Computing (2013) 95:165-166
DOI 10.1007/s00607-012-0238-4

Editorial

Radu Calinescu - Robert France - Carlo Ghezzi

Published online: 18 November 2012
© Springer-Verlag Wien 2012

Modern software systems are often complex, inevitably distributed, and operate in
heterogeneous and highly dynamic environments. Examples of such systems include
those from the service-oriented, cloud computing, and pervasive computing domains.
In these domains, continuous change is the norm. Changes may occur in the require-
ments or in the environment in which the software is embedded. They are difficult to
predict and are often outside the control of the application. Furthermore, their occur-
rence may be disruptive, and therefore the software must also change accordingly. In
many cases, the software is required to self-react by adapting its behavior dynami-
cally, in order to ensure required levels of service quality in changing environments.
In summary, these systems are required to be adaptable, flexible, reconfigurable and,
increasingly, self-managing.

It has been recognized that in order to support dynamic adaptation and self-* (auto-
nomic) behaviors, appropriate mechanisms should be available for runtime monitoring
and on-line validation. Although significant research has been invested and matured in
the area of model-driven software development, more recent research has focused on
extending the applicability of model-driven techniques to the monitoring and analysis
of run-time behavior. Research in this area aims to provide sound foundations that
support dynamic adaptation and self-* behaviors.

R. Calinescu ()
University of York, York, North Yorkshire, UK
e-mail: radu.calinescu@york.ac.uk

R. France
Colorado State University, Fort Collins, USA
e-mail: france @cs.colostate.edu

C. Ghezzi
Politecnico di Milano, Milano, Italy
e-mail: carlo.ghezzi@polimi.it

@ Springer



166 R. Calinescu et al.

This special issue of Springer’s Computing contains three papers that reflect the
state-of-the-art research on the use of models at runtime. In the paper titled “The Role
of Models @run.time in Supporting On-the-Fly Interoperability”, the authors, N. Ben-
como, A. Bennaceur, P. Grace, G. Blair, and V. Issarny, discuss how models at runtime
can be used to realize a new form of middleware, called emergent middleware, that
resolves interoperability problems that arise in distributed systems. Runtime models
are used to capture relevant information about the networked systems that need to
interoperate. These models are then used to synthesize software mediators. The work
in this paper is novel in that it describes how runtime models can be used to generate
new software artefacts at runtime.

The paper titled “Detecting Component Changes at Run Time with Behavior Mod-
els”, by Andrea Mocci and Mario Sangiorgio, describes an approach to inferring
models of component behavior from runtime behaviors. These models are then used
to detect changes in a component behavior. The approach provides a solution to the
problem of detecting changes to component behaviors when there are no formal spec-
ifications against which runtime behaviors can be checked; such specifications are
needed to support automatic change detection. The approach is applied to a real-world
communication protocol.

The paper titled “Monitoring and Recovery for Web Service Applications”, by
Jocelyn Simmonds, Shoham Ben-David, and Marsha Chechik, describes a model-
based approach to monitoring the runtime behavior of web services. The runtime
models are finite state automata that specify forbidden and desired interactions between
services. Execution traces expressed in BPEL are checked again the model at runtime
to detect divergent behavior. When violations are detected the system synthesizes
and presents proposed plans for resolving the violations. The generated plans are
guaranteed to be correct.

These papers present novel, diverse, and interesting uses of models at runtime. We
hope you enjoy reading these articles, and that they inspire you to further explore this
very promising research area.

@ Springer



	Editorial

