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Abstract We consider a steady, purely azimuthal eddy viscosity flow model for the
Antarctic Circumpolar Current and derive an exact formula for the solution.
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1 Introduction

The Antarctic Circumpolar Current (ACC) flows around Antarctica at latitudes
between 40°to 60° without meridional boundaries and thereby completely encircles
the polar axis towards East. It is the strongest current in the World Ocean and is pri-
marily driven by the wind stress [12,18]. Interesting new wave tyes, which may be
important to the dynamics of Southern Ocean currents like the ACC were recently
derived in [7]. An exact, steady and purely azimuthal model for the ACC in spheri-
cal coordinates without eddy viscosity was introduced in [5]. Furthermore we refer
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the reader to [10] for the analysis of an ACC model, which establishes a connection
between the free surface and the pressure.

In this paper we consider a purely azimuthal divergence free flow, which is gov-
erned by the incompressible Euler equations in the f-plane approximation near the
45th parallel south. The action of mesoscale eddies that transfer the surface stress to
the bottom (see [12]) is taken into account by adding an eddy-viscosity term to the
system. Furthermore we assume the presence of a constant wind stress and a constant
atmospheric pressure on the ocean surface. On the flat bottom we impose a no-slip
boundary condition. This system can be solved exactly and the solution is written in
terms of the viscosity function, cf. Sect. 3.

2 The model

As a starting point we consider the f-plane approximation of Euler’s equations for
three-dimensional divergence-free ocean flows in the region of the ACC. Generally, for
a fixed specified polar angle 6, where 0 takes values between —7 /2 and /2 (e.g. we
have that & = 0 along the Equator, 6 = —m /2 at the South Pole and 8 = /2 at the
North Pole) the f-plane approximation is given by

1

up + uty +vuy + wuy +2(27w — %) = —— Py
’ P
1

v+ uvy +vvy + wv, +2(2°u — 2'w) = ——P,
P

1
w; + uwy +vwy +ww; +2(2%v — 2%u) = ——P, — g
0

uy +vy +w, =0, 2.1

where
2 =0, 27 =8cosh, 227 = 02sinb.

Here ¢ denotes the time and x, y, z denote the directions of increasing azimuth,
latitude and vertical elevation respectively. Similarly we denote by u = u(x, y, z, t),
v=v(x,y,z,t)and w = w(x, y, z, t) the velocity components of the flow field in
direction of increasing azimuth, latitude and elevation. Furthermore P = P(x, y, z, 1)
denotes the pressure field. The constant £2 & 7.29-107 rad s~! denotes the rotational
speed of the Earth around the polar axis and g ~ 9.81 ms~2 is the gravitational
acceleration. The fluid density p is taken to be constant, since there is low stratification
in the Polar region [9, 18].

For modeling the ACC we take 0 = —m /4, which corresponds to the 45th par-
allel south. Furthermore we restrict our considerations to the special case of purely
azimuthal flows, 1.e. we assume that

v=0 and w=0. 2.2)
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Thus (2.1) reduces to the linear system

1
0=—-P, (2.3)
ol
1
~V2Qu=——P, (2.4)
0
1
—V2Qu=—-P.—g (2.5)
ol
uy = 0. (2.6)

In order to include the transfer of the wind-generated surface stress to the bottom,
which is due to the presence of mesoscale eddies [12], we add a viscosity term of the
form (vu;), to (2.3) similarly as in [14] in the context of equatorial flows. The classical
model of uniform eddy viscosity is due to [17]. We follow the more realistic approach
with a depth dependent viscosity function as it was introduced in [8]. For solutions of
the equatorial current system and their qualitative properties under the assumption of
depth-dependent eddy viscosity we refer to [3,13,16] and the references therein.
Furthermore we add an a priori unknown forcing term F to (2.4), cf. Remark 1,
which will be determined in the analysis in Sect. 3. The viscosity function v = v(z),
which is assumed to be smooth with |v| > § for some § > 0, only depends on the
depths of water [12], whereas F may depend on both y and z. (It is clear that F' is
independent of x.) Thus in summary we end up with the following system:

1
0= —;Px + (vity), Q2.7
1
~V2Qu=—=P,+F (2.8)
0
1
—V2Q2u = —;PZ —g (2.9)
i, = 0. (2.10)

Before introducing the boundary conditions for # and P, we set
T =1(y,2):=pu, @.11)

which is referred to as wind stress.

Let d denote the depth of water, which is taken to be constant, i.e. we assume a flat
ocean bed. The water surface is considered to be flat, being located at z = 0. Thus
the fluid domain consists of the layer D = R2 x [—d,0] C R3. On the boundary of
D, which consists of the bottom {z = —d} and the surface {z = 0}, we impose the
following conditions:

P=Pym on z=0 (2.12)
T=1 on z=0 (2.13)
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u=0 on z=-—d. (2.14)

Here P, denotes the constant atmospheric pressure at sea level and 7 is a constant
related to the wind stress at the surface of the ocean.

Remark 1 We note that the usage of the forcing term F is necessary to ensure the
existence of a nontrivial flow: otherwise we would end up with the relation u, = u,
holding within the entire fluid domain. To see this we first differentiate (2.8) with
respect to z. Next we differentiate (2.9) with respect to y and combine the respective
outcomes. If we assume that /' = 0, we get that uy, = u, and the no-slip boundary
condition (2.14) implies that u = 0 throughout D.

Our assumption that the wind-stress at the surface 7 is independent of both x and
y simplifies the model and can not be justified globally, since the wind system in
the region of the ACC is rather complex. In fact, the ACC is—in contrast to most
other ocean currents—not a single flow, but a fragmented system of strong, regionally
bounded jets [15]. Locally, within such a jet, it is reasonable to take 7 to be constant;
cf. the real-time animations of ocean currents and winds on https://earth.nullschool.
net/. To get a rough global picture, we may take an average value for .

Let us furthermore emphasize that the linear nature of system (2.7)—(2.10) does not
stem from approximations. This is a consequence of the reasonable assumption of a
purely azimuthal flow satisfying (2.2).

3 An exact solution

In this section we provide an exact formula for the solution of the system (2.7)-
(2.10), i.e. formulas for the horizontal velocity « and the pressure P. These results are
summarized in the following theorem.

Theorem 1 The solution of system (2.7)—(2.10) with the boundary conditions (2.12)—
(2.14) incorporated is given by

u:u(z):f—‘)/zﬂ G3.1)
0 J_q v(s)

and
0

P=P()= x/i.Q,ol: / u(s)ds — /u(s)dsi| — 082+ Pam 3.2)

for —d < z < 0. The forcing term F satisfies
F=F() =—-v2Qu(z), —d<z<0. (3.3)
Remark 2 We illustrate the velocity profile of the flow field for a particular viscosity

function v in Fig. 1. The horizontal velocity u is generally strictly monotonous, since
v does not change sign by assumption, cf. Sect. 2.
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Fig.1 The viscosity function v (orange) in this plot decreases exponentially with depth. The corresponding

solution u (blue) decreases monotonically with depth

The formulas (3.1) and (3.2) in particular reveal that we are actually dealing with

a two-dimensional model.

Proof of Theorem 1 By applying 0, on (2.9) and employing (2.10) we obtain that

P, =0 inD.
We infer from (2.7) by differentiation with respect to z that
0=—p~ ' Pe. + (vu;).. inD.

Thus, by (3.4) we have that
0= (vuy),; inD.

From (3.6) and (2.10) we obtain via integration with respect to z that
vu, = A(y)z+ B(y) inD,

and hence
(y,2) = p(A(y)z+ B(y)) inD

(34)

(3.5)

(3.6)

(3.7)

(3.8)
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due to (2.11). By employing the boundary condition (2.13) we infer that
7(y,0) =pB(y) =19 forall yeR. (3.9)
Thus B is independent of y and takes the constant value
B =r1y/p. (3.10)
By using (3.7) and (2.7) we obtain
(i), = A(y) =p ' P, inD, (3.11)
and integration with respect to x yields
p 'P =AM x+C(y,z) inD. (3.12)

Since
p Py =A () x+Cy(y,2) = V2Qu + F(y, 2), (3.13)

where the later expression is independent of x, we have that A’(y) = 0, hence
A(y) =A1y+ Ay with A1,2 e R. (3.14)

Since (A1 y+A2) x+C(y,0) = p~! Py forall x, y € R according to (3.12), (3.14)
and (2.12), we conclude that

Al=A,=0 and C(y,0)=p ' Pym forall yeR. (3.15)
In particular we get that
P, =0 inD. (3.16)

By combining (3.7), (3.10), (3.14), (3.15) and (2.14) we obtain that « is independent
of y and satisfies (3.1).

In view of (2.9) we see that p~ ! P, = V22 u(z) — g in D and integration with
respect to z gives

P = P(z) =22p / u(s)ds — pgz+C(y) inD. (3.17)
—d

Due to the boundary condition (2.12) we infer that the constant of integration C(y) =
C in (3.17) is independent of y and satisfies

0
C=-vV22p / u(s)ds + Pam, (3.18)
—d
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hence P is given by (3.2).
We finally deduce from (2.8) that F satisfies (3.3), since P is independent of the
y-coordinate. O

Remark 3 In contrast to equatorial flows, where stratification plays adominant role and
leads to two-layer models (see e.g. [3,4,6,13,16]), there is almost no stratification in
the Southern Ocean [9, 18]. Therefore we considered a one-layer model for describing
the dynamics of the ACC, cf. Sect. 2. Let us note that the velocity profile of the solution
u of system (2.7)—(2.14) (cf. Fig. 1) differs strongly from stratified flows in equatorial
regions like the Equatorial Undercurrent, where u changes its sign (i.e. the direction
of the flow gets reversed) at a certain depth between the surface and the thermocline
that separates the two layers of different fluid density.

Remark 4 Let us finally point out another difference between equatorial flows and
flows in the Southern Ocean like the ACC. While surface waves near the Equator are
generally not higher than a few meters (see the discussion in [1]), there exist surface
waves in the Southern Ocean having a wave height up to 30 m, cf. [19]. Investigations
of such large surface waves and their interactions with underlying currents could thus
be of particular interest in the near future. Another interesting question concerns the
stability of waves. In [2] it was shown that instability of certain waves in equatorial
regions does occur. On the other hand, short-wavelength stability results for certain
equatorial flows are available in [11]. Similar stability results in the context of Southern
Ocean currents would be of great interest.
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