d = 4

123



S668 B. Sawicki, B. Chaber

Fig. 7 Internal mechanism of handling refinements utilizes two JavaScript timers and the simple queue of
vertex split operations to prevent concurrent mesh modification

All communication between server and JavaScript client is done using JSON format.
JSON is text based universal container capable for transmission of all kind of data. In
case of our algorithm, single vertex split operation is sent as:

{
a: 3, b: 5,
c0: 4, c1: 6, d: 7,
x: 1.3, y: 1.2, z: 0.2

}

The main improvement of the JavaScript implementation of vertex split is its adap-
tation for working in asynchronous environment. In order to do this, two JavaScript
timers periodically executing appropriate actions were used. Since JavaScript doesn’t
provide threads and we don’t want to freeze user interface when mesh is progres-
sively loading, some aspects of implementations should be clarified. As presented in
Fig. 7 implementation is based on the queue and two JavaScript Timers. One timer
(Timer 1) is firing an AJAX call to web server asking for 100 new vertex split opera-
tions, which are pushed to the queue after server responds. The second timer (Timer 2)
is sequentially applying vertex splits until the queue is empty.

Existence of those two timers and the queue is very important because of asynchro-
nous nature of AJAX calls. We are not able to predict how much time it will take for
the device to apply vertex split or how long the refinements will be downloaded from
the web server. To prevent concurrent modification of the mesh or disturbance of the
vertex splits order, the queue is crucial JavaScript component.

The queue on the client side is implemented using plain JavaScript list object.
Timer 2 runs refine function. It pulls the last element from the queue, and forwards
it to the splitNode function. Refinements retrieved from web server are appended
to the beginning of the queue, so the most recently acquired packets are at the end of
the list.

5 Network usage tests

In introduction section it was mentioned that there are two main concepts of remote 3D
models visualization: server side rendering, and client rendering. Since our approach

123



Efficient visualization of 3D models by web browser S669

Fig. 8 Smoothed transmission rate during 25 s of interaction. Note that the client renderer transfer vanishes
after 15 s (when mesh is fully loaded), while in case of the server renders transmission will be continued
till user ends interacting with 3D object

is representing second idea, we decided to perform comparison for both solutions.
Our criterion is based on network usage efficiency, which isn’t usually issue in local
networks (LAN), but definitely should be considered in case of mobile devices using
mobile network.

During research we have compared our implementation of progressive meshes with
the same problem solution based on server rendering by the use VNC protocol [21].
VNC is popular software for remote control over server environment. It addresses
problems of accessing and interacting with applications and resources on remote server
using thin client. We choose VNC, because it is a state-of-the-art product, where a lot
of attention was paid to the efficiency of communication. Furthermore it was already
successfully used in rendering clusters [14].

The first factor of comparison was general sensation of interaction with model and
its responsibility. After short tests we stated that impressions using progressive mesh
format with JavaScript inside web-browser are similar to the VNC server rendering.
Both solution provide natural and smooth interaction for the user.

To precisely analyse network communication whole traffic was captures. The plot
in Fig. 8 clearly show difference between the methods. There is one solid line for client
renderer and three lines for server side rendering. As we can see after approximately
15 s, progressive mesh algorithm has loaded the mesh, so after that time no transmission
is visible. In the case of VNC with no interaction, only one peak at the beginning of
the test can be realised (the first, full image has to be loaded). After that, only the
minimal traffic is observable. Normal, active session using server side VNC system
shows that transmission rate never will be zero, and depends on size of the viewing
window and type of interaction. It is shown that compression can significantly reduce
bandwidth utilization.

The main purpose of this test was to compare how much data is sent between client
and server during different algorithms. Since it is natural that amount of transferred

123



S670 B. Sawicki, B. Chaber

Fig. 9 Total network transmission after 25 s inspection of 9,000 facets model. Comparison for server side
rendering based on VNC protocol, and client side rendering implemented in web3dviewer

data strictly depends on the size of the model and the time of measurements, we
decided to present values for 25 and 60 s. Investigations had been conducted using 3D
surface model of the hinge consisting of over 9,000 faces (base mesh for progressive
model had only 76 elements).

The bar graph presented in Fig. 9 visualizes total accumulated network usage. Since
complete loading of progressive mesh takes 15 s, client renderer bars are equal for
25 and 60 s. Far less preferred situation can be seen on server renderer bars, where
network usage is nearly linear function of time.

It is not possible to identify the clear winner in this comparison. If navigation was
short and lazy, server side renderer would need less data. But once it takes more time
and will be more intensive, client renderer will show its superiority. With increase
of interaction with the object, cost of image-based transmission becomes far more
significant then when using progressive mesh transmission. It has to be noted, that we
have compared VNC technology which is binary protocol with compression features,
with simple plain-text JSON-based progressive mesh transmission implemented in
web3dviewer. Further works should consider using techniques of compressed pro-
gressive meshes [8,13], as one the possible ways to cut down the size of transmission.

6 Conference experiment

The system was publicly presented on conference ESCO 2012, which took place in
Pilzen, Czech Republic on June 25–29, 2012. During the poster session participants
were attracted by a large QR-Code (see Fig. 10) to take out their mobile devices and
scan it. Then they were redirected to the internet address, where web3dviewer was
demonstrated.

Users were encouraged to verify usability of presented software, test performance
of their devices, and share result with others. This way authors were able to collect
results for 15 different mobile devices (see Table 2).

123



Efficient visualization of 3D models by web browser S671

Fig. 10 Real life usability tests in the front of the poster (on the left QR-Code visible)

Table 2 Results captured
during ESCO 2012 conference
poster session

Participants were encourage to
test performance of their mobile
devices. The result is a number
of facets in which
frames-per-second ratio drops
below 20

Class Device Browser Result

Smartphone Motorola Defy Android 96
HTC Sensation Android 218
iPhone 4 Safari 136
HTC Desire Opera fail
HTC Wildfire Dolphin 96
Nokia 5800XM Opera 76
Samsung Nexus Android 156
HTC One V Android 136
HTC Desire Maxthon 136

Netbook/Tablet Samsung Galaxy Tablet Android 296
MSI Wind270 Firefox 600
Apple iPad 1 Safari 136

Laptop HP Ellitebook Firefox 2,500
ThinkPad X201 Opera 3,256
Dell Vostro V131 Chromium 3,576

The experiment was constructed in such way that basic mesh loaded at the beginning
was very simple (76 facets). Then model where iteratively refined until device can’t
handle animation with 20 frames per second. Final number of loaded facets were
recorded as a result.

The main aim of the experiment was to verify developed software on real life
situation, with random variety of devices and different user skills. Majority of the group
has never used their mobile devices to visualize 3D models, but using web3dviewer
were immediately able to inspect provided mesh. This proves that developed software
is accessible and usable even for incidental, unprepared users.

We observe only one case where Opera browser failed after loading our component.
It could be related with errors in particular device configuration, since Opera browsers
performed correctly in other cases.

Results presented in Table 2 shows that mobile devices can be grouped into three
classes: smartphones, tablets and laptops. Smartphones where able to render less than
200 facets, laptops more than 2,000, results for netbooks/tablets are between those
values. That way, using randomly selected devices, we confirm predictions formulated

123



S672 B. Sawicki, B. Chaber

in previous works [16], that 200 facets is reasonable size of base mesh, which could
be acceptably displayed by virtually any device.

7 Summary

The article presented web component based on modern HTML 5 technologies. The
main objective was to create solution for efficient visualization of 3D models with high
usability and portability. It was achieved by developing open-source JavaScript appli-
cation called web3dviewer [20]. An advantage of progressive meshes streaming and
modern multi-touch interfaces have been taken. System automatically fits complexity
of the model with capabilities of displaying device.

Usability of the system and its performance in real life situation was positively veri-
fied by participants of ESCO 2012 conference. Results obtained from randomly chosen
mobile devices allowed to calibrate optimal size of the base mesh for the progressive
mesh algorithm. In addition, it was shown that the network usage of proposed architec-
ture is significantly lower than systems based on server side rendering. System proved
to be efficient and convenient way for visualization of 3D models in the web browser
environment. The main disadvantage is related with additional computational effort
which has to be taken on the server side to prepare mesh before displaying. One can
understand it as shifting complexity to the server, to save client power and network
usage.

Future work should cover expanding features of the system by introducing different
types of the 3D models, like scalar and vector fields or stream lines. The popularity of
WebGL technology should be attentively observed, since it would require to update
system settings.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Cheng W, Ooi WT, Mondet S, Grigoras R, Morin G (2011) Modeling progressive mesh streaming:
does data dependency matter? ACM Trans Multimed Comput Commun Appl 7(2):1–24

2. Chris Hand (1997) A survey of 3D interaction techniques. Comput Graph Forum 16(5):269–281
3. Hoppe H (1996) Progressive meshes. ACM SIGGRAPH 1996 Proceedings, pp 99–108
4. Hoppe H (1998) Efficient implementation of progressive meshes. Comput Graph 22(1):27–36
5. Fiorella D, Sanna A, Lamberti F (2010) Multi-touch user interface evaluation for 3D object manipu-

lation on mobile devices. J Multimodal User Interfaces 4:310
6. Fitzmaurice G, Matejka J, Mordatch I, Khan A, Kurtenbach G (2008) Safe 3D navigation. I3D ’08,

Proceedings of the 2008 symposium on Interactive 3D graphics and games
7. Lamberti F, Sanna A (2007) A streaming-based solution for remote visualization of 3D graphics on

mobile devices. IEEE Trans Vis Comput Graph 13(2):247–260
8. Lavou G, Dupont F (2012) Plateforme web pour le streaming de donnes 3D compresses. Proceedings

of VISU 2012, Paris
9. Xinguo L, Hujun B, Qunsheng P, PhengAnn H, TienTsin W, Hanqiu S (2000) Progressive geome-

try compression for meshes. Proceedings of the 8th Pacific Conference on Computer Graphics and
Applications, pp 408

123



Efficient visualization of 3D models by web browser S673

10. Ling Y, Kong D, Jiang Z (2010) An improved progressive mesh model for mobile. Computer science
and information technology (ICCSIT), 2010 3rd IEEE International Conference on Devices, vol 6,
pp 69–73

11. Ma J, Chen B, Chen Q, Gong Y (2011) A strategy for generating progressive meshes and its transmis-
sion. J Inf Comput Sci 8(2):370–376

12. Nurminen A (2007) Mobile, hardware-accelerated urban 3D maps in 3G networks. Proceedings of the
12th international conference on 3D web technology, pp 7–16

13. Renato Pajarola, Jarek Rossignac (2000) Compressed progressive meshes. IEEE Trans Vis Comput
Graph 6(1):79–93

14. Paul B, Ahern S, Wes BE, Brugger E, Cook R, Daniel J, Lewis K, Owen J, Southard D (2008)
Chromium renderserver: scalable and open remote rendering infrastructure. IEEE Trans Vis Comput
Graph 14(3):627–639

15. Pasman W, Jansen FW (2003) Comparing simplification and image-based techniques for 3D client-
server rendering systems. IEEE Trans Vis Comput Graph 9(2):226–240

16. Sawicki B, Chaber B (2012) 3D mesh viewer using HTML5 technology. Przeglad Elektrotechniczny
(Electrical Review), ISSN 0033–2097, R. 88 NR 5a/2012, pp 155–158

17. Sawicki Bartosz, Chaber Bartosz, Starzynski Jacek, Szmurlo Robert (2012) Internet application con-
cept to trivialize EMF biomedical computing. COMPEL: Int J Comput Math Electr Electron Eng
31(4):1190–1197

18. Ricardo C (2012) (mrdoob), three.js 3D JavaScript library. http://github.com/mrdoob/three.js
19. Xun W, Bai-Lin Y (2012) 3D models simplification algorithm for mobile devices. J Softw 7(11)
20. web3dviewer (2012) 3D viewer using HTML5 technology. http://code.google.com/p/web3dviewer/
21. Richardson T, Stafford-Fraser Q, Wood KR, Hopper A (1998) Virtual network computing. IEEE

Internet Comput 2(1):33–38

123

http://github.com/mrdoob/three.js
http://code.google.com/p/web3dviewer/

	Efficient visualization of 3D models by web browser
	Abstract
	1 Introduction
	2 General overview of the application
	3 User interaction in 3D
	4 Mesh streaming
	5 Network usage tests
	6 Conference experiment
	7 Summary
	References


