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Abstract Realistic mathematical models of physical processes contain uncertain-
ties. These models are often described by stochastic differential equations (SDEs) or
stochastic partial differential equations (SPDEs) with multiplicative noise. The uncer-
tainties in the right-hand side or the coefficients are represented as random fields. To
solve a given SPDE numerically one has to discretise the deterministic operator as
well as the stochastic fields. The total dimension of the SPDE is the product of the
dimensions of the deterministic part and the stochastic part. To approximate random
fields with as few random variables as possible, but still retaining the essential infor-
mation, the Karhunen–Loève expansion (KLE) becomes important. The KLE of a
random field requires the solution of a large eigenvalue problem. Usually it is solved
by a Krylov subspace method with a sparse matrix approximation. We demonstrate the
use of sparse hierarchical matrix techniques for this. A log-linear computational cost
of the matrix-vector product and a log-linear storage requirement yield an efficient
and fast discretisation of the random fields presented.
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1 Introduction

During the last few years there is a great interest in numerical methods for solving
stochastic PDEs and ODEs [2,3,10,25,35,37–39]. Examples are stochastic Navier–
Stokes equations, stochastic plasticity equations and stochastic aerodynamic
equations. Very often these equations contain parameters, right-hand sides, initial or
boundary conditions which have a stochastic nature. Typical examples are conductivity
coefficients in groundwater flow problems, plasticity of the material and parameters
in turbulence modelling. To solve the problem, the given stochastic differential or
integral equation has to be discretised. For the discretisation of the deterministic part
one can use any known technique (finite element, finite differences or finite volumes).
For the discretisation of random fields the Karhunen–Loève expansion (KLE) [28] is
usually used. Another important application of the KLE is the direct computation of
higher order moments of the solution without computing the solution per se [29,36].

Each random field is characterised by its covariance function. To discretise this
random field one has to solve an eigenproblem for a Fredholm integral operator with
the covariance function as the kernel. In a straight-forward discretisations, the matrix
is dense and hence the computational cost is O(n3) FLOPS, where n is the number
of degrees of freedom (dof) in the computational domain. For special cases, when the
covariance function is stationary (i.e. cov(x, y) = cov(x − y)) and the computational
domain is an axiparallel rectangle with uniform and axiparallel triangulation the Fast
Fourier technique [12] can be applied with the computational cost O(n log n). In [23]
the authors introduced the so-called Hierarchical Kronecker Tensor (HKT) format
for sparse approximation of integral operators. The matrix-vector product in the HKT
format can be done in O(dn1/d log n) FLOPS, where d is the dimension of the domain.
For more general cases of the covariance matrix, for a non-rectangular domain or for
a non-axiparallel triangulation, the FFT is not applicable and a data sparse technique
should be applied (e.g., the H-matrix technique [17,18,20,21]).

In [37], the authors compute the KLE by the Fast Multipole method with an iterative
Krylov eigensolver. In [10] a brief overview of how boundary value problems with
random data may be solved using the stochastic FEM is described. In the same paper
the authors apply H-matrices and the Lanczos-based thick-restart method [42] for
computing the KLE of random fields.

In the current paper, we consider the application of the H-matrix method in a
systematic way. The rest of this paper is structured as follows. In Sect. 2, we set up
the problem and recall the Karhunen–Loève expansion. The H-matrix technique is
presented in Sect. 3. In particular, we prove the asymptotic smoothness of the arising
covariance functions. The H-matrix approximation of covariance functions is shown
in Sect. 4. Finally, in Sect. 5, we provide numerical results for solving an eigenproblem
with predefined H-matrix-vector product.

2 Background

Nowadays the trend of numerical mathematics is often trying to resolve inexact mathe-
matical models by very exact deterministic numerical methods. The reason is that
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almost each mathematical model contains uncertainties in the coefficients, right-hand
side, boundary conditions, initial data as well as in the geometry. Such type of uncer-
tainties can be modelled by random fields. In [2,3,25,29,35,37,39], the authors consi-
der the following stochastic elliptic boundary value problem

− div(κ(x, ω)∇u) = f (x, ω) in G ×�, G ⊂ R
d ,

(1)
u = g(x, ω) on ∂G ×�,

where the conductivity coefficient κ(x, ω), the right-hand side f (x, ω), the boundary
data g(x, ω) and the solution u(x, ω) are random fields. The computational domain G
is a bounded domain, x ∈ G and ω belongs to the space of random events �.

To guarantee the positive definiteness and regularity of the operator in (1) it is
assumed that

0 < κmin ≤ κ(x, ω) ≤ κmax < ∞, a.e. on G ×�.

We assume that there is a triplet (�,�,P), where � is a set of random elementary
events, � is the σ -algebra of Borel subsets of � and P a probability measure. We
assume also that the random fields κ(·, ω) : � → L∞(G), f (·, ω) : � → L2(G) and
g(·, ω) : � → L2(∂G) have finite variance.

Let us as an example consider the random field κ(x, ω). The mean value κ(x, ω)
and the covariance function covκ(x, y), x , y ∈ R

d , should be provided. By definition,
the covariance function is symmetric and positive semi-definite. One can classify all
covariance functions into the three following groups:

1. Directionally independent (isotropic) and translation invariant (stationary or
homogeneous), i.e. cov(x, y) = cov(|x − y|).

2. Directionally dependent (anisotropic) and stationary or homogeneous, i.e.
cov(x, y) = cov(x − y).

3. Instationary and non-homogeneous, i.e. of a general type.

The covariance functions of types (1) and (2), discretised on an axiparallel rectangular
grid, result in (block) Toeplitz matrices. These matrices can be further extended to
(block) circulant ones. The matrix vector multiplication in the class of (block) circulant
matrices can be performed by the Fast Fourier Transformation (FFT) very efficiently.
In the case of a general grid as well as in the third case, the discretised covariance
matrix is not a Toeplitz one and the FT cannot be applied. Thus, we need a general
data sparse format to store covariance matrices.

For the numerical solution of (1), the presented random fields need to be discretised
both in the stochastic and in the spatial dimension. One of the main tools here is the
Karhunen–Loève expansion (KLE) [28]. Thus, an effective and “sparse” computation
of the KLE is a key point in solving Eq. (1) [31]. Let us define the following operator
T which will be needed for computing the KLE of κ(x, ω):

T : L2(G) → L2(G), (Tφ)(x) :=
∫

G
covκ(x, y)φ(y)dy.
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For covκ ∈ L2(G ×G), the operator T is compact and selfadjoint [40], in fact Hilbert–
Schmidt. As the covariance function covκ is symmetric positive semi-definite, hence
so is T . Thus, the eigenfunctions φ� of the following Fredholm integral equation of
the second kind

Tφ� = λ�φ�, φ� ∈ L2(G), � ∈ N, (2)

are mutually orthogonal and define a basis of L2(G) (for more details see [19,33]). The
eigenvalues λ� are real, non-negative and can be arranged decreasingly λ1 ≥ λ2 ≥
· · · ≥ 0 [33]. From Mercer’s theorem [33,40], it follows that for a continuous covκ
the eigenfunctions are continuous and the convergence of

covκm (x, y) =
m−1∑
�=0

λ�φ�(x)φ�(y)

as m → ∞ to the exact covariance function covκ is absolute and uniform on G × G
[33]. The convergence rates can be estimated through the smoothness of the covariance
function [37].

By definition, the KLE of κ(x, ω) is the following series

κ(x, ω) = µκ(x)+
∞∑
�=1

√
λ�φ�(x)ξ�(ω), where

µκ(x) = Eκ(x), ξ�(ω) = 1√
λ�

∫

G
(κ(x, ω)− µκ(x))φ�(x)dx, (3)

Eκ(x) is the mean value of κ(x, ω), λ� and φ� are the eigenvalues and the eigenvectors
of problem (2) and ξ�(ω) uncorrelated random variables. For numerical purposes
one truncates the KLE (3) to a finite number m of terms. In the case of a Gaussian
random field, the ξ� are independent standard normal random variables. In the case of
a non-Gaussian random field, the ξ� are uncorrelated but not independent, and can be
approximated in a set of new independent Gaussian random variables [24,41], e.g.

ξ�(ω) =
∑
α∈J

κ(α)Hα(θ(ω)),

where θ(ω) = (θ1(ω), θ2(ω), . . .), κ(α) are coefficients, Hα , α ∈ J , is a Hermitian
basis and J := {α|α = (α1, . . . , α j , . . .), α j ∈ N0} a multi-index set. For the purpose
of actual computation, truncate the polynomial chaos expansion (PCE) [24,41] after
finitely many terms, e.g.

α ∈ JM,p := {α ∈ J | γ (α) ≤ M, |α| ≤ p}, γ (α) := max{j ∈ N |αj > 0}.

In [33] it is shown that the m-term KL truncation is best in Hilbert–Schmidt norm.
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As soon as the m-term KLE of the conductivity κ(x, ω) is computed and the random
variables ξ�(ω) ∈ R

|J | are discretised [2,11,25], one can obtain, after applying the
stochastic Galerkin approximation method [30] and truncated PCE, the following
equation

Ku =
⎡
⎣m−1∑
�=0

∑
γ∈JM,p

∆(γ ) ⊗ K�

⎤
⎦ u = f, (4)

where ∆(γ ) are some discrete operators which come from the Hermitian algebra and
can be computed analytically [25,29,30]. The sparsity pattern of ∆(γ ) depends on how
many terms were used in the PCE. Note that the matrices K� ∈ R

n×n allow for data
sparse approximations, in particular the hierarchical (H) matrix approximation. Note
that the iterative solvers, used for the solution of (4), do not require that the matrices
K� are stored explicitly.

Now one can see that the accuracy of the discretisation of (1) depends on the
convergence rate of κm(x, ω) with respect to m → ∞. Thus, cheap and accurate
computing of the KLE approximation of the given random fields is required. Further,
in this paper, we combine the H-matrix data representation together with Krylov
solvers for the efficient computation of the m-term KLEs of the given random fields
and the solution.

2.1 FE discretisation of Eq. (2)

Further in the paper, we will use the bold font for defining discretised objects, e.g.
u ∈ R

n or C ∈ R
n×n .

In general, the eigenvalue problem (2) needs to be solved numerically and standard
techniques [1,19,32] may be used for this. We consider the following Galerkin discre-
tisation of the operator in (2). Let I = {1, . . . , n}. Assume that b1,…,bn are the nodal
basis functions with respect to the nodes x1, . . . , xn ∈ G ⊂ R

d , i.e. bi (x j ) = δi j ,
i, j ∈ I . Let Vh = span{b1, . . . , bn} and for the stochastic variables we introduce
ζ = (ζ1, . . . , ζn)

T , ζi (ω) := κ(xi , ω), i ∈ I .
The interpolation of κ(x, ω) in the FE basis above is then

κh(x, ω) =
n∑

i=1

bi (x)ζi (ω) = b(x)ζ (ω), b(x) = (b1(x), . . . , bn(x)).

The covariance function of κh is

covκh (x, y) =
n∑

i=1

n∑
j=1

bi (x)Ci j b j (y) = b(x)Cb(y)T , with Ci j = covκ(xi , y j ).

(5)

Note that this discretisation may use a different grid than the discretisation of the
spatial part in (1). Applying (5) and
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φ�(y) =
n∑

j=1

b j (y)φ j� = b(y)φ�, φ� := (φ1�, . . . , φn�)
T

to the eigenvalue problem

∫

G
covκ(x, y)φ�(y)dy = λ�φ�(x), (6)

we obtain
∫

G
b(x)Cb(y)T b(y)φ�dy = λ�b(x)φ�.

The weak formulation (Galerkin weighting) gives

∫

G

∫

G
b(x)T b(x)Cb(y)T b(y)φ�dydx =

∫

G
λ�b(x)

T b(x)φ�dx,

or

Wφ� = λ�Mφ�,

where the matrix W and mass matrix M are defined as follows

Wi j :=
∑
k,ν

∫

G

∫

G
bi (x)bk(x)Ckνb j (y)bν(y)dxdy, G ⊂ R

d , k, ν ∈ I,

Mi j =
∫

G
bi (x)b j (x)dx, i, j ∈ I.

Recall that the matrix W is symmetric positive semi-definite and dense. The mass
matrix M is symmetric positive definite and may be sparse. Now, the discrete eigen-
value problem looks like

Wφ� = λh
�Mφ�, W = MCM , Ci j = covκ(xi , y j ). (7)

Here the matrix M is stored in the usual data sparse format and the matrix C is
approximated in the H-matrix format (see Sect. 3). If not the complete spectrum is of
interest, but only a part of it then the needed computational resources can be drastically
reduced [4]. To compute m eigenvalues (m 
 n) and corresponding eigenvectors we
apply an iterative Krylov subspace (Lanczos) eigenvalue solver for symmetric matrices
[4,26,27,34,42]. This eigensolver requires only matrix-vector multiplications. All
matrix-vector multiplications are performed in the H-matrix format which will cost
O(n log n). Note that to solve the symmetric problem (7) often a third party eigensolver
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requires the user to define the matrix-vector products w = M−1W v and w = Mv.
The same problem can be written in the form

CMφi = λiφi , (8)

where the product CM is selfadjoint with respect to the new scalar product
(φi ,φ j )M = (Mφi ,φ j ).

3 H-Matrix technique

Usually the mass matrix M is stored in a sparse matrix format, which requires linear
complexity. The covariance matrix C is not sparse and, in general, requires O(n2) units
of memory for the storage and O(n2) FLOPS for the matrix-vector multiplication. In
this section it will be shown how to approximate general covariance matrices with the
H-matrix format [17,18,20,22]. The H-matrix technique is nothing but a hierarchical
division of a given matrix into subblocks and further approximation of the majority of
them by low-rank matrices (Fig. 2). To define which subblocks can be approximated
well by low-rank matrices and which not, a so-called admissibility condition is used.
When decomposition into subblocks is done an important question is, how to compute
the low-rank approximations. For this purpose we offer to use the ACA algorithm
[5,7–9,15] which does the job with a linear complexity.

3.1 Admissibility conditions

Originally the H-matrix technique was developed for the approximation of stiffness
matrices coming from partial differential and integral equations [9,17,20]. Typical
kernels of integral equations are the following Green functions:

χ(x, y) := 1

|x − y|d−2 , x, y ∈ R
d , d ≥ 3 or χ(x, y) := log |x − y|, x, y ∈ R

2,

(9)

with singularities at x = y. The idea behind H-matrices is to approximate blocks
far from diagonal (far from the singularity) by low-rank matrices. The admissibility
condition (criteria) is used to divide a given matrix into subblocks and define which
subblocks can be approximated well by low-rank matrices and which not. Let us
explain how to obtain an admissibility condition for the functions in (9).

Let I be an index set of all degrees of freedom. Denote for each index i ∈ I
corresponding to a basis function bi the support Gi := supp bi ⊂ R

d . Now we define
two trees which are necessary for the definition of hierarchical matrices. These trees
are labeled trees where the label of a vertex t is denoted by t̂ .

Definition 3.1 (Cluster Tree TI×I )[17,20] A finite tree TI is a cluster tree over the
index set I if the following conditions hold:

• I is the root of TI and a subset t̂ ⊆ I holds for all t ∈ TI .

123



56 B. N. Khoromskij et al.

• If t ∈ TI is not a leaf, then the set of sons sons(t) contains disjoint subsets of I
and the subset t̂ is the disjoint union of its sons, t̂ = ⋃

s∈sons(t) ŝ.

• If t ∈ TI is a leaf, then |t̂ | ≤ nmin for a fixed number nmin .

Definition 3.2 (Block Cluster Tree TI×I )[17,20] Let TI be a cluster tree over the
index set I . A finite tree TI×I is a block cluster tree based on TI if the following
conditions hold:

• root(TI×I ) = I × I .
• Each vertex b of TI×I has the form b = (τ, σ ) with clusters τ, σ ∈ TI .
• For each vertex (τ, σ ) with sons(τ, σ ) �= ∅, we have

sons(τ, σ )=

⎧⎪⎨
⎪⎩
(τ, σ

′
) : σ ′ ∈ sons(σ ), if sons(τ )=∅ ∧ sons(σ ) �=∅

(τ
′
, σ ) : τ ′ ∈ sons(τ ), if sons(τ ) �=∅ ∧ sons(σ )=∅

(τ ′, σ ′
) : τ ′ ∈ sons(τ ), σ

′ ∈ sons(σ ), otherwise

• The label of a vertex (τ, σ ) is given by (̂τ, σ ) = τ̂ × σ̂ ⊆ I × I .

We can see that ̂root(TI×I ) = I × I . This implies that the set of leaves of TI×I is a
partition of I × I .

We generalise Gi to clusters τ ∈ TI by setting Gτ := ⋃
i∈τ Gi , i.e., Gτ is the minimal

subset of R
d that contains the supports of all basis functions bi with i ∈ τ .

Suppose that Gτ ⊂ R
d and Gσ ⊂ R

d are compact and χ(x, y) is defined for
(x, y) ∈ Gτ × Gσ with x �= y. The standard assumption on the kernel function in the
H-matrix theory is asymptotic smoothness of χ(x, y) ∈ C∞(Gτ × Gσ ), i.e, that

|∂αx ∂βy χ(x, y)| ≤ C1|α + β|!C |α+β|
0 ‖x − y‖−|α+β|−γ , α, β ∈ N,

holds for constants C1, C0 and γ ∈ R. This estimation is used to control the error εq

from the Taylor expansion

χ(x, y) =
∑

α∈N
d
0 ,|α|≤q

(x − x0)
α 1

α!∂
α
x χ(x0, y)+ εq .

Let S be an integral operator with an asymptotically smooth kernel χ in the domain
Gτ × Gσ :

(Sv)(x) =
∫

Gσ
χ(x, y)v(y)dy, x ∈ Gτ .

Suppose that χk(x, y) is an approximation of χ in Gτ × Gσ of the separate form (e.g.,
Taylor or Lagrange polynomials):

χk(x, y) =
k∑
ν=1

ϕν(x)ψν(y), (10)
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where k is the rank of separation. We are aiming at an approximation of the form (10)
such that exponential convergence

‖χ − χk‖∞,Gτ×Gσ ≤ O(ηk) (11)

holds. For this purpose we introduce the following admissibility condition.

Definition 3.3 The standard admissibility condition (Admη) for two domains Bτ and
Bσ (which actually correspond to two clusters τ and σ ) is defined as follows

min{diam(Bτ ), diam(Bσ )} ≤ ηdist(Bτ , Bσ ), (12)

where Bτ , Bσ ⊂ R
d are axis-parallel bounding boxes of the clusters τ and σ such

that Gτ ⊂ Bτ and Gσ ⊂ Bσ .

Lemma 3.1 The function χ(x, y) = e−|x−y| converges exponentially, i.e. ∃η such
that for χk(x, y) from (10) holds

‖χ(x, y)− χk(x, y)‖ ≤ O(ηk). (13)

Proof Let x , y ∈ G := [0, 1], x ∈ τ := [a, b], 0 ≤ a < b ≤ 1, and y ∈ σ := [c, d],
b ≤ c < d ≤ 1. After introduction of the new variable t := x − y, we obtain χ(t) :=
e−t with t ∈ [c − b, d − a]. The Taylor series of χ(t) in point t0 := (c−b)+(d−a)

2 is

χ(t) = e−t0

⎛
⎝1 +

∞∑
j=1

(−1) j

j ! (t − t0)
j

⎞
⎠

= e−t0

⎛
⎝1 +

k∑
j=1

(−1) j

j ! (t − t0)
j + (−1)k+1

(k + 1)! (t̃ − t0)
k+1

⎞
⎠ ,

where t̃ ∈ [c − b, d − a]. Let ε := e−t0 (−1)k+1

(k+1)! (t̃ − t0)k+1, L1 := c − b, L2 := d − a
then

|ε| ≤ e−t0 (L2 − L1)
k+1

(k + 1)! ≤ e−t0 · (L2 − L1)
L2−L1

(L2 − L1)!
(L2 − L1)

k+1−(L2−L1)

(L2 − L1 + 1) · · · · · (k + 1)

≤ C · ηk+1−(L2−L1),

where C := e−t0 (L2−L1)
L2−L1

(L2−L1)! and η := L2−L1
L2−L1+1 < 1. ��

We will say that a pair (τ, σ ) of clusters τ and σ ∈ TI is admissible if the condi-
tion (12) is satisfied. The admissibility condition indicates blocks which allow rank-k
approximation and which not (see Fig. 2). The blocks for which condition (12) is true
(called admissible blocks) are approximated by rank-k matrices. All other blocks are
computed as usual.
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In order to get a simpler partitioning (see an example in Fig. 2, right), we define
the weaker admissibility condition AdmW for a pair (τ, σ ):

Block b = τ × σ ∈ TI×I is weak admissible ⇔ ((b is a leaf) or σ �= τ), (14)

where τ , σ are assumed to belong to the same level of TI×I .
The covariance functions which are considered in this paper (see Sect. 4) do not

have singularities like in (9) and this is why more appropriate admissibility conditions
are required. Different types of covariance functions require different admissibility
conditions. The development of new admissibility condition is not an easy task and it
is out of frame of this paper.

Let us consider properties of functions depending on (x−y), i.e.χ(x, y) = s(x−y).
If x ∈ Bx and y ∈ By then r := x − y belongs to

Br := {x − y : x ∈ Bx , y ∈ By}.

Lemma 3.2 [21, Proposition 4.1.2] Any polynomial P(x, y) can be represented in
the form:

P(x, y) =
k1∑
ν=0

pν(x)y
ν or P(x, y) =

k2∑
µ=0

xµqµ(y),

where k1 (k2) is the polynomial degree in x (y) and pν and qµ are polynomials in one
variable.

If the function f (·) is approximated in Br by a polynomial P(r) (Taylor series,
Lagrange polynomial, etc.), i.e. f (r) ≈ P(r) then the variables x and y have the
same degree k = k1 = k2 in P(r). Applying the previous lemma, we obtain a sepa-
rable k-term approximation of f (x − y).

In [21, Sect. E.2] the author explains how to transfer the asymptotical smooth-
ness of the function f (t) to the asymptotical smoothness of the function F(x, y) :=
f (|x − y|). Let f be defined on G0 ⊂ R and G0 ⊃ (−d f , d f ), d f > 0.

Definition 3.4 [21, Sect. E.2] f is asymptotically smooth if

∣∣∣∣
(

d

dt

)ν
f (t)

∣∣∣∣ ≤ C0|t |−ν−s for t ∈ G0, ν ∈ N, s ∈ R and a constant C0 = C0(ν).

(15)

For t := |x − y|, x, y ∈ R
d we obtain the function

F(x, y) := f (|x − y|). (16)

Let us denote the directional derivative by Dυ := ∑d
i=1 υi

∂
∂xi

, where υ ∈ R
d .
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Proposition 3.1 [21, Sect. E.2] If the function f is asymptotically smooth in sense
of (15), then F(x, y) from (16) is also asymptotically smooth, i.e. for all directional
derivatives D we have

|Dk F(x, y)| ≤ k!C0|x − y|−k−s (0 �= |x − y| < d f ), C0 > 0.

Lemma 3.3 The function F(x, y) = F(r) = e−|r | is asymptotically smooth.

Proof Apply Proposition (3.1) to the asymptotical smooth function f (t) := e−t . ��

Remark 3.1 For most of the covariance functions considered in our applications the
asymptotic smoothness can be verified.

3.2 Rank-k adaptive cross approximation

Let R ∈ R
p×q and

R = ABT , where A ∈ R
p×k, B ∈ R

q×k, k ∈ N. (17)

Note that any matrix of rank k can be represented in the form (17).
Suppose that b is a block of the matrix W and R := W |b. Suppose it is known

that R may be approximated by a rank-k matrix. We explain below how to compute
R in the form (17). One possibility is the Adaptive Cross Approximation (ACA)
algorithm [5,7–9,15]. ACA is especially effective for assembling low-rank matrices.
It requires only k columns and k rows of the matrix under consideration and, thus, has
the computational cost k(p + q). In [15], it is proved that if there exists a sufficiently
good low-rank approximation, then there also exists a cross approximation with almost
the same accuracy in the sense of the 2-norm.

The ACA algorithm computes vectors a� and b� which form R̃ = ∑k
�=1 a�bT

� such
that ‖R − R̃‖ ≤ ε, where ε is the desired accuracy [7,9]. In [8], the reader can also
find different counterexamples when the standard ACA algorithm does not work. Here
we present the standard version of the ACA algorithm.

Algorithm 3.1 ACA algorithm
begin
/∗ input is a required accuracy ε and a function to compute Ri j ∗/;
/∗ output is matrix R̃ ∗/;
k = 0; R̃ = 0;
S = ∅; T = ∅; /∗ sets of row and column indices ∗/
do

Take a row i∗ /∈ S;
Subtract Ri∗ j := Ri∗ j − R̃i∗ j , j = 1..q;
Find max j |ai∗ j | �= 0, j < q. Suppose it lies in column j∗;
Compute all elements bi j∗ in column j∗, i < p;
Subtract Ri j∗ := Ri j∗ − R̃i j∗ , i = 1..p;
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k := k + 1; S := S ∪ {i∗}; T := T ∪ { j∗};
Compute R̃ = R̃ + ai∗ · bT

j∗ ; /∗ it is rank k approximation∗/
if(‖ai∗ · bT

j∗‖2 ≤ ε · ‖a1 · bT
1 ‖2) return R̃;

Find maxi |bi j∗ |, i < p, i �= i∗. The row where it lies is a new row i∗;
until(k < kmax)
return R̃;

end;

Note that the algorithm does not compute the whole matrix R. The subtraction
is done only from the elements under consideration, i.e. row a� and column b�,
� = 1, . . . , k.

Remark 3.2 Further optimisation of the ACA algorithm can be done by the truncated
SVD. Suppose that a factorisation of matrix R = ABT , A ∈ R

p×K , B ∈ R
q×K , is

found by ACA. Suppose also that the rank of R is k, k < K . Then one can apply the
truncated SVD algorithm to compute R = U�V T requiring O((p + q)K 2 + K 3)

FLOPS.

3.3 H-Matrices

Definition 3.5 [20] Let I be an index set and TI×I be a hierarchical division of
the index set product I × I into subblocks (so-called block cluster tree). The set of
H-matrices is defined as

H(TI×I , k) := {W ∈ R
I×I | rank(W |b) ≤ k for all admissible blocks b of TI×I }.

Here, W |b = (wi j )(i, j)∈b denotes the matrix block of W = (wi j )i, j∈I corresponding
to b ∈ TI×I .

We denote an H-matrix approximation of W by W̃ .

Finally, we list computational complexities of basic algebraic operations with
H-matrices.

Theorem 3.1 [17,20] Let I be an index set, n := |I |, TI×I a tree which defines
the block structure, depth(TI×I ) = O(log n), W ∈ H(TI×I , k). Then the storage
requirement of W and matrix vector multiplication cost O(kn log n), matrix–matrix
addition costs O(k2n log n) and matrix–matrix product as well as matrix inverse cost
O(k2n log2 n).

Proof See [9,17,20]. ��

Note that the result of addition of two hierarchical matrices M1 and M2 ∈ H
(TI×I , k) is a matrix from H(TI×I , 2k). To have the sum M1 + M2 in the class
H(TI×I , k) also, one should truncate the rank 2k to k.
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4 H-matrix approximation of covariance matrix C

Examples of the computational domain G are shown in Fig. 1.
Let x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ G. Define the (anisotropic) distance

by

ρ =
√√√√ d∑

i=1

|xi − yi |2/ l2
i , where li are correlation length scales, d = 2, 3.

(18)

Typical examples of covariance functions are:

(a) cov(ρ) = e−ρ2
(Gaussian), (19)

(b) cov(ρ) = e−ρ (exponential) and (20)

(c) cov(ρ) =
{(

1 − 3
2ρ + 1

2ρ
3
)

for 0 ≤ ρ ≤ 1
0 for ρ ≥ 1

(spherical). (21)

To demonstrate the accuracy of theH-matrix approximation, we compute the following
errors:

ε2 := |‖C‖2 − ‖C̃‖2|
‖C‖2

, ε := ‖(C − C̃)z‖2

‖C‖2‖z‖2
, where z is a random vector.

All the following numerical experiments are done on a computer with a 2GHz
processor and with 3GB of memory. Table 1 shows the computing time and storage
requirement for the H-matrix approximation C̃ of C. One can see that C̃ needs much
less memory and computing time than C. Table 2 demonstrates the dependence of
computational resources on H-matrix rank k for the standard (left) and weak (right)
admissibility conditions. The matrix, obtained with the weak admissibility condition
(see an example in Fig. 2, right), is simpler, but has a higher rank to achieve the same
accuracy than the matrix obtained with the standard admissibility. For the cases k = 6
and k = 20 there are not enough memory (abbreviated as “nem”).

Figure 2 shows two different examples of H-matrix approximations to the discre-
tised covariance function (20) with l1 = 0.15 and l2 = 0.2. For the matrix on the left

Fig. 1 Examples of computational domains G with a non-rectangular grid
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Table 1 The accuracy of the H-matrix approximation (weak admissibility) of the covariance function (20),
l1 = l3 = 0.1, l2 = 0.5

n Rank k Size (MB) t (s) ε max
i=1...10

|λi − λ̃i |, i ε2

for C̃
C C̃ C C̃

4.0 × 103 10 48 3 0.8 0.08 7 × 10−3 7.0 × 10−2, 9 2.0 × 10−4

1.05 × 104 18 439 19 7.0 0.4 7 × 10−4 5.5 × 10−2, 2 1.0 × 10−4

2.1 × 104 25 2054 64 45.0 1.4 1 × 10−5 5.0 × 10−2, 9 4.4 × 10−6

The geometry is shown in Fig. 1 (right)

Table 2 Dependence of the computing time and storage requirement on the H-matrix rank k for the
covariance function (20)

k Size (MB) t (s) k Size (MB) t (s)

1 1548 33 4 463 11

2 1865 42 8 850 22

3 2181 50 12 1236 32

4 2497 59 16 1623 43

6 nem – 20 nem –

Left standard admissibility condition (12), geometry shown in Fig. 1 (middle), l1 = 0.1, l2 = 0.5, n =
2.3 × 105. Right weak admissibility condition (14), geometry shown in Fig. 1 (right), l1 = 0.1, l2 = 0.5,
l3 = 0.1, n = 4.61 × 105
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Fig. 2 Two examples of H-matrix approximations ∈ R
n×n , n = 322, of the discretised covariance function

cov(x, y) = e−ρ , l1 = 0.15, l2 = 0.2, x, y ∈ [0, 1]2. The biggest dense (dark) blocks ∈ R
32×32, max.

rank k = 6 on the left and k = 20 on the right. The right block structure is simpler, but the left structure is
more accurate

the standard admissibility condition (12) was used and for the matrix on the right the
weak admissibility condition (14). The dark blocks indicate the dense matrices and
the gray blocks rank-k matrices. The steps inside blocks present the decay of singular
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Table 3 Dependence of the
computational time and storage
cost on the problem size n, rank
k = 5, cov(x, y) = e−ρ ,
l1 = l2 = 1, domain G = [0, 1]2

n Time (s) Memory (MB) ε

C C̃ C C̃

332 0.14 0.01 9.5 0.7 4.3 × 10−3

652 2.6 0.05 1.4 × 102 3.5 3.7 × 10−3

1292 – 0.24 nem 16 –

2572 – 1 nem 64 –

Table 4 Dependence of the
H-matrix accuracy on the
covariance lengths l1 and l2 for
covariance function (20),
G = [0, 1]2, n = 1292

l1 l2 ε

0.01 0.02 3 × 10−2

0.1 0.2 8 × 10−3

0.5 1 2.8 × 10−5

values in log scale. The approximation on the left has a more complex block structure,
but has a smaller maximal rank k (=6). The approximation on the right has a less
complex block structure, but the maximal rank k is larger (=20).

Table 3 demonstrates the computational resources needed for the H-matrix approxi-
mation of the covariance function

cov(x, y) = e−ρ, l1 = l2 = 1 (see (20)).

For small problem sizes such as 332, 652 (in 2D) it is possible to compute the exact
covariance matrix C and check the accuracy of the H-matrix approximation. But for
large problem sizes there is not enough memory (nem) to store the matrix C. The last
column presents the accuracy of the H-matrix approximation.

One can see that H-matrix approximations can be computed very fast even for
1292 and 2572 degrees of freedom, whereas for the dense matrices there is not enough
memory.

Table 4 demonstrates the accuracy of the H-matrix approximation of the covariance
function (20) for different covariance lengths l1 and l2 .

5 Numerical computation of KLE

An analytical solution of the eigenvalue problem (2) is known very seldomly (usually
only in 1D and for a small class of covariance functions). For instance, the solution
of the eigenvalue problem (2) with cov(x, y) = e−β|x−y|, x, y ∈ (−a, a) ⊂ R is
available in [13,14]. However already in 2D the analytical solutions are either more
complex or almost impossible to deduce. In this section we solve the symmetric
eigenvalue problem (7). We tested the ARPACK [27] and TRLAN [42] packages for
computing m largest eigenvalues and corresponding eigenfunctions of (7). ARPACK
is based upon an algorithmic variant of the Arnoldi process called the Implicitly
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Table 5 t1-computing times (in s) required for an H-matrix and dense matrix vector multiplication,
t2-times to set up C̃ ∈ R

n×n

k \ n 1.05 × 104 2.4 × 104 3.5 × 104 6.8 × 104 2.3 × 105

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

3 8 × 10−4 0.1 3 × 10−3 0.2 6.0 × 10−3 0.4 1 × 10−2 1 5.0 × 10−2 4

6 2 × 10−3 0.15 6 × 10−3 0.4 1.1 × 10−2 0.7 2 × 10−2 2 9.0 × 10−2 7

9 3 × 10−3 0.2 8 × 10−3 0.5 1.5 × 10−2 1.0 3 × 10−2 3 1.3 × 10−1 11

Full rank 0.13 0.62 2.48 10 140

Restarted Arnoldi Method (IRAM). For symmetric matrices it reduces to a variant of
the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM) [27].

The TRLAN package targets the case where one wants both eigenvalues and eigen-
vectors of a large real symmetric eigenvalue problems that cannot use the shift-and-
invert scheme. In this case the standard non-restarted Lanczos algorithm requires the
storage of a large number of Lanczos vectors which can cause storage problem and
make each iteration of the method very expensive. The algorithm used in TRLAN is
a dynamic thick-restart Lanczos algorithm. The convergence test used in the TRLAN
is the residual r < tolerance · ‖C̃‖ [42].

The three most time-consuming procedures in the Lanczos method are the matrix-
vector multiplication, re-orthogonalisation and computation of the Ritz vectors. All
matrix-vector products are approximated in the H-matrix format with the cost
O(n log n). We also investigate how the H-matrix technique reduces the memory
requirements and the computing times of the eigenvalue solver.

Remark 5.1 Note that an H-matrix approximation C̃ of the symmetric matrix C is
not always symmetric [6] (the possible reason is the rounding error). Therefore we
take the symmetric part of C̃. Note also that in HLIB [16] there is a possibility to set
up only the upper (lower) half of the matrix.

In Table 5, one can see the computing times required for an H-matrix vector multipli-
cation. The table was made using the weak admissibility criteria (14). It approximates
the covariance function (20) with l1 = l3 = 0.1 and l2 = 0.5. The geometry is shown
in Fig. 1 (right). The times needed to set up the H-matrices are shown in parentheses.
Numerical experiments confirm the theoretical estimation O(kn log n) (from Theo-
rem 3.1) for an H-matrix vector multiplication. One can see a linear dependence on
the rank k and an almost linear dependence on the problem size n. If the matrix C is
stored in a dense matrix format then the complexity should be O(n2) (the last row).
Note that for n = 3.5 · 104 and higher there is not enough memory to store C. The
corresponding computing times for n ≥ 3.5 · 104 are extrapolated from the previous
values.

Tables 6 and 7 show the computing times which required TRLAN [42] to compute
m eigenpairs. Computing times in Table 7 are larger than the times in Table 6. The
reason is that TRLAN performs more iteration steps.
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Table 6 Time required for computing m eigenpairs of the covariance function (20) with l1 = l2 = l3 = 1

Matrix info (MB, s) m

n k Size of C̃ Time to set up C̃ 2 5 10 20 40 80

2.4 × 104 4 12 0.2 0.2 0.2 0.4 0.7 1.8 5

6.8 × 104 8 95 0.7 0.7 0.8 1.6 3.4 7.0 19

2.3 × 105 12 570 6.8 3.6 4.0 7.2 15.0 31.0 75

The geometry is shown in Fig. 1 (right)

Table 7 Time required for computing m eigenpairs of the covariance function (20) with l1 = l3 = 0.1,
l3 = 0.5

Matrix info (MB, s) m

n k Size of C̃ Time to set up C̃ 2 5 10 20 40 80

2.4 × 104 4 12 0.2 0.6 0.9 1.3 2.3 4.2 8

6.8 × 104 8 95 2 2.4 3.8 5.6 8.4 18.0 28

2.3 × 105 12 570 11 10.0 17.0 24.0 39.0 70.0 150

The geometry is shown in Fig. 1 (right)

6 Conclusion

We have successfully applied the H-matrix technique for the approximation of cova-
riance matrices (19–21) in 2D and 3D cases. The use of the H-matrix technique reduces
computational resources (Tables 1, 2, 3, 5), required by eigensolvers (e.g. ARPACK
[27] and TRLAN [42]) for solving the eigenvalue problem (7), dramatically. The com-
bination of the H-matrix technique and iterative eigenvalue solvers are seen to be a
very efficient way to compute the KLE (Tables 6, 7).
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