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Abstract Let F(x) = ∏∞
n=0(1 − x2

n
) be the generating function for the Prouhet–

Thue–Morse sequence ((−1)s2(n))n∈N. In this paper we initiate the study of the
arithmetic properties of coefficients of the power series expansions of the function

Ft (x) = F(x)t =
∞∑

n=0

fn(t)x
n .

For t ∈ N+ the sequence ( fn(t))n∈N is the Cauchy convolution of t copies of the
Prouhet–Thue–Morse sequence. For t ∈ Z<0 the n-th term of the sequence ( fn(t))n∈N
counts the number of representations of the number n as a sum of powers of 2 where
each summand can have one among −t colors. Among other things, we present a
characterization of the solutions of the equations fn(2k) = 0, where k ∈ N, and
fn(3) = 0. Next, we present the exact value of the 2-adic valuation of the number
fn(1 − 2m)—a result which generalizes the well known expression concerning the
2-adic valuation of the values of the binary partition function introduced by Euler and
studied by Churchhouse and others.
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1 Introduction

Let n ∈ N and by s2(n) denote the sum of (binary) digits function of n, i.e., if
n =∑m

k=0 εk2k with εk ∈ {0, 1}, is the unique expansion of n in base 2 then s2(n) =∑m
k=0 εk . Next, let us define the Prouhet–Thue–Morse sequence (the PTM sequence

for short) on the alphabet {−1,+1} as t = (tn)n∈N, where tn = (−1)s2(n). The
sequence t satisfies the following recurrence relations: t0 = 1 and

t2n = tn, t2n+1 = −tn

for n ∈ N. The PTM sequence has many remarkable properties and found applications
in combinatorics onwords, analysis onmanifolds, number theory and even physics [1].
One of the striking properties of the sequence t is the simple shape of the generating
function F(x) =∑∞

n=0 tnx
n ∈ Z[[x]]. Indeed, from the recurrence relations we easily

deduce the functional equation F(x) = (1− x)F(x2) and in consequence the identity

F(x) =
∞∏

n=0

(
1 − x2

n
)

.

The sequence b = (bn)n∈N of coefficients of the related power series

1

F(x)
=

∞∏

n=0

1

1 − x2n
=

∞∑

n=0

bnx
n

has also a strong combinatorial property. Indeed, the number bn counts the number of
representations of a non-negative integer n in the form

n =
k∑

i=0

εi2
i ,

where k ∈ N and εi ∈ N. One can easily prove that the sequence b satisfies: b0 =
b1 = 1 and

b2n = b2n−1 + bn, b2n+1 = b2n

for n ≥ 1. The above sequence is called the sequence of the binary partition function.
It was introduced by Euler and was studied by Churchhouse [5] (one can also consult
the papers [6,11,13]).

From the discussion above we see that both t and b are sequences of coefficients
of the power series expansion of Ft (x) = F(x)t for t = 1 and t = −1, respectively.
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It is quite natural to ask: what can be proved about sequences of coefficients of Ft (x)
for other integer values of t? This question was our main motivation for writing this
paper.

Let t be a variable and consider the sequence f(t) = ( fn(t))n∈N of coefficients of
the power series expansion of the function Ft (x) = F(x)t , i.e.,

Ft (x) =
∞∏

n=0

(
1 − x2

n
)t =

∞∑

n=0

fn(t)x
n .

From the definition of f(t) we see that for any given t ∈ Z the sequence f(t) is
a sequence of integers. In the sequel we will study three closely related sequences.
More precisely, in Sect. 2 we present some properties of the sequence f(t) treated
as a sequence of polynomials with rational coefficients. This is only a prelude to our
research devoted to the values of the polynomials fn at integer arguments. Section 3
is devoted to the study of the sequence

tm = (tm(n))n∈N,

where m ∈ N+ is fixed and tm(n) = fn(m), i.e., tm(n) is just the value of the
polynomial fn at t = m. We prove several properties of the sequence tm for certain
values of m. In particular, in Theorem 3.3 we characterize the 2-adic valuation of the
sequence tm for m being a power of 2 and m = 3. In the second part of this section
we concentrate on the study of arithmetic properties of the sequence tm for m = 2
and m = 3. It is a simple observation that the sequence t2 is closely related to the
values of the Stern polynomials at −2. Moreover, we prove that the set of values of
t2 is just Z\{0}, which is the statement of Theorem 3.17 and that our sequence is
log-concave, i.e., for each n ∈ N+ we have t2(n)2 > t2(n−1)t2(n+1) (Theorem 14).
We also characterize the set of those n ∈ N+ such that t3(n) = 0 (Theorem 3.13). This
allows us to prove that there are infinitely many values of n such that the polynomial
fn(t)/t is reducible (Corollary 3.14). Section 4 is devoted to the study of the sequence
bm = (bm(n))n∈N, wherem ∈ N+ is fixed and bm(n) = fn(−m), i.e., bm(n) is just the
value of the polynomial fn at t = −m. The sequence bm has a natural combinatorial
interpretation.More precisely, the number bm(n) counts the number of representations

n =
k∑

i=0

εi2
i ,

where εi ∈ N for i ∈ {0, . . . , k} and each εi can have one amongm colors. We present
several results concerning this family of sequences. In particular, we study the 2-adic
valuation of bm(n) and give a precise expression for ν2(b2k−1(n)), which allows us to
deduce that the congruence b2k−1(n) ≡ 0 (mod 16) is impossible (Theorem 4.6). We
also studymore closely the family of polynomials (hi,k,m(x)), with k ∈ N, 0 ≤ i < 2k ,
m ∈ N+, which appear in the computation of the expression for the generating function
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Hi,k(x) = Hi,k,m(x) =
∞∑

n=0

bm
(
2kn + i

)
xn = hi,k,m(x)

(1 − x)km
F−m(x).

The obtained results allow us to prove several congruences of various types for certain
sequences bm (Theorems 4.10, 4.13). We also prove that for fixed k ∈ N and 0 ≤
i < 2k the sequence (hi,k,m(x))m∈N is a linear recurrence sequence of order ≤ 2k

(Theorem 4.18).
In Sect. 5 we present some other results, questions and conjectures concerning

sequences tm and bm for various values of m ∈ N+. We hope that the problems stated
in this section will stimulate further research in the area.

Finally, in the Appendix, written by A. Schinzel, the proof of Conjecture 3.18 from
Sect. 3 is presented together with other material concerning non-vanishing of tm(n).

2 Arithmetic properties of the coefficients of Ft(x)

We start with the computation of a recurrence relation satisfied by the sequence f(t) =
( fn(t))n∈N and then introduce a related family of polynomials which will the main
object of our study in this section. Let us put

Ft (x) = F(x)t =
∞∏

n=0

(
1 − x2

n
)t =

∞∑

n=0

fn(t)x
n .

During this paper we will treat all the power series formally, without considering their
region of convergence. The function F(t, x) satisfies the following functional equation
Ft (x) = (1−x)t Ft (x2). This functional equation allows us to find a pair of recurrence
relations satisfied by the the sequence f(t).

We start with the following simple

Lemma 2.1 We have the following identity

log F(x) =
∞∑

n=1

1 − 2ν2(n)+1

n
xn, (1)

where ν2(n) is the 2-adic valuation of the integer n and

log(1 + x) =
∞∑

k=1

(−1)k−1xk

k
.

Proof We use the expansion of the function log(1 − x) to obtain

log F(x) =
∞∑

n=0

log
(
1 − x2

n
)

= −
∞∑

n=0

∞∑

k=1

x2
nk

k
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= −
∞∑

m=1

ν2(m)∑

l=0

x
2l · m

2l

m
2l

= −
∞∑

m=1

(2ν2(m)+1 − 1)

m
xm .

��
Remark 2.2 Using exactly the same type of reasoning, one can prove the following
identity

log
∞∏

n=0

(
1 − xk

n
)

=
∞∑

n=1

1 − kϕk (n)+1

n
xn,

where ϕk(n) is the highest power of k which divides n.

As an application of the above lemma we get the following recurrence relation for
the sequence f(t).

Lemma 2.3 Let Ft (x) =∑∞
n=0 fn(t)xn. Then f0(t) = 1 and for n ≥ 1 we have

fn(t) = t

n

n−1∑

k=0

(
1 − 2ν2(n−k)+1

)
fk(t). (2)

Proof We have the identity log Ft (x) = t log F(x). Taking derivative of both sides
with respect to x and using the expansion (1), we get

F ′
t (x)

Ft (x)
= t

∞∑

n=1

(
1 − 2ν2(n)+1

)
xn−1.

Multiplying both sides by Ft (x) =∑∞
n=0 fn(t)xn and replacing n by n+1 in the sum

on the right side and in F ′
t (x) we get

∞∑

n=0

(n + 1) fn+1(t)x
n = t

( ∞∑

n=0

(
1 − 2ν2(n+1)+1

)
xn
)( ∞∑

n=0

fn(t)x
n

)

= t
∞∑

n=0

(
n∑

k=0

(
1 − 2ν2(n−k+1)+1

)
fk(t)

)

xn .

Comparing now the coefficients on both sides of the above equality and replacing n
by n − 1, we get the identity from the statement of our lemma. ��
Using other functional equations satisfied by Ft (x), we can deduce other recurrence
relations.

Lemma 2.4 The sequence f(t) satisfies the following recurrence relations:
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(1) f0(t) = 1 and

fn(t) = −
n−1∑

k=0

(
t + n − k − 1

n − k

)

fk(t) + χ2(n) f n
2
(t),

where χ2(n) = (1 + (−1)n)/2;
(2) f0(t) = 1 and

fn(t) =

 n
2 �∑

k=0

(
n − 2k − 1 − t

n − 2k

)

fk(t),

Proof In order to prove the first recurrence relation for the sequence f(t) we rewrite
the functional equation for the function Ft (x) in the following form:

Ft (x
2) = 1

(1 − x)t
Ft (x) =

( ∞∑

n=0

(
t + n − 1

n

)

xn
)( ∞∑

n=0

fn(t)x
n

)

=
∞∑

n=0

(
n∑

k=0

(
t + n − k − 1

n − k

)

fk(t)

)

xn .

However,

Ft (x
2) =

∞∑

n=0

fn(t)x
2n =

∞∑

n=0

χ2(n) f n
2
(t)xn,

and thus comparing the coefficients near xn in the identity Ft (x2) = (1−x)−t Ft (x) and
performing simple manipulations we get the first recurrence relation for the sequence
f(t).

In order to prove the second recurrence relation we compute

Ft (x) =
(

1

1 − x

)−t ∞∑

n=0

fn(t)x
2n =

( ∞∑

n=0

(
n − 1 − t

n

)

xn
)( ∞∑

n=0

χ2(n) f n
2
(t)xn

)

=
∞∑

n=0

(
n∑

k=0

(
n − k − 1 − t

n − k

)

χ2(k) f k
2
(t)

)

xn

=
∞∑

n=0

⎛

⎝

 n
2 �∑

k=0

(
n − 2k − 1 − t

n − 2k

)

fk(t)

⎞

⎠ xn .

Comparing now the coefficients on both sides of the above identity, we get the second
recurrence relation from the statement of our lemma. ��
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Lemmas 2.3 and 2.4 show us that if we fix n ∈ N, then the expression fn(t) is a
polynomial with respect to t . The first terms of the sequence ( fn(t))n∈N are:

f0(t) = 1,

f1(t) = −t,

f2(t) = 1

2
(t − 3)t,

f3(t) = −1

6
t
(
t2 − 9t + 2

)
,

f4(t) = 1

24
t
(
t3 − 18t2 + 35t − 42

)
,

f5(t) = − 1

120
t
(
t4 − 30t3 + 155t2 − 270t + 24

)
.

As a consequence of the recurrence relation for f(t), we get the following properties
of the sequence f(t).

Lemma 2.5 We have:

(1) deg fn(t) = n;
(2) f0(0) = 1 and fn(0) = 0 for n > 0;
(3) Let us write

fn(t) =
n∑

i=0

a(i, n)t i .

Then a(0, 0) = 1, a(0, n) = 0 for n ∈ N+ and for i ∈ {0, . . . , n − 1} we have

a(i + 1, n) = 1

n

n−1∑

j=i

(
1 − 2ν2(n− j)+1

)
a(i, j). (3)

In particular we have the following equalities:

a(n, n) = (−1)n

n! ,

a(n − 1, n) = (−1)n+1

2!(n − 2)!3, n ≥ 2,

a(n − 2, n) = (−1)n

4!(n − 3)! (27n − 73), n ≥ 3,

a(1, n) = 1 − 2ν2(n)+1

n
, n ≥ 1.
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(4) The sequence f(t) satisfies the following addition formula:

fn(t1 + t2) =
n∑

k=0

fk(t1) fn−k(t2),

where t1, t2 are variables.

Proof The first and the second statement follow immediately from Lemma 2.3.
In order to prove the third statement we use Lemma 2.3 one more time. For n ≥ 1

we have the following equalities:

fn(t) =
n∑

i=0

a(i, n)t i = t

n

n−1∑

j=0

(
1 − 2ν2(n− j)+1

) j∑

i=0

a(i, j)t i

= 1

n

n−1∑

i=0

⎛

⎝
n−1∑

j=i

(
1 − 2ν2(n− j)+1

)
a(i, j)

⎞

⎠ t i+1

= 1

n

n∑

i=1

⎛

⎝
n−1∑

j=i−1

(
1 − 2ν2(n− j)+1

)
a(i − 1, j)

⎞

⎠ t i .

By comparing the coefficients of the polynomial fn(t) and the polynomial given by
the last expression, we get the result (after the change of variables i → i + 1).

In order to prove the expression for a(n, n) we use Lemma 2.3 one more time. We
immediately deduce the equality

a(n, n) = 1

n

(
1 − 2ν2(n−(n−1))+1

)
a(n − 1, n − 1) = −1

n
a(n − 1, n − 1).

Using simple induction and the identity a(0, 0) = 1, we get the expression for a(n, n).
Next, we have a(1, 2) = −3/2 and for n ≥ 2 by (3) with i = n − 2 we get

a(n − 1, n) = −3

n
a(n − 2, n − 2) − 1

n
a(n − 2, n − 1)

= −3

n

(−1)n

(n − 2)! − 1

n
a(n − 2, n − 1).

Using now simple induction, we easily get the expression for a(n− 1, n) presented in
the statement of our lemma.

Because exactly the same technique as used for the proof of expressions for a(n, n)

and a(n− 1, n) can be applied in order to compute a(n− 2, n), we omit the proof and
leave the simple details for the reader.

Finally, in order to get the addition formula we notice that it is a simple consequence
of the formal identity Ft1(x)Ft2(x) = Ft1+t2(x). ��
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Remark 2.6 Although we were unable to find the general formula for the coefficients
a(n − k, n) for all k ≥ 4 and n ≥ k + 1, it is an easy (but tedious) exercise to prove
that for fixed k we have

a(n − k, n) = (−1)n+k

(2k)!(n − k − 1)!Wk(n), n ≥ k + 1,

where Wk ∈ Z[n] is of degree k − 1.
Using this observation one can compute polynomials Wk(n) for several values of

k:

W3(n) = 45
(
9n2 − 73n + 176

)
,

W4(n) = 7
(
1215n3 − 19710n2 + 121685n − 266398

)
,

W5(n) = 945
(
243n4 − 6570n3 + 74165n2 − 394878n + 805440

)
,

W6(n) = 165
(
45927n5 − 1862595n4 + 33070275n3 − 310359581n2

+ 1497391014n − 2916611728
)
.

We introduce the family of polynomials g(t) = (gn(t))n∈N, where

gn(t) = n! fn(t).

As a consequence of the recurrence relation for f(t), we get the recurrence relation
satisfied by the sequence g(t) in the following form:

g0(1) = 1, gn(t) = t
n−1∑

k=0

(
1 − 2ν2(n−k)+1

) (n − 1)!
k! gk(t).

In particular gn(t) ∈ Z[t] for each n ∈ N.
We have the following result concerning the factorization of gn(t)modulo p, where

p is a prime number.

Theorem 2.7 Let n ∈ N. Then

gn(t) ≡ gn mod p(t)(t − t p)

⌊
n
p

⌋

(mod p).

Proof Let p be a prime number. We proceed by induction on n. Our factorization is
clearly true for n ≤ p−1. If n = p then p | gp( j) for any j ∈ Z. Since gp(t) ∈ Z[t],
deg gp(t) = p and the leading coefficient of gp(t) is (−1)p, we thus have

gp(t) ≡ (−1)p
p−1∏

a=0

(t − a) ≡ t − t p (mod p).
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Let us consider the case n = pm + i for some i ∈ {1, . . . , p}. Observe that
(n − 1)!

k!
= (pm + i − 1)!

k! ≡
{
0, if k ≤ pm − 1
(i−1)!

j ! , if k = pm + j, j ∈ {0, 1, . . . , i − 1} (mod p).

We have the following chain of congruences mod p for i ∈ {1, . . . , p − 1}:

gn(t) ≡ gpm+i (t) ≡ t
pm+i−1∑

k=0

(
1 − 2ν2(pm+i−k)+1

) (pm + i − 1)!
k! gk(t)

≡ t
pm−1∑

k=0

(
1 − 2ν2(pm+i−k)+1

) (pm + i − 1)!
k! gk(t)

+ t
pm+i−1∑

k=pm

(
1 − 2ν2(pm+i−k)+1

) (pm + i − 1)!
k! gk(t)

≡ t
pm+i−1∑

k=pm

(
1 − 2ν2(pm+i−k)+1

) (pm + i − 1)!
k! gk(t)

≡ t
i−1∑

j=0

(
1 − 2ν2(i− j)+1

) (i − 1)!
j ! g j (t)(t − t p)m

≡ (t − t p)mt
i−1∑

j=0

(
1 − 2ν2(i− j)+1

) (i − 1)!
j ! g j (t)

≡ gi (t)(t − t p)m ≡ gn mod p(t)(t − t p)

n
p �

(mod p).

If i = p then in the same way we obtain

gn(t) ≡ gp(t)(t − t p)

m
p � ≡ (t − t p)


m
p �+1

(mod p).

Our result follows. ��

3 Arithmetic properties of the sequence ( fn(t))n∈N with t ∈ N+

In this section we consider the sequence ( fn(t))n∈N with a fixed positive integer t . We
thus write t = m for m ∈ N+ and define

tm(n) := fn(m).

Moreover, we put tm = (tm(n))n∈N. In particular t1 = (t1(n))n∈N = ((−1)s2(n))n∈N =
(tn)n∈N is the Prouhet–Thue–Morse sequence. It is clear that tm is the sequence
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obtained from the convolution of m copies of the Prouhet–Thue–Morse sequence,
i.e.,

tm(n) =
∑

i1+i2+···+im=n

(−1)
∑m

k=1 s2(ik ). (4)

3.1 Results concerning the computation of the 2-adic valuation of tm(n)

This subsection is devoted to the presentation of the results concerning the explicit
computation of the 2-adic valuation of the sequence tm for m = 2k and m = 3.

From the functional equation for Fm(x) we easily deduce the following useful
result.

Lemma 3.1 Let m be a positive integer. Then tm(0) = 1, tm(1) = −m and

tm(2n) =

m

2 �∑
j=0

(
m

2 j

)

tm(n − j), tm(2n + 1) = −

⌊
m−1
2

⌋

∑

j=0

(
m

2 j + 1

)

tm(n − j),

where we put tm(n) = 0 for n < 0.

Proof Let us expand Fm(x) using the functional equation Fm(x) = (1− x)mFm(x2).

Fm(x) = (1 − x)mFm(x2) =
⎛

⎝
m∑

j=0

(
m

j

)

(−1) j x j

⎞

⎠

( ∞∑

k=0

tm(k)x2k
)

=

⎛

⎜
⎜
⎝


m
2 �∑

j=0

(
m

2 j

)

x2 j −

⌊
m−1
2

⌋

∑

j=0

(
m

2 j + 1

)

x2 j+1

⎞

⎟
⎟
⎠

( ∞∑

k=0

tm(k)x2k
)

=
∞∑

n=0

⎡

⎢
⎢
⎣

⎛

⎝

m

2 �∑
j=0

(
m

2 j

)

tm(n − j)

⎞

⎠ x2n−

⎛

⎜
⎜
⎝

⌊
m−1
2

⌋

∑

j=0

(
m

2 j + 1

)

tm(n − j)

⎞

⎟
⎟
⎠ x2n+1

⎤

⎥
⎥
⎦

Comparing coefficients of the first and last expression, we obtain the recurrence rela-
tions in the statement of our lemma. ��

Lemma 3.2 Let m be a positive integer. Then Fm(x) ≡ (1 + x)−m (mod 2). In
particular,

tm(n) ≡
(
n + m − 1

m − 1

)

(mod 2) (5)

for each n ∈ N.
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Proof In order to prove our result let us recall the identity
∏∞

n=0(1+ x2
n
) = 1

1−x . We
thus have

Fm(x) ≡
∞∏

n=0

(
1 + x2

n
)m ≡

( ∞∏

n=0

(
1 + x2

n
)
)m

≡ 1

(1 − x)m
≡

∞∑

n=0

(
n + m − 1

m − 1

)

xn (mod 2).

This proves the first part of our lemma. In order to get the second part we compare
the coefficients (modulo 2) of xn on both sides of the first and last term in the above
congruence. Our result follows. ��

We can strengthen the result above for m = 2k , k ∈ N. Namely

Theorem 3.3 Let k ∈ N. Then ν2(t2k (n)) = ν2

((n+2k−1
2k−1

))
for each n ∈ N. In other

words,

ν2(t2k (2
kn + j)) =

{
k − ν2( j) + ν2(n + 1) when j ∈ {1, . . . , 2k − 1}
0 when j = 0

(6)

for n ∈ N.

Proof Let us note that

ν2

(((
2kn + j

)+ 2k − 1

2k − 1

))

= ν2

((
2k(n + 1) + j − 1

2k − 1

))

= ν2

(
2k

j

(
2k(n + 1) + j

2k

))

= k − ν2( j) + s2
(
2k
)

+ s2
(
2kn + j

)
− s2

(
2k(n + 1) + j

)

= k − ν2( j) + 1 + s2(n) + s2( j) − s2(n + 1) − s2( j)

= k − ν2( j) + ν2

((
n + 1

n

))

= k − ν2( j) + ν2(n + 1),

where we used Legendre’s formula ν2 (n!) = n − s2(n) (see [12]). By the above
equality and the fact that each nonnegative integer can be represented in the form
2kn+ j for some n ∈ N and j ∈ {0, 1, . . . , 2k −1}, it suffices to show by induction on
2kn + j ∈ N that equality (6) holds (we recall that tm(n) = 0 for n < 0). Clearly the
statement is true for 2kn+ j ≤ 1. Let us compute the 2-adic valuation of the numbers
t2k (2

k+1n + 2 j) and t2k (2
k+1n + 2 j + 1), where n ∈ N and j ∈ {0, 1, . . . , 2k − 1}

and 2k+1n + 2 j ≥ 2. By Lemma 3.1, we have

t2k (2
k+1n + 2 j) =

2k−1
∑

i=0

(
2k

2i

)

t2k
(
2kn + j − i

)
(7)
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If j ∈ {0, 2k−1} then only the summand for i = j is odd, thus t2k (2
k+1n + 2 j) is odd.

Let j /∈ {0, 2k−1}. Then we compute 2-adic valuation of each summand of the sum in

(7). We start with the 2-adic valuation of
(2k
2i

)
.

ν2

((
2k

2i

))

= ν2

(
2k

2i

(
2k − 1

2i − 1

))

= k − 1 − ν2(i) + s2(2i − 1) + s2
(
2k − 2i

)
− s2

(
2k − 1

)

= k − 1 − ν2(i), i > 0

By the above equality and the induction hypothesis, we obtain

ν2

((
2k

2i

)

t2k (2
kn + j − i)

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k − ν2( j) + ν2(n + 1), if i = 0

2k − 1 − ν2(i) − ν2( j − i) + ν2(n + 1), if 0 < i < j

k − 1 − ν2( j), if i = j

2k − 1 − ν2(i) − ν2( j − i) + ν2(n), if i > j

.

Let us notice that

k − ν2( j) + ν2(n + 1) ≤ 2k − 1 − ν2(i) − ν2( j − i) + ν2(n + 1), (8)

when 0 < i ≤ 2k−1 and i 
= j . Indeed, the inequality (8) is equivalent to

ν2(i) + ν2( j − i) ≤ k − 1 + ν2( j). (9)

If ν2(i) ≤ ν2( j) then (9) holds, since 0 < | j− i | < 2k and in consequence ν2( j− i) ≤
k−1. If ν2(i) > ν2( j) then ν2( j − i) = ν2( j) and ν2(i) ≤ k−1, since 0 < i ≤ 2k−1.
Now we see that the j th summand of the sum in (7) has the 2-adic valuation less than
any other summand. Indeed,

k − 1 − ν2( j) < k − ν2( j) + ν2(n + 1) ≤ 2k − 1 − ν2(i) − ν2( j − i) + ν2(n + 1)

and

k − 1 − ν2( j) < k − ν2( j) + ν2(n) ≤ 2k − 1 − ν2(i) − ν2( j − i) + ν2(n).

We thus infer that ν2(t2k (2
k+1n+2 j)) = k−ν2(2 j) = k−ν2(2 j)+ν2(2n+1)when

0 < j < 2k−1. If j > 2k−1 then by (8) we know that the 0th summand of the sum in
(7) has the least 2-adic valuation. It suffices to check for which i ∈ {1, . . . , 2k−1} the
i th summand has the same 2-adic valuation as the 0th one, or, in other words, we have
equality in (9). Equality in (9) holds only if i = 2k−1 or i = j − 2k−1. Hence in the
sum in (7) there are three summands withminimal 2-adic valuation. As a consequence,
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ν2(t2k (2
k+1n + 2 j)) = k − ν2( j) + ν2(n + 1) = k − ν2(2 j) + ν2(2n + 2). We are

left with the computation of t2k (2
k+1n + 2 j + 1). By Lemma 3.1, we have

t2k
(
2k+1n + 2 j + 1

)
= −

2k−1−1∑

i=0

(
2k

2i + 1

)

t2k
(
2kn + j − i

)
(10)

We start with the 2-adic valuation of
( 2k

2i+1

)
when 0 ≤ i < 2k−1.

ν2

((
2k

2i + 1

))

= ν2

(
2k

2i + 1

(
2k − 1

2i

))

= k − ν2(2i + 1) + s2(2i) + s2
(
2k − 2i − 1

)
− s2

(
2k − 1

)
= k.

By the above equality and the induction hypothesis we obtain

ν2

((
2k

2i + 1

)

t2k
(
2kn + j − i

))

=

⎧
⎪⎨

⎪⎩

2k − ν2( j − i) + ν2(n + 1), if 0 ≤ i < j

k, if i = j

2k − ν2( j − i) + ν2(n), if i > j

.

Since 0 ≤ i, j < 2k , thus for i 
= j we have 0 < | j − i | < 2k . This implies
ν2( j − i) < k and hence k < 2k − ν2( j − i). This means that for j < 2k−1

the j th summand in (10) has the 2-adic valuation less than any other summand and
ν2(t2k (2

k+1n + 2 j + 1)) = k = k − ν2(2 j + 1) + ν2(2n + 1). If j ≥ 2k−1 then the
j − 2k−1th summand in (10) has the 2-adic valuation less than any other summand
and ν2(t2k (2

k+1n + 2 j + 1)) = k + 1 + ν2(n + 1) = k − ν2(2 j + 1) + ν2(2n + 2).
This finishes the proof. ��
Corollary 3.4 For each k ∈ N the sequence (ν2(t2k (n)))n∈N is 2-regular, i.e.,
the Z-submodule of Z

N generated by sequences (ν2(t2k (2
ln + j)))n∈N, l ∈ N,

j ∈ {0, 1, . . . , 2l − 1}, is finitely generated (see [2]).

Proof It suffices to show that the sequences (1)n∈N and (ν2(n + 1))n∈N lie in
the Z-submodule of Z

N generated by sequences (ν2(t2k (2
ln + j)))n∈N, l ≥ k,

j ∈ {0, 1, . . . , 2l − 1}, and generate these sequences. Obviously, (1)n∈N =
(ν2(t2k (2

kn + 1)))n∈N − (ν2(t2k (2
kn + 2)))n∈N and (ν2(n + 1))n∈N can be writ-

ten as (ν2(t2k (2
kn + 2k−1)))n∈N − (1)n∈N. Now, we prove by induction on l ≥ k that

(ν2(t2k (2
ln+ j)))n∈N is of the form (α+βν2(n+1))n∈N, where α ∈ N and β ∈ {0, 1}.

This statement is true for l = k by Theorem 3.3. For l > k we write j = 2l−1s + j ′,
where s ∈ {0, 1} and 0 ≤ j ′ ≤ 2l−1 − 1. Then by induction hypothesis we get the
following

(
ν2

(
t2k
(
2ln + j

)))

n∈N =
(
ν2

(
t2k
(
2l−1(2n + s) + j ′

)))

n∈N
= (α + βν2(2n + s + 1))n∈N = (α + βs + βsν2(n + 1))n∈N,

123



Arithmetic properties of coefficients of power series. . . 321

where the last equality holds because ν2(2n + s + 1) = s + sν2(n + 1) for n ∈ Z and
s ∈ {0, 1}. ��

We can also describe the 2-adic valuation of the numbers t3(n), n ∈ N. We start
with the following simple lemma.

Lemma 3.5 For each n ∈ N we have

t3(4n + 2) = 8t3(n − 1), t3(4n + 3) = 8t3(n),

where t3(−1) = 0.

Proof It suffices to use the recurrence for the sequence (t3(n))n∈N twice.

t3(4n + 3) = −3t3(2n + 1) − t3(2n) = 9t3(n) + 3t3(n − 1) − t3(n) − 3t3(n − 1) = 8t3(n),

t3(4n + 2) = t3(2n + 1) + 3t3(2n) = −3t3(n) − t3(n − 1) + 3t3(n) + 9t3(n − 1) = 8t3(n − 1).

��

Proposition 3.6 For each n ∈ N the following equalities hold:

ν2(t3(4n)) = ν2(t3(4n + 1)) = 0,

ν2(t3(4n + 3)) = ν2(t3(4n + 6)) = 3 + ν2(t3(n)),

where in the second equality we assume that t3(n) = 0 for n < 0.

Proof The numbers t3(4n) and t3(4n+ 1) are odd by Lemma 3.2. For the proof of the
equality ν2(t3(4n + 3)) = ν2(t3(4n + 6)) = 3 + ν2(t3(n)) we use Lemma 3.5. ��

One can prove by induction on n ∈ N+ that every positive integer n can be
uniquely written in the form n = ∑d

j=0 4
j a j , where a j ∈ {0, 1, 3, 6} for j < d

and ad ∈ {1, 2, 3, 6}. Then the 2-adic valuation of t3(n), n ∈ N+ can be described in
the following way.

Theorem 3.7 For each n ∈ N+ there holds

ν2(t3(n)) =

⎧
⎪⎨

⎪⎩

+∞, if ad = 2 and a j ∈ {3, 6} for j < d

3k, if k = max{l ∈ {1, . . . , d + 1} : a j ∈ {3, 6} for j < l}
and (ad 
= 2 or k < d)

.

Proof The proof will be performed by induction on d. If d = 0 then n ≤ 6 and we
check the statement of our theorem one by one. If d > 0 then we write n = 4n′ + a0.
Then n′ = ∑d−1

j=0 4
j b j , where b j = a j+1 for j ∈ {0, . . . , d − 1}. If a0 ∈ {0, 1} then

by Proposition 3.6 the number t3(n) is odd and our assertion follows. If a0 ∈ {3, 6}
then we use Proposition 3.6 and the induction hypothesis to obtain the following:

123



322 M. Gawron et al.

ν2(t3(n)) = 3 + ν2(t3(n
′))

=
{

+∞, if bd−1 = 2 and b j ∈ {3, 6} for j ∈ {1, . . . , d − 1}
3 + 3k, if bd−1 
= 2 and k = max{l ∈ {0, . . . , d} : b j ∈ {3, 6} for j < l}

=
{

+∞, if ad = 2 and a j ∈ {3, 6} for j < d

3k, if ad 
= 2 and k = max{l ∈ {1, . . . , d + 1} : a j ∈ {3, 6} for j < l} .

��

3.2 Unboundedness of tm for m = 2k and m = 3

As an application of Lemma 3.1 we get:

Theorem 3.8 If m ∈ N≥2 then we have

tm(n) = O(n
m
2 )

for each n ∈ N.

Proof We will prove by induction that

|tm(n)| ≤ mn
m
2 .

Clearly, the above inequality holds for n ∈ {0, 1}. If n > 1 and is even then we write
n = 2n′ for some n′ ∈ N. We use Lemma 3.1 and the induction hypothesis (we recall
that tm(n) = 0 for n < 0).

|tm(n)| = |tm(2n′)| =
∣
∣
∣
∣
∣
∣


m
2 �∑

j=0

(
m

2 j

)

tm(n′ − j)

∣
∣
∣
∣
∣
∣
≤


m
2 �∑

j=0

(
m

2 j

)

|tm(n′ − j)|

<


m
2 �∑

j=0

(
m

2 j

)

m(n′)
m
2 = m(2n′)

m
2 = mn

m
2 .

If n > 1 is odd then we write n = 2n′ + 1 for some n′ ∈ N and by Lemma 3.1 we
obtain the following:

|tm(n)| = |tm(2n′ + 1)| =

∣
∣
∣
∣
∣
∣
∣


m−1
2 �∑

j=0

(
m

2 j+1

)

tm(n′ − j)

∣
∣
∣
∣
∣
∣
∣

≤

m−1

2 �∑

j=0

(
m

2 j + 1

)

|tm(n′ − j)|

<


m−1
2 �∑

j=0

(
m

2 j + 1

)

m(n′)
m
2 = m(2n′)

m
2 < mn

m
2 .

��
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Let us observe that the crude estimation using the fact that |t1(n)| = 1 gives only
the equality tm(n) = O(nm). The above result shows that there is a lot of cancellation
in the sum defining tm(n) and it is quite natural to ask whether the sequence tm is
bounded or not. Unfortunately, we were unable to answer this question in general but
we believe that the following is true.

Conjecture 3.9 For each m ∈ N≥2 we have lim supn→+∞ tm(n) = +∞ and
lim infn→+∞ tm(n) = −∞.

The next result shows that if the sequence tm is unbounded on one side then it is
unbounded on both sides.

Lemma 3.10 Let m ≥ 2. If lim sup
n→∞

|tm(n)| = +∞ then lim sup
n→∞

tm(n) = +∞ and

lim inf
n→∞ tm(n) = −∞.

Proof Suppose that lim sup
n→∞

tm(n) = +∞ and tm(n) ≥ −C for some positive constant

C . We have that

C ≥ −tm(2n + 1) =
[m−1

2 ]∑

i=0

(
m

2i + 1

)

tm(n − i)

Therefore,

C + C

[m−1
2 ]∑

i=0

(
m

2i + 1

)

≥
[m−1

2 ]∑

i=0

(
m

2i + 1

)

(tm(n − i) + C) ≥ m(tm(n) + C)

The numberC+C

[m−1
2 ]∑

i=0

(
m

2i + 1

)

is a constant independent of n. Fromour assump-

tion lim supn→∞ m(tm(n) + C) = +∞ so we get a contradiction.
One can prove our lemma in the remaining case lim infn→∞ tm(n) = −∞ and

tm(n) < C for some positive constant C , by replacing tm(n) by −tm(n). ��
Using the expression for ν2(t2k (n)) presented in Theorem 3.3 and the above result,

we immediately get

Theorem 3.11 The Conjecture 3.9 is true for m = 2k and m = 3.

Proof Apply Theorem 3.3 in the case of m = 2k and Theorem 3.6 in the case of
m = 3.

In the case of m = 2, 3 we can give more precise result. Let

Maxm(k) = max{tm(n) : n ∈ [0, 2k]},
Minm(k) = min{tm(n) : n ∈ [0, 2k]}.
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Theorem 3.12 Let k ∈ N3. We have the following equalities:

Max2(k) = 22
 k
2 � = t2(22


k
2 � − 1),

Min2(k) = −2
2
⌊
k−1
2

⌋
+1 = t2

(

2
2
⌊
k−1
2

⌋
+1 − 1

)

.

Moreover, for m = 3 and k ∈ N we have

Max3(2k) = 23k,

Max3(2k + 1) = 15

7

(
23k − 1

)
+ [k = 0],

Min3(2k) = −3

7

(
23k+1 + 5

)
,

Min3(2k + 1) = −3 · 23k,
and

Max3(k) = t3

(

2k − 1

2

(
1 + (−1)k

))

, k ≥ 1,

Min3(k) = t3

(

2k − 1

2

(
1 − (−1)k

))

.

Proof We start with the case of m = 2. First, let us observe that t2(2k − 1) = (−2)k

for each k ∈ N+. We will prove by induction on k ∈ N3 the following statement:

If n ∈
{
0, . . . , 2k

}
\
{
2k−1 − 1, 2k − 1

}
then |t2(n)| < 2k−1 and

sgn t2
(
2k − 2

)
= sgn t2

(
2k
)

= −sgn t2
(
2k − 1

)
.

Clearly, our statement is true for k = 3. Let us assume that the statement holds for
some k ∈ N3. We will show that it holds for k + 1. If n ≤ 2k and n 
= 2k − 1 then
obviously |t2(n)| < 2k . Hence it suffices to prove the statement for n > 2k . Let us
consider the case n = 2l. If l /∈ {2k − 1, 2k} then |t2(n)| ≤ |t2(l)| + |t2(l − 1)| < 2k ,
since |t2(l)| and |t2(l − 1)| are less than 2k−1. If l = 2k − 1 then we use the facts
that 0 < |t2(2k − 2)| < 2k−1 < |t2(2k − 1)| and sgn t2(2k − 2) = −sgn t2(2k − 1)
to obtain |t2(2k+1 − 2)| = |t2(2k − 1) + t2(2k − 2)| < |t2(2k − 1)| = 2k and
sgn t2(2k+1 − 2) = sgn t2(2k − 1) = sgn

(− 1
2 t2(2

k+1 − 1)
) = −sgn t2(2k+1 − 1).

Analogously we prove that |t2(2k+1)| < 2k and sgn t2(2k+1) = −sgn t2(2k+1 − 1).
We are left with the case n = 2l + 1. If n = 2l + 1 
= 2k+1 − 1 then l 
= 2k − 1. Since
l ≤ 2k , by induction hypothesis we have |t2(n)| = 2|t2(l)| < 2k .

Summing up our discussion, if k ∈ N3 and n ∈ {0, . . . , 2k} then t2(n) takes on
extremal values for n ∈ {2k−1 − 1, 2k − 1}.

In order to get expressions for Max3(k) and Min3(k) we introduce some notation.
Let F1(k) (respectively F2(k)) be the right side of the expression for Max3(k) (respec-
tively Min3(k)) from the statement of our theorem. In the sequel we will need the
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following fact: if k ∈ N+ and n ∈ {0, . . . , 2k − 2}, then

1

2
F2(k) < t3(n) <

1

2
F1(k). (11)

One can easily check that 2F1(k) < F1(k + 1), 2F2(k) > F2(k + 1), −2F2(k) <

F1(k + 1) and −2F1(k) > F2(k + 1) for k ∈ N.
The proof follows by simple induction on k. Indeed, the statement is true for

k = 0, 1, 2, 3. Suppose that our inequalities hold for some k ≥ 4 and take
n ∈ {0, . . . , 2k+1 − 2}. We consider two cases: n even and n odd.

If n = 2n′ then n′ ∈ {0, . . . , 2k − 1}. If n′ = 2k − 1 then a simple computation
reveals that

t3(n) = t3(2n
′) = t3

(
2k+1 − 2

)
= 1

2

(
1 + (−1)k

)
2

3k
2

and that the inequalities (11) are true in this case. If n′ ∈ {0, . . . , 2k −2} then applying
the recurrence relations and the induction hypothesis, we get

t3(n) = t3(2n
′) = t3(n

′) + 3t3(n
′ − 1) <

1

2
F1(k) + 3

2
F1(k) = 2F1(k) < F1(k + 1).

Similarly,

t3(n) = t3(n
′) + 3t3(n

′ − 1) >
1

2
F2(k) + 3

2
F2(k) = 2F2(k) > F2(k + 1).

If n is odd then n = 2n′ + 1 for some n′ ∈ {0, . . . , 2k − 2} and then

t3(n) = t3(2n
′ + 1) = −3t3(n

′) − t3(n
′ − 1) < −3

2
F2(k) − 1

2
F2(k)

= −2F2(k) < F1(k + 1).

Similarly

t3(n) = −3t3(n
′) − t3(n

′ − 1) > −3

2
F1(k) − 1

2
F1(k) = −2F1(k) > F2(k + 1).

In order to finish the proof it is enough to observe the equalities

F1(k) = t3

(

2k − 1

2

(
1 + (−1)k

))

, F2(k) = t3

(

2k − 1

2

(
1 − (−1)k

))

and thus F1(k) = Max{t3(n) : n ∈ {0, . . . , 2k}} and F2(k) = Min{t3(n) : n ∈
{0, . . . , 2k}}. Our result follows. ��

123



326 M. Gawron et al.

3.3 Vanishing of t3(n) and more properties of t2

In Theorem 3.3 we have found the explicit formula for 2-adic valuation of t2k (n).
Because the computed numbers are finite for each n ∈ N, as a consequence we get
that the equation t2k (n) = 0 has no solution for each k. Because t3(2) = 0 it is quite
natural to ask about a precise description of the sequence (ak)k∈N+ defined by the
property

t3(n) = 0 ⇐⇒ n = ak for some k ∈ N+.

Although a description is given in Theorem 3.6 in terms of the expansion of the integer
n in base 4 with digits from the set {0, 1, 3, 6}, we present a different one in terms of
recurrence sequences. More precisely, we have the following.

Theorem 3.13 We have t2k (n) 
= 0 for all k, n ∈ N. Moreover, t3(n) = 0 ⇔ n = ak
for some k ∈ N+, where the sequence (ak)k∈N+ satisfies the recurrence relation:
a1 = 2 and

a2k = 4ak + 3, a2k+1 = 4ak + 6

for k ≥ 1

Proof The first part of our theorem is very easy. Indeed, we have ν2(t2k (n)) =
ν2

((n+2k−1
2k−1

))
. Since

(n+2k−1
2k−1

) 
= 0, thus t2k (n) 
= 0.

In order to prove the second part of our theorem we use the results obtained in
Lemma 3.5 and Proposition 3.6, namely

t3(4n) ≡ 1 (mod 2),

t3(4n + 1) ≡ 1 (mod 2).

and
t3(4n + 3) = 8t3(n), t3(4n + 6) = 8t3(n). (12)

In particular t3(n) 
= 0 for n ≡ 0, 1 (mod 4).
The equalities in (12) show that if A3 = {n ∈ N+ : t3(n) = 0} then

n ∈ A3 ⇐⇒ 4n + 3 ∈ A3 and 4n + 6 ∈ A3.

We have t3(0) 
= 0, t3(1) 
= 0 and t3(2) = 0 and thus

A3 = {2, 11, 14, 47, 50, 59, 72, 191, 194, 203, . . .}.

We prove that A3 = A′
3, where A′

3 := {a1, a2, a3, . . .}, where a0 = −1 and for
k ≥ 1 we have

a2k = 4ak + 3, a2k+1 = 4ak + 6.

From the equalities given in (12) and the fact that a1 = 2, we get ak ∈ A3. Let us
suppose that A3 
= {a1, a2, . . .} and let b be the smallest element of A3 such that
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b 
= ak for k ∈ N. It is clear that b > 10. However, this implies that b ≡ 2 or 3
mod 4. If b = 4n + 2 then 0 = t3(b) = t3(4n + 2) = 8t3(n − 1) and thus, from
the minimality of b, we get n − 1 = ak ∈ A′

3 for some k ∈ N+. We then have
b = 4(n−1)+6 = 4ak +6 = a2k+1 ∈ A′

3—a contradiction. Similarly, if b = 4n+3
then 0 = t3(b) = t3(4n+3) = 8t3(n) and thus we get n = ak ∈ A′

3 for some k ∈ N+.
Then b = 4n + 3 = 4ak + 3 = a2k ∈ A′

3—a contradiction. ��
The above result has an interesting consequence.

Corollary 3.14 Let us consider the sequence of polynomials f(t) = ( fn(t))n∈N
defined as the coefficients in the power series expansion of the series Ft (x) = F(x)t ,
where F(x) =∏∞

n=0

(
1 − x2

n )
. If n = ak, where the sequence (ak)k∈N+ is defined in

Theorem 3.13, then the polynomial fn(t)
t is reducible as a polynomial in Q[t].

Proof If n = ak , then fn(3) = fak (3) = t3(ak) = 0 for each k ∈ N+. ��
We expect that the vanishing of certain terms of the sequence t3 is an exception and

believe that the following is true

Conjecture 3.15 If m ∈ N≥4 then the equation tm(n) = 0 has no solution in positive
integers.

Now we turn our attention to the behaviour of the sequence t2 and prove that its
values cover the set Z \ {0}. Before we present our result let us also note that the
sequence t2 is known as sequence A106407 in [17] and it is closely related to the
sequence of the Stern polynomials (Bn(t))n∈N defined by the recurrence relation:

B0(t) = 0, B1(t) = 1, B2n(t) = t Bn(t), B2n+1(t) = Bn(t) + Bn+1(t).

The Stern polynomials were introduced by Klažar et al. [10]. Arithmetic properties of
these polynomials were investigated in [18,19] and also in [8]. The connection of t2
with the Stern polynomials is clear: we have

t2(n) = Bn+1(−2).

This is interesting to note that Bn(2) = n and {Bn(1) : n ∈ N} = N.
Moreover, the Stern sequence, i.e., the sequence (Bn(1))n∈N+ , can be also used to
enumerate the positive rational numbers. More precisely, the values of the sequence
(Bn+1(1)/Bn(1))n∈N+ cover Q+ without repetitions.

We will show that Bn+1(−2) = t2(n) has a similar property.
First, we show that if t2(n) = k has a solution then there are infinitely many

solutions.

Lemma 3.16 Let m be a positive integer m ≥ 3. Then the following equalities hold

t2(8n + 4) = t2(2mn + 4), t2(8n + 6) = t2(2mn + 6),
t2(8n) = t2(2mn + 2m − 8), t2(8n + 2) = t2(2mn + 2m − 6),

for each positive integer n.
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(2,−1)

(−1,−2)

(−3, 4)

. . . . . .

(2,−3)

. . . . . .

(4,−1)

(3, 2)

. . . . . .

(−8, 3)

. . . . . .

Fig. 1 Binary tree rooted in (2, −1)

Proof We prove the first equality. We have

t2(2
mn + 4) = t2(2

m−1n + 2) + t2(2
m−1n + 1)

= t2(2
m−2n + 1) + t2(2

m−2n) − 2t2(2
m−2n)

= −2t2(2
m−3n) − t2(2

m−3n) − t2(2
m−3n − 1)

= −3t2(2
m−3n) − t2(2

m−3n − 1)

= −3(t2(2
m−4n + t2(2

m−4n − 1)) + 2t2(2
m−4n − 1)

= −3t2(2
m−4n) − t2(2

m−4n − 1)

= . . .

= −3t2(n) − t2(n − 1).

Thus the value of t2(2mn + 4) does not depend on m, and our equality holds. One can
prove the other equalities in the same manner. ��
Theorem 3.17 For each k ∈ N+ the equation t2(n) = k has infinitely many solutions
in positive integers (Fig. 1).

Proof Let us consider the sequence of rational numbers
(
t2(n+1)
t2(n)

)

n∈N. We prove that

for each pair of co-prime positive integers x, y where x is odd and y is even one of the
fractions x

y ,
y
x ,− y

x ,− x
y is in our sequence. This is a generalisation of the well-known

property of Stern diatomic sequence observed by Calkin and Wilf [4].
Let us consider the following four infinite binary trees of pairs of integers. In the

root we put one of the pairs (2,−1), (−2, 1), (1,−2), (−1, 2). In the left child of
(x, y) we put (x + y,−2y) and in the right child we put (−2x, x + y). We will prove
that each pair of co-prime non-zero integers such that one of them is even is in exactly
one of our trees.

Suppose that there is a pair of co-prime non-zero integers (a, b) such that one of
them is even which is not in one of our trees. Let us choose such pair (a, b) with
smallest |a| + |b| and in case of a tie with smallest |a + b|. Without loss of generality
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(t2(1), t2(0))

(t2(2), t2(1))

(t2(4), t2(3))

. . . . . .

(t2(5), t2(4))

. . . . . .

(t2(3), t2(2))

(t2(6), t2(5))

. . . . . .

(t2(7), t2(6))

. . . . . .

Fig. 2 The above tree in terms of the sequence (t2(n))n∈N

(a, b) = (2x, y) (when b is even we proceed in the same way). Let us consider the
pair (−x, x + y). Of course gcd(−x, x + y) = gcd(x, y) = 1, moreover exactly one
of the numbers −x, x + y is even. We have that | − x | + |x + y| ≤ |x | + |x | + |y| =
|2x | + |y| and equality holds if and only if x and y have the same sign. In that case
|2x + y| > | − x + (x + y)| = |y|. So from our assumptions either (−x, x + y) is in
one of our trees or x + y = 0. If x + y = 0 then x = ±1, y = ∓1 and (2x, y) is one
of the roots—a contradiction. So (−x, x + y) is in one of our trees but its right child
is (2x, y), again a contradiction.

Let us observe that the tree with the root (−a,−b) can be obtained from the tree
with the root (a, b) by multiplying all numbers in tree by −1. Moreover, the tree with
root (a, b) can be obtained from the tree with root (b, a) by swapping the left and
right child of each node and swapping the numbers in each pair. We can see that for
each valid pair (x, y) at least one of the pairs (x, y), (−x,−y), (y, x), (−y,−x) is in
the tree rooted in (−2, 1). Moreover, from our recurrence relation we get that when
we read nodes of that tree row by row from left to right then we get the sequence of
pairs ((t2(n + 1), t2(n)))∞n=0.

Suppose that some odd integer −(2n + 1), for n 
= 0, 1, is not contained in our
sequence. Let us look at the pair (−2, 2n + 1); from our observations we get that one
of the pairs (−2, 2n + 1), (2,−(2n + 1)), (2n + 1,−2), (−(2n + 1), 2) is contained
in the tree rooted at (−2, 1). We know that it has to be (−2, 2n + 1) or (2n + 1,−2)
because−(2n+1) is not a member of our sequence. Let us assume that (−2, 2n+1) is
in our tree. Then its parent is (1, 2n). The parent of (1, 2n) is (n+1,−n). The second
child of (n + 1,−n) is (−2(n + 1), 1) and one of its children is (−2n − 1,−2). We
get that −(2n + 1) is one of the terms of our sequence—a contradiction. The second
case when (2n + 1,−2) is contained in our tree can treated in the same manner.

Therefore for each odd integer k we can find an n such that t2(n) = k (Fig. 2).
Using now Lemma 3.16, we get the statement of our theorem for odd integers k. As
every even number can be written in the form (−2)e(2n + 1), our theorem holds for
even integers as well. ��

Based on numerical computations, we observed a striking symmetry in the set of
values of t2(n). More precisely, we expect that the following is true
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Conjecture 3.18 For each n ∈ N andm = t2(n) the following identity holds: t2(n′) =
−t2(n), where

n′ = n + (−1)
ν2(m)+m−2ν2(m)

2ν2(m)+1 2ν2(m)+1.

The above conjecture is true as was proved by A. Schinzel. The proof is given in the
Appendix.

We expect that Theorem 3.17 is an exception and believe that the following is true:

Conjecture 3.19 Let m be a positive integer ≥ 3. Then the set of those k ∈ Z such
that the equation tm(n) = k has no solution in positive integers is infinite.

3.4 Log-concavity of t2

In this subsection we will see that, as in the Prouhet–Thue–Morse sequence, there are
no three consecutive terms of the sequence t2 of the same sign. In order to prove this
we will show two interesting inequalities concerning three consecutive terms of the
sequence t2.

Proposition 3.20 For each n ∈ N+ we have |t2(n)| ≥ |t2(n−1)+t2(n+1)|
2 with equality

for n even.

Proof The statement of the lemma is true for n = 1. Assume now that the statement
is true for some n. We will show that it is also true for 2n + 1. We have the following
equivalences:

|t2(2n + 1)| ≥ |t2(2n) + t2(2n + 2)|
2

⇐⇒2|t2(n)| ≥ |t2(n − 1) + 2t2(n) + t2(n + 1)|
2

⇐⇒4t2(n)2 ≥ (t2(n − 1) + t2(n + 1))2 + 4t2(n)2 + 4t2(n) (t2(n − 1) + t2(n + 1))

4

⇐⇒3t2(n)2 ≥ (t2(n − 1) + t2(n + 1))2

4
+ t2(n) (t2(n − 1) + t2(n + 1))

By the induction hypothesis |t2(n)| ≥ |t2(n−1)+t2(n+1)|
2 , thus

t2(n)2 ≥ (t2(n − 1) + t2(n + 1))2

4
(13)

and
2t2(n)2 ≥ |t2(n)| · |t2(n − 1) + t2(n + 1)|. (14)

The last inequality together with the fact that t2(n) 
= 0 implies that

2|t2(n)| ≥ |t2(n − 1) + t2(n + 1)|.
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The inequalities (13) and (3.4) imply the last inequality in our equivalences, hence the
inequality |t2(2n + 1)| ≥ |t2(2n)+t2(2n+2)|

2 is true. Now we prove equality |t2(2n)| =
|t2(2n−1)+t2(2n+1)|

2 . We have

|t2(2n)| = |t2(2n − 1) + t2(2n + 1)|
2

⇐⇒ |t2(n) + t2(n − 1)|

= | − 2t2(n − 1) − 2t2(n)|
2

and as the second equality is true, the first one holds. ��
We apply the above result in order to get the following

Theorem 3.21 The sequence (t2(n))n∈N is log-concave, i.e., for each integer n ≥ 1
the following inequality holds

t2(n)2 > t2(n − 1)t2(n + 1). (15)

The above inequality is optimal in the sense that t2(n)2 = t2(n − 1)t2(n + 1) + 1 for
infinitely many positive integers n

Proof We present two different proofs of the inequality (15).
First proof. The inequality (15) holds for n = 1. Assume now that (15) is true for

some n ∈ N+. We will show that (15) holds for 2n + 1. We have the following chain
of equivalences:

t2(2n + 1)2 > t2(2n)t2(2n + 2)

⇐⇒ 4t2(n)2 > (t2(n − 1) + t2(n)) (t2(n) + t2(n + 1))

⇐⇒ 4t2(n)2 > t2(n − 1)t2(n + 1) + t2(n)2 + t2(n) (t2(n) + t2(n + 1))

⇐⇒ 3t2(n)2 > t2(n − 1)t2(n + 1) + t2(n) (t2(n) + t2(n + 1)) .

By the induction hypothesis t2(n)2 > t2(n − 1)t2(n + 1) and by Proposition 3.20
we have 2t2(n)2 ≥ |t2(n)| · |t2(n) + t2(n + 1)| ≥ t2(n) (t2(n) + t2(n + 1)). These
two inequalities imply the last inequality in the above chain of equivalences. We thus
obtain the inequality t2(2n + 1)2 > t2(2n)t2(2n + 2). Now we prove the inequality
t2(2n)2 > t2(2n − 1)t2(2n + 1). We have the following equivalences:

t2(2n)2 > t2(2n − 1)t2(2n + 1)

⇐⇒ (t2(n) + t2(n − 1))2 > 4t2(n − 1)t2(n)

⇐⇒ (t2(n) − t2(n − 1))2 > 0.

The last inequality holds since t2(n) and t2(n − 1) have different parity. Hence we
have t2(2n)2 > t2(2n − 1)t2(2n + 1).

It remains to prove that t2(n)2 = t2(n−1)t2(n+1)+1 for infinitely many positive
integers n. We will show that this equality holds for n = 2k − 4, where k is any
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positive integer ≥ 3. By simple induction we prove that t2(2k − 2) = 1
3

(
1 − (−2)k

)

and t2(2k − 1) = (−2)k for any k ∈ N+. Finally we compute for k ≥ 3:

t2
(
2k − 4

)
= t2

(
2k−1 − 2

)
+ t2

(
2k−1 − 3

)
= t2

(
2k−2 − 1

)

+ t2
(
2k−2 − 2

)
− 2t2

(
2k−2 − 2

)

= t2
(
2k−2 − 1

)
− t2

(
2k−2 − 2

)
= 1

3

((
−2)k − 1

))
,

t2
(
2k − 5

)
= −2t2

(
2k−1 − 3

)
= 4t2

(
2k−2 − 2

)
= 1

3

(
4 − (−2)k

)

= 1 − t2
(
2k − 4

)
,

t2
(
2k − 3

)
= −2t2

(
2k−1 − 2

)
= 1

3

(
−2 − (−2)k

)
= −1 − t2

(
2k − 4

)
.

We thus obtain t2(2k − 5)t2(2k − 3) = t2(2k − 4)2 − 1 and our theorem follows.
Second proof of the inequality (15). Let us define a(n) = t2(n − 1). The sequence

a(n) satisfies the following recurrence relations a(1) = 1, a(2n) = −2a(n), and
a(2n + 1) = a(n + 1) + a(n). It is enough to prove our inequality for the sequence
a(n).

Let n = 2k(2l + 1) and l ≥ 1. Applying the recurrence relations k + 1 times we
get

a(n) = (−2)k(a(l) + a(l + 1)),

a(n − 1) = (b(k) − 2) a(l) + b(k)a(l + 1),

a(n + 1) = (b(k) − 2) a(l + 1) + b(k)a(l),

where b(k) = −1/3 · ((−2)k − 1
)
. We compute:

a(n)2 − a(n − 1)a(n + 1) =
(
22k − b(k)(b(k) − 2)

) (
a(l)2 + a(l + 1)2

)

+
(
22k+1 − b(k)2 − (b(k) − 2)2

)
a(l)a(l + 1)

and observe that it is enough to prove that 2(22k −b(k)(b(k)−2)) ≥ ∣∣(22k+1 − b(k)2

−(b(k) − 2)2)
∣
∣. It is not hard to see that the last term is positive when k > 0 because

|b(k)| ≤ 1
3 (2

k + 1). Let us compute the difference

2
(
22k − b(k) (b(k) − 2)

)
−
(
22k+1 − b(k)2 − (b(k) − 2)2

)
= 4.

When k = 0 we get a(n)2 − a(n − 1)a(n + 1) = (a(l + 1) − a(l))2 > 0. It cannot be
zero because a(l) and a(l + 1) have different parity. Therefore our inequality holds.
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Finally, let n = 2k . It is easy to see that (a(n − 1), a(n), a(n + 1)) =
(b(k), (−2)k, b(k) − 2). Moreover,

a(n)2 − a(n + 1)a(n − 1)

= 22k − (b(k) − 2)b(k) ≥ 22k − 1/9
(
2k + 1

) (
2k + 3

)

= 1/9
(
22k+3 − 2k+2 − 3

)
> 0

and our theorem follows. ��
We are ready to prove that none of three consecutive terms of the sequence

(t2(n))n∈N have the same sign. Let us note that the same property holds for t1—the
Prouhet–Thue–Morse sequence.

Theorem 3.22 For any positive integer n the numbers t2(n − 1), t2(n), t2(n + 1) do
not have the same sign.

Proof The statement of our theorem is true for n = 1. Assume that t2(n − 1), t2(n),
t2(n + 1) do not have the same sign and consider the numbers t2(2n − 1), t2(2n),
t2(2n+1). If t2(2n−1) and t2(2n+1) have the same sign then t2(n−1) and t2(n) have
the same sign, since t2(2n−1) = −2t2(n−1) and t2(2n+1) = −2t2(n). However, the
sign of t2(2n−1) and t2(2n+1) is different from the sign of t2(n−1) and t2(n)while
the sign of t2(2n) = t2(n − 1) + t2(n) is the same as the sign of t2(n − 1) and t2(n).
Consider now the numbers t2(2n), t2(2n + 1), t2(2n + 2) and suppose that they have
the same sign. Then sgn t2(n) = sgn

(− 1
2 t2(2n + 1)

) = −sgn t2(2n). Since t2(2n) =
t2(n − 1) + t2(n) and sgn t2(2n) = sgn t2(2n + 1), thus sgn t2(n − 1) = −sgn t2(n)

and |t2(n − 1)| > |t2(n)|. Analogously we conclude that sgn t2(n + 1) = −sgn t2(n)

and |t2(n + 1)| > |t2(n)|. Thus t2(n)2 < t2(n − 1)t2(n + 1), which contradicts the
inequality (15). ��

4 Arithmetic properties of the sequence ( f (n, t))n∈N with t ∈ Z<0

In this section we consider the sequence ( fn(t))n∈N with a fixed negative integer t .
We thus put t = −m for m ∈ N+ and we write

bm(n) := fn(−m).

Moreover, in order to shorten the notation we write

Hm(x) := F−m(x) =
∞∑

n=0

bm(n)xn .

In particular b1(n) = b(n) is the well known binary partition function introduced
by Euler and studied by Churchhouse [5], Rødseth [16], Gupta [9] and others. It
is sequence A018819 in [17]. Also the sequence (b(2n))n∈N can be found in [17],
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namely as sequence A000123. It is clear that bm(n) is the convolution of m copies of
the sequence (b(n))n∈N. We thus have

bm(n) =
∑

i1+i2+···+im=n

m∏

k=1

b(ik).

From the above expression we easily deduce that the number bm(n) has a natural
combinatorial interpretation. Indeed, bm(n) counts the number of representations of
the integer n as the sum of powers of 2, where each summand can have one of m
colors.

We start with the proof of the recurrence relations satisfied by the sequence
(bm(n))n∈N.

Lemma 4.1 Let m be a positive integer. Then the sequence (bm(n))n∈N satisfies
bm(0) = 1, bm(1) = m and for n ≥ 1 we have

bm(2n) =
m−1∑

j=0

(
m

j + 1

)

(−1) j bm(2n − j − 1) + bm(n),

bm(2n + 1) =
m−1∑

j=0

(
m

j + 1

)

(−1) j bm(2n − j).

Moreover, the sequence (bm(n))n∈N satisfies the following recurrence relations:

bm(2n) =
n∑

j=0

(
2(n − j) + m − 1

m − 1

)

bm( j),

bm(2n + 1) =
n∑

j=0

(
2(n − j) + m

m − 1

)

bm( j).

Proof The function Hm satisfies the functional equation (1 − x)mHm(x) = Hm(x2).
In consequence we have

(1 − x)mHm(x) =
⎛

⎝
m∑

j=0

(
m

j

)

(−1) j x j

⎞

⎠

( ∞∑

n=0

bm(n)xn
)

=
∞∑

n=0

⎛

⎝
m∑

j=0

(
m

j

)

(−1) j bm(n − j)

⎞

⎠ xn =
∞∑

n=0

bm(n)x2n .
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Comparing now the coefficients on both sides of the above identity we get the two
equalities:

m∑

j=0

(
m

j

)

(−1) j bm(2n + 1 − j) = 0,
m∑

j=0

(
m

j

)

(−1) j bm(2n − j) = bm(n).

From the first equality we get the expression for bm(2n+1). From the second relation
we get the expression for bm(2n). Finally, replacing j by j + 1, we get the relations
given in the statement of our theorem.

In order to get the second part of our Lemma we use the same technique. From the
functional equation for Hm(x) = (1 − x)−mHm(x2) we have

∞∑

n=0

bm(2n)x2n = 1

2
(Hm(x) + Hm(−x)) = 1

2

(
1

(1 − x)m
+ 1

(1 + x)m

)

Hm(x2).

A quick calculation reveals that

1

2

(
1

(1 − x)m
+ 1

(1 + x)m

)

=
∞∑

n=0

(
m + 2n − 1

2n

)

x2n

and thus (after the substitution x �→ √
x) we have

∞∑

n=0

bm(2n)xn =
( ∞∑

n=0

(
m + 2n − 1

n

)

x2n
)( ∞∑

n=0

bm(n)xn
)

=
∞∑

n=0

⎛

⎝
n∑

j=0

(
m + 2(n − j) − 1

2(n − j)

)

bm( j)

⎞

⎠ xn .

Comparing now the coefficients on the both sides of the above identity and using
the symmetry property of binomial coefficients, we get the first identity given in the
statement of our lemma.

Using exactly the same type of reasoning and the identity

∞∑

n=0

bm(2n+1)x2n+1 = 1

2
(Hm(x)−Hm(−x)) = 1

2

(
1

(1 − x)m
− 1

(1 + x)m

)

Hm(x2)

we prove the second identity. We leave the details to the reader. ��

4.1 Some inequalities involving bm(n) for m = 1, 2

In the previous sectionwe proved that t2(n)2−t2(n−1)t2(n+1) > 0.Using recurrence
relations for the numbers bm(n), we can easily compute the sign of the expression
bm(n)2 − bm(n − 1)bm(n + 1) for m ∈ {1, 2}.
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Proposition 4.2 For n ∈ N+ the following equalities hold:

b1(2n)2 − b1(2n − 1)b1(2n + 1) = b1(2n)b1(n),

b1(2n − 1)2 − b1(2n − 2)b1(2n) = −b1(2n − 2)b1(n),

b2(2n)2 − b2(2n − 1)b2(2n + 1) =
⎛

⎝
n∑

j=0

b2( j)

⎞

⎠

2

,

b2(2n − 1)2 − b2(2n − 2)b2(2n) =
⎛

⎝
n∑

j=0

b2( j)

⎞

⎠

2

− b2(2n − 2)b2(n).

In particular, we have

(−1)n
(
bm(n)2 − bm(n − 1)bm(n + 1)

)
> 0

for m = 1 and each n ∈ N+.

Proof We perform direct calculations using the first part of Lemma 4.1. Ifm = 1 then
b1(2n) = b1(2n + 1) for each n ∈ N. We thus have

b1(2n)2 − b1(2n − 1)b1(2n + 1) = b1(2n)2 − b1(2n − 2)b1(2n)

= b1(2n) (b1(2n) − b1(2n − 2)) = b1(2n)b1(n).

Similarly,

b1(2n − 1)2 − b1(2n − 2)b1(2n) = b1(2n − 2)2 − b1(2n − 2)b1(2n)

= b1(2n − 2) (b1(2n − 2) − b1(2n))

= −b1(2n − 2)b1(n).

For m = 2 the computations are more complicated:

b2(2n)2 − b2(2n − 1)b2(2n + 1)

=
⎛

⎝
n∑

j=0

(2(n − j) + 1) b2( j)

⎞

⎠

2

−
⎛

⎝
n∑

j=0

2(n − j)b2( j)

⎞

⎠

×
⎛

⎝
n∑

j=0

(2(n − j) + 2) b2( j)

⎞

⎠

=
⎛

⎝
n∑

j=0

[
(2(n − j) + 1)2 − 2(n − j) (2(n − j) + 2)

]
b2( j)

2

⎞

⎠
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+
⎛

⎝
∑

0≤ j<k≤n

F(2(n − j) + 1, 2(n − k) + 1)b2( j)b2(k)

⎞

⎠

=
⎛

⎝
n∑

j=0

b2( j)
2

⎞

⎠+
⎛

⎝
∑

0≤ j<k≤n

2b2( j)b2(k)

⎞

⎠ =
⎛

⎝
n∑

j=0

b2( j)

⎞

⎠

2

.

In the equality between the third and fourth expression in the computation above we
applied the identity F(x, y) = 2xy − (x − 1)(y + 1) − (x + 1)(y − 1) = 2 for
x = 2(n − j) + 1 and y = 2(n − k) + 1.

Remark 4.3 The first to prove the first equality in Proposition 4.2, was D. Knuth, as
was pointed out by Reznick in [15].

We also have the identity:

b2(2n − 1)2 − b2(2n − 2)b2(2n) =
⎛

⎝
n−1∑

j=0

b2( j)

⎞

⎠

2

− b2(2n − 2)b2(n).

Indeed, we have the following chain of inequalities:

b2(2n − 1)2 − b2(2n − 2)b2(2n)

=
⎛

⎝
n−1∑

j=0

2(n − j)b2( j)

⎞

⎠

2

−
⎛

⎝
n−1∑

j=0

(2(n − j) − 1) b2( j)

⎞

⎠

⎛

⎝
n∑

j=0

(2(n − j) + 1) b2( j)

⎞

⎠

=
⎛

⎝
n−1∑

j=0

[
(2(n − j))2 − (2(n − j) − 1) (2(n − j) + 1)

]
b2( j)

2

⎞

⎠

+
⎛

⎝
∑

0≤ j<k≤n−1

G(2(n − j) + 1, 2(n − k) + 1)b2( j)b2(k)

⎞

⎠−
⎛

⎝
n−1∑

j=0

(2(n − j) − 1) b2( j)

⎞

⎠ b2(n)

=
⎛

⎝
n−1∑

j=0

b2( j)
2

⎞

⎠+
⎛

⎝
∑

0≤ j<k≤n−1

2b2( j)b2(k)

⎞

⎠− b2(2n − 2)b2(n) =
⎛

⎝
n−1∑

j=0

b2( j)

⎞

⎠

2

− b2(2n − 2)b2(n).

In the equality between third and fourth expression in the computation above we
applied the identity G(x, y) = 2xy − (x − 1)(y + 1) − (x + 1)(y − 1) = 2 for
x = 2(n − j) and y = 2(n − k). ��

It seems that in this case b2(2n − 1)2 − b2(2n − 2)b2(2n) < 0 for all n ∈ N+, but
we were unable to prove this statement.

4.2 Some congruences involving bm

In this subsection we present several congruences involving the sequence bm for
various values of m. We are mainly interested in the congruences (mod 2k) for
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various values of k. In particular we give a precise description of the 2-adic valuation
of the elements of the sequence b2k−1 for k ∈ N+, thereby generalizing the result of
Churchhouse.

First we prove a simple lemma concerning the characterization of parity of the
number bm(n).

Lemma 4.4 Let m ∈ N+ be fixed and write m = 2k(2u + 1) with k ∈ N. Then:

(1) We have bm(n) ≡ (mn
)+ 2k+1

(m−2
n−2

)
(mod 2k+2) for m even;

(2) We have bm(n) ≡ (mn
)

(mod 2) for m odd;
(3) For infinitely many n we have bm(n) 
≡ 0 (mod 4) for m odd.

Proof To prove the first part, we write m = 2k(2u + 1). Let us observe that for
i = 0, 1, . . . , 2k−1 − 1 we have (by Legendre’s formula for the 2-adic valuation of a

factorial) v2(
( 2k

2i+1

)
) = s2(2i + 1) + s2(2k − (2i + 1)) − 1 = k. Thus the following

congruence holds

(1 + x)2
k − (1 − x)2

k = 2
2k−1−1∑

i=0

(
2k

2i + 1

)

x2i+1 ≡ 2k+1
2k−1−1∑

i=0

x2i+1

≡ 2k+1x(1 + x)2
k−2 (mod 2k+2).

Using simple calculations we get the following equality:

Hm(x) =
∞∏

n=0

(
1 − x2

n
)−m

≡
∞∏

n=0

(
((1 + x2

n
)2

k + 2k+1x2
n
(x + 1)2

n(2k−2))
)−(2u+1)

≡
∞∏

n=0

(
(1 + x2

n
)m + 2k+1x2

n
(1 + x)2

n(m−2)
)−1

≡
∞∏

n=0

(

(1 + x2
n
)m(1 + 2k+1 x2

n

(1 + x)2n+1 )

)−1

≡ (1 − x)m
(

1 + 2k+1
∞∑

n=0

x2
n

(1 + x)2n+1

)−1

≡ (1 − x)m
(

1 + 2k+1 x

1 − x

)

≡ (1 − x)m + 2k+1x(1 − x)m−1

≡ (1 + x)m + 2k+1x((1 + x)m−1 + (1 + x)m−2)

≡ (1 + x)m + 2k+1x2(1 + x)m−2 (mod 2k+2),
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and comparing the coefficients of xn on both sides of the above congruence we get
the result.

For the second part; let us observe that

Hm(x) =
∞∏

n=0

(
1 − x2

n
)−m ≡

∞∏

n=0

(
1 + x2

n
)−m ≡ (1 + x)m (mod 2).

For the third part; let us observe that (1 + x) ≡ (1 − x) + 2x (mod 4). Using
analogous computations as before we get

Hm(x) ≡ (1 − x)m
(

1 + 2
∞∑

n=0

x2
n

1 + x2n

)

(mod 4).

We let A denote the set of those u ∈ N+ which end with even number of zeros in
binary expansion. We have

∞∑

n=0

x2
n

1 + x2n
≡

∞∑

n=0

∞∑

m=1

xm2n ≡
∑

n∈A

xn := ξ(x) (mod 2).

If we had bm(n) ≡ 0 (mod 4) for n large enough, then (1 + x)mξ(x) would be a
polynomial inF2[[x]]. But this is impossible, since ξ satisfies the formula ξ+ξ2 = x

1+x
(in F2[[x]]). ��

In the sequel we will also need the following simple observations concerning the
binomial coefficients modulo 2 and 8.

Lemma 4.5 Let m be a positive integer ≥ 2. Then

(
2m − 1

k

)

≡ 1 (mod 2), for k = 0, 1, . . . , 2m − 1,

and

(
2m

k

)

≡

⎧
⎪⎪⎨

⎪⎪⎩

1 for k = 0, 2m

4 for k = 2m−2, 3 · 2m−2

6 for k = 2m−1

0 in the remaining cases

⎫
⎪⎪⎬

⎪⎪⎭
(mod 8), for k = 0, 1, . . . , 2m .

Proof For each j ∈ {1, . . . , 2m − 1} we have ν2(2m − j) = ν2( j). Hence ν2((2m −
1) · . . . · (2m − k)) = ν2(k!) for k ∈ {1, . . . , 2m − 1}. We thus have

ν2

((
2m − 1

k

))

= ν2

(
(2m − 1) · . . . · (2m − k)

k!
)

= 0,

which means that
(2m−1

k

)
is odd.
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Obviously,
(2m
0

) = (2m2m
) = 1.

We have

(
2m

2m−2

)

=
(

2m

3 · 2m−2

)

= 2m · . . . · (3 · 2m−2+1)

2m−2! =4
(2m − 1) · . . . · (3 · 2m−2 + 1)

(2m−2 − 1)!
= 4

(
2m − 1

2m−2 − 1

)

.

Since
( 2m−1
2m−2−1

)
is odd, thus

( 2m

2m−2

) = ( 2m

3·2m−2

) ≡ 4 (mod 8).

Let us write
( 2m

2m−1

) =∏2m−1

j=1
2m−1+ j

j . Each j ∈ {1, . . . , 2m−1} can be written in the
form j = 2ki for some k, i ∈ N, where i is an odd number. If k ≤ m − 4 then

2m−1 + j

j
= 2m−1 + 2ki

2ki
= 2m−k−1 + i

i
≡ 1 (mod 8).

We thus obtain

(
2m

2m−1

)

=
2m−1
∏

j=1

2m−1 + j

j
≡ 5 · 2m−3

2m−3 · 3 · 2m−2

2m−2 · 7 · 2m−3

3 · 2m−3 · 2m

2m−1

= 5 · 3 · 7
3

· 2 ≡ 6 (mod 8).

If ν2(k) ≤ m − 3 then

(
2m

k

)

= 2m · . . . · (2m − k + 1)

k! = 2m

k
· (2m − 1) · . . . · (2m − k + 1)

(k − 1)!
= 2m

k
·
(
2m − 1

k − 1

)

≡ 0 (mod 8)

and our lemma follows. ��
One of the main results of this paper is the following result concerning the compu-

tation of the 2-adic valuation of themembers of the sequence (b2k−1(n))n∈N with fixed
positive integer k. Our next theorem can be seen as a generalization of the identity

ν2(b1(n)) =
{

1
2 |tn − 2tn−1 + tn−2|, if n ≥ 2

0, if n ∈ {0, 1}

obtained by Churchhouse (however, in a slightly different form). Here, tn is the n-th
term of the Prouhet–Thue–Morse sequence.

Theorem 4.6 Let k ∈ N+ be given. We then have the following equality
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ν2

(
b2k−1

(
2k+2n + i

))

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν2
(
b2k−1

(
2k+2n

)) = ν2(b1(8n)), for i = 0, 1, . . . , 2k − 1,

1, for i = 2k, 2k + 1, . . . , 2k+1 − 1,

2, for i = 2k+1, 2k+1 + 1, . . . , 3 · 2k − 1,

1, for i = 3 · 2k, 3 · 2k + 1, . . . , 2k+2 − 1,

for n ∈ N. In particular ν2(b2k−1(n)) ∈ {0, 1, 2} and ν2(b2k−1(n)) = 0 if and only if
n ≤ 2k − 1.

Proof First of all, let us observe that the second part of Lemma 4.4 and the first part
of Lemma 4.5 implies that b2k−1(n) is odd for n ≤ 2k − 1 and thus ν2(b2k−1(n)) = 0
in this case.

Let us observe that from the identity H2k−1(x) = F1(x)H2k (x) we get the identity

b2k−1(n) =
n∑

j=0

tn− j b2k ( j), (16)

where tn = t1(n) = (−1)s2(n) is n-th term of the Prouhet–Thue–Morse sequence. Now
let us observe that from the first part of Lemma 4.4 and the second part of Lemma 4.5
we have

b2k (n) ≡
(
2k

n

)

(mod 8)

for n = 0, 1, . . . , 2k and b2k (n) ≡ 0 (mod 8) for n > 2k , provided k ≥ 2 or n 
= 2.
Moreover,

b2(2) ≡
(
2

2

)

+ 4

(
0

0

)

= 5 (mod 8).

Summing up this discussion we have the following expression for b2k−1(n) (mod 8),
where k ≥ 2 and n ≥ 2k :

b2k−1(n) =
n∑

j=0

tn− j b2k ( j)

=
2k∑

j=0

tn− j b2k ( j) +
n∑

j=2k+1

tn− j b2k ( j)

≡
2k∑

j=0

tn− j b2k ( j) (mod 8)

≡
2k∑

j=0

tn− j

(
2k

j

)

(mod 8)

≡ tn + tn−2k + 4tn−2k−2 + 4tn−3·2k−2 + 6tn−2k−1 (mod 8).
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However, it is clear that tn−2k−2 + tn−3·2k−2 ≡ 0 (mod 2) and thus we can simplify
the above expression and get

b2k−1(n) ≡ tn + tn−2k + 6tn−2k−1 (mod 8)

for n ≥ 2k . If k = 1 and n ≥ 2 then, analogously, we get

b1(n) ≡
2k∑

j=0

tn− j b2k ( j) ≡ tn + 5tn−2 + 2tn−1 (mod 8)

and since tn−1 ≡ tn−2 (mod 2), we thus conclude that

b1(n) ≡ tn + tn−2 + 6tn−1 (mod 8).

Let us put Rk(n) = tn + tn−2k + 6tn−2k−1 . Using now the recurrence relations for tn ,
i.e., t2n = tn, t2n+1 = −tn we easily deduce the identities

Rk(2n) = Rk−1(n), Rk(2n + 1) = −Rk−1(n)

for k ≥ 2. Using a simple induction argument, one can easily obtain the following
identities:

|Rk

(
2km + j

)
| = |R1(2m)| (17)

for k ≥ 2,m ∈ N and j ∈ {0, . . . , 2k − 1}. From the above identity we easily
deduce that Rk(n) 
≡ 0 (mod 8) for each n ∈ N and each k ≥ 1. If k = 1 then
R1(n) = tn + 6tn−1 + tn−2 and R1(n) ≡ 0 (mod 8) if and only if tn = tn−1 = tn−2.
However, a well known property of the Prouhet–Thue–Morse sequence is that there
are no three consecutive terms which are equal. If k ≥ 2 then our statement about
Rk(n) is clearly true for n ≤ 2k . If n > 2k then we can write n = 2km + j for
some m ∈ N and j ∈ {0, 1, . . . , 2k − 1}. Using the reduction (17) and the property
obtained for k = 1, we get the result. Summing up our discussion, we have proved
that ν2(b2k−1(n)) ≤ 2 for each n ∈ N, since ν2(b1(n)) ∈ {0, 1, 2}. Moreover, as an
immediate consequence of our reasoning we get the equality

ν2

(
b2k−1

(
2kn + j

))
= ν2(b1(2n))

for j ∈ {0, . . . , 2k − 1}. Using the above identity and the properties of ν2(b1(2n)) we
easily get the identities presented in the statement of our theorem. ��

It is an interesting question whether we can say something non-trivial about 2-adic
valuation of the number bm(n) for m 
= 2k − 1. In order to do this in the sequel we
will need the following lemma concerning the form of the generating function of the
subsequence (bm(2kn + i))n∈N, where k ∈ N is given and i ∈ {0, . . . , 2k − 1}. We
have the following
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Lemma 4.7 Let m ∈ N+ be fixed. Let i, k ∈ N be given and consider the function
Hi,k(x) = Hi,k,m(x) which is the generating function for the sequence (bm(2kn +
i))n∈N, where 0 ≤ i < 2k , i.e., Hi,k(x) =∑∞

n=0 bm(2kn + i)xn. Then

Hi,k(x) = hi,k(x)

(1 − x)mk
Hm(x),

where the (double) sequence of polynomials (hi,k(x))k∈N,0≤i<2k

= (hi,k,m(x))k∈N,0≤i<2k satisfies h0,0(x) = 1 and for k ∈ N+ and 0 ≤ i < 2k

we have

hi,k(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 (hi,k−1(

√
x)(1 + √

x)mk

+hi,k−1(−√
x)(1 − √

x)mk), for i = 0, 1, . . . , 2k−1 − 1
1

2
√
x
(hi−2k−1,k−1(

√
x)(1 + √

x)mk

−hi−2k−1,k−1(−
√
x)(1 − √

x)mk), for i = 2k−1, . . . , 2k − 1

.

Proof We proceed by induction on k. We have the obvious equality h0,0(x) = 1. Let
us suppose that our result is true for k. We then have for i = 0, 1, . . . , 2k−1 − 1:

Hi,k+1(x
2) =

∞∑

n=0

bm
(
2k+1n + i

)
x2n

=
∞∑

n=0

bm
(
2k · 2n + i

)
x2n

= 1

2
(Hi,k(x) + Hi,k(−x))

= 1

2

(
hi,k(x)

(1 − x)mk
Hm(x) + hi,k(−x)

(1 + x)mk
Hm(−x)

)

= 1

2

(
hi,k(x)

(1 − x)mk
· 1

(1 − x)m
+ hi,k(−x)

(1 + x)mk
· 1

(1 + x)m

)

Hm(x2)

= 1

2

(
(1 + x)m(k+1)hi,k(x) + (1 − x)m(k+1)hi,k(−x)

) Hm(x2)

(1 − x2)m(k+1)

= hi,k+1(x2)

(1 − x2)m(k+1)
Hm(x2).

It is clear that 1
2

(
(1 + x)m(k+1)hi,k(x) + (1 − x)m(k+1)hi,k(−x)

)
is an even func-

tion of x . Comparing now the first and the last expression from the above and replacing
x by x1/2, we get the statement of our lemma. If i = 2k−1, . . . , 2k − 1 then we write
i = 2k + i ′, where i ′ = 0, 1, . . . , 2k−1 − 1, and perform analogous calculations.

Hi,k+1(x
2) =

∞∑

n=0

bm
(
2k+1n + i

)
x2n
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=
∞∑

n=0

bm
(
2k · 2n + 2k + i ′

)
x2n

= 1

x

∞∑

n=0

bm
(
2k · (2n + 1) + i ′

)
x2n+1

= 1

2x
(Hi ′,k(x) − Hi ′,k(−x))

= 1

2x

(
hi ′,k(x)

(1 − x)mk
Hm(x) − hi ′,k(−x)

(1 + x)mk
Hm(−x)

)

= 1

2x

(
hi ′,k(x)

(1 − x)mk
· 1

(1 − x)m
− hi ′,k(−x)

(1 + x)mk
· 1

(1 + x)m

)

Hm(x2)

= 1

2x

(
(1 + x)m(k+1)hi ′,k(x) − (1 − x)m(k+1)hi ′,k(−x)

) Hm(x2)

(1 − x2)m(k+1)

= hi,k+1(x2)

(1 − x2)m(k+1)
Hm(x2).

Replacing x by x
1
2 , we get the result. ��

The above lemma is a useful tool which sometimes allows to get congruences
involving the (sub)sequence (bm(2kn + i))n∈N. We have the following results con-
cerning the behaviour of Fi,k(x) (mod p), where p is a prime number, m = ps for
some s ∈ N+ and k = 1, 2, 3.

Lemma 4.8 Let p be an odd prime number and m = ps for some s ∈ N+.
For k = 1 the following congruences hold:

h0,1(x) ≡ 1 (mod p),

h1,1(x) ≡ x
m−1
2 (mod p).

For k = 2 the following congruences hold:

h0,2(x) ≡ 1 + xm (mod p),

h1,2(x) ≡
{
x

m−1
2 + x

5m−1
4 (mod p), if m ≡ 1 (mod 4)

2x
3m−1

4 (mod p), if m ≡ 3 (mod 4)
,

h2,2(x) ≡ 2x
m−1
2 (mod p),

h3,2(x) ≡
{
2x

3
4 (m−1) (mod p), if m ≡ 1 (mod 4)

x
m−3
4 + x

5m−3
4 (mod p), if m ≡ 3 (mod 4)

.

Proof Direct calculations give:

h0,1(x) = 1

2

(
(1 + √

x)m + (1 − √
x)m
) ≡ 1

2

(
1 + x

m
2 + 1 − x

m
2

)
= 1 (mod p),
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h1,1(x) = 1

2
√
x

(
(1 + √

x)m − (1 − √
x)m
) ≡ 1

2
√
x

(
1 + x

m
2 − 1 + x

m
2

)

= x
m−1
2 (mod p),

h0,2(x) = 1

2

(
h0,1(

√
x)(1 + √

x)2m + h0,1(−√
x)(1 − √

x)2m
)

≡ 1

2

(
(1 + √

x)2m + (1 − √
x)2m

)

≡ 1

2

((
1 + x

m
2

)2 +
(
1 − x

m
2

)2
)

= 1

2

(
1 + 2x

m
2 + xm + 1 − 2x

m
2 + xm

)

= 1 + xm (mod p),

h2,2(x) = 1

2
√
x

(
h0,1(

√
x)(1 + √

x)2m − h0,1(−√
x)(1 − √

x)2m
)

≡ 1

2
√
x

(
(1 + √

x)2m − (1 − √
x)2m

)

≡ 1

2
√
x

((
1 + x

m
2

)2 −
(
1 − x

m
2

)2
)

= 1

2
√
x

(
1 + 2x

m
2 + xm − 1 + 2x

m
2 − xm

)

= 2x
m−1
2 (mod p),

h1,2(x) = 1

2

(
h1,1(

√
x)(1 + √

x)2m + h1,1(−√
x)(1 − √

x)2m
)

≡ 1

2

(
x

m−1
4 (1 + √

x)2m + (−x)
m−1
4 (1 − √

x)2m
)

≡ 1

2

(

x
m−1
4

(
1 + x

m
2

)2 + (−x)
m−1
4

(
1 − x

m
2

)2
)

= 1

2

(
x

m−1
4

(
1 + 2x

m
2 + xm

)
+ (−x)

m−1
4

(
1 − 2x

m
2 + xm

))

=
{
x

m−1
4 + x

5m−1
4 (mod p), if m ≡ 1 (mod 4)

2x
3m−1

4 (mod p), if m ≡ 3 (mod 4)
,

h3,2(x) = 1

2
√
x

(
h1,1(

√
x)(1 + √

x)2m − h1,1(−√
x)(1 − √

x)2m
)

≡ 1

2
√
x

(
x

m−1
4 (1 + √

x)2m − (−x)
m−1
4 (1 − √

x)2m
)

≡ 1

2
√
x

(

x
m−1
4

(
1 + x

m
2

)2 − (−x)
m−1
4

(
1 − x

m
2

)2
)

= 1

2
√
x

(
x

m−1
4

(
1 + 2x

m
2 + xm

)
− (−x)

m−1
4

(
1 − 2x

m
2 + xm

))
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=
{
2x

3m−3
4 (mod p), if m ≡ 1 (mod 4)

x
m−3
4 + x

5m−3
4 (mod p), if m ≡ 3 (mod 4)

.

��
As a consequence of the above lemma we get the following interesting

Corollary 4.9 Let p be an odd prime number and m = ps for some s ∈ N+. Then
the following congruences are true:

bm(2n + i) − bm(2(n − m) + i) ≡
{
bm(n) (mod p) for i = 0

bm
(
n − m−1

2

)
(mod p) for i = 1

,

bm(4n + i) − 2bm(4(n − m) + i) + bm(4(n − 2m) + i)

≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bm(n) + bm(n − m) for i = 0

bm
(
n − m−1

4

)+ bm
(
n − 5m−1

4

)
for i = 1 and s ≡ 0 (mod 2)

2bm
(
n − 3m−1

4

)
for i = 1 and s ≡ 1 (mod 2)

2bm
(
n − m−1

2

)
for i = 2

2bm
(
n − 3

4 (m − 1)
)

for i = 3 and s ≡ 0 (mod 2)

bm
(
n − m−3

4

)+ bm
(
n − 5m−3

4

)
for i = 3 and s ≡ 1 (mod 2)

(mod p).

Proof In order to obtain the first congruence it suffices to compare the coefficients of
functions (1 − xm)Hi,1(x) ≡ (1 − x)mHi,1(x) (mod m) and hi,1(x)Hm(x), which
are equivalent modulo m by the previous lemma. For the second one we compare
the functions (1 − 2xm + x2m)Hi,2(x) ≡ (1 − x)2mHi,2(x) (mod m) and hi,2(x)
Hm(x). ��

Using a different approach we get the following:

Theorem 4.10 Let m ∈ N≥2. Then for n ∈ N the following identity holds:

nbm(n) = m
n∑

i=0

(n − i)b1(n − i)bm−1(i).

In particular, if gcd(m, n) = 1 then

bm(n) ≡ 0 (mod m).

Proof Wehave the following equality: xH ′
m(x) = x(H(x)m)′ = mxH ′(x)(H(x))m−1

= mxH ′(x)Hm−1(x). Equivalently:

∞∑

n=0

nbm(n)xn = m

( ∞∑

n=0

nb1(n)xn
)( ∞∑

n=0

bm−1(n)

)

=
∞∑

n=0

⎛

⎝m
n∑

i=0

(n − i)b1(n − i)bm−1(i)

⎞

⎠ xn .

Comparing now the coefficients on the both sides of the above identity, we get the
first statement of our theorem. The second one is immediate. ��
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Remark 4.11 Let p be an odd prime number and m = ps for some s ∈ N+. Let us
observe that for each n ∈ N the following congruence holds:

bm((2n + 1)m) ≡ bm(2nm) (mod p). (18)

Indeed, we have
Hps (x) ≡ H1(x)

ps ≡ H1(x
ps ) (mod p)

and thus

bps (n) ≡
{
0 (mod p) if n 
≡ 0 (mod ps)

b1
(

n
ps

)
(mod p) if n ≡ 0 (mod ps)

.

From the above congruence, we have bm(nm) ≡ b1(n) (mod p) for n ∈ N. Since
b1(2n+ 1) = b1(2n), we obtain (18). Actually, in the same way we can prove that for
r, s ∈ N+, a prime number p and n ∈ N we have

brps (n) ≡
{
0, if n 
≡ 0 (mod ps)

br (
n
ps ) (mod p), if n ≡ 0 (mod ps)

.

In particular, ifm = ps11 · · · pskk is the factorization of a given positive integerm, n ∈ N

and psii � n for each i ∈ {1, . . . , k} then p1 · · · pk | bm(n).

Remark 4.12 Themethod used in the proof ofCorollary 4.9 can be also used in order to
get some congruences involving sums of certain values of bm modulo primes p which
are co-prime to m. Indeed, the definition of the function Hi,k,m and the corresponding
polynomials hi,k,m guarantees the identity

(1 − x)km
∞∑

n=0

bm
(
2kn + i

)
Xn = hi,k,m(x)Hm(x)

and the congruence

(1 − x)km
∞∑

n=0

bm
(
2kn + i

)
Xn ≡ hi,k,m(x)Hm(x) (mod p),

where p is a given prime number. If we are lucky, the reduction hi,k,m(x) (mod p) is
simple, i.e., contains far fewer non-zero coefficients (mod p) than the non-reduced
polynomial, and we can deduce new congruences with i, k,m and p satisfying
gcd(p,m) = 1. Using this approach, one can find many congruences with few sum-
mands and, in fact, there are some instances of i, k,m and p such that hi,k,m(x) ≡ cxs

(mod p) for some c ∈ Z and s ∈ N. In particular we get the following

Theorem 4.13 The following congruences are true:

8∑

i=0

b4(4(n − i) + 1) ≡ b4(n) (mod 3), n ≥ 8,

123



348 M. Gawron et al.

4∑

i=0

b2(4(n − i)) ≡ b2(n) (mod 5), n ≥ 4,

4∑

i=0

b2(4(n − i) + 2) ≡ b2(n − 2) (mod 5), n ≥ 4.

Proof The congruences given above are consequences of the following equalities

h1,2,4(x) = 4(3x + 1)
(
3x3 + 27x2 + 33x + 1

)
≡ 1 (mod 3),

h0,2,2(x) = 5x2 + 10x + 1 ≡ 1 (mod 5),

h2,2,2(x) = x2 + 10x + 5 ≡ x2 (mod 5)

and the fact that (1 − x)8 ≡ 1−x9
1−x (mod 3) and (1 − x)4 ≡ 1−x5

1−x (mod 5). ��
It is quite interesting to look at the family of polynomials (hi,k,m(x)) as an indepen-

dent object of study and to ask which members of this family are reducible. It seems
that this is a rather difficult question. Based on numerical observations, we state the
following

Theorem 4.14 We have

h2k+1,k+1,2(x) ≡ 0 (mod 8(x + 1)), k ∈ N+,

h2k+2,k+1,4(x) ≡ 0 (mod 8(x + 1)), k ∈ N≥2.

In order to prove the above theorem, we will show three lemmas.

Lemma 4.15 For every n, j ∈ N we have 4 | (4n2 j
)− (2nj

)
.

Proof We write

(
4n

2 j

)

−
(
2n

j

)

=
(
2n

j

)(
(4n − 1)(4n − 3) · · · (4n − 2 j + 1)

1 · 3 · · · (2 j − 1)
− 1

)

=
(
2n

j

)
(4n − 1)(4n − 3) · · · (4n − 2 j + 1) − 1 · 3 · · · (2 j − 1)

1 · 3 · · · (2 j − 1)
.

The factor (4n−1)(4n−3) · · · (4n−2 j+1)−1 ·3 · · · (2 j−1) is even, since numbers
(4n − 1)(4n − 3) · · · (4n − 2 j + 1) and 1 · 3 · · · (2 j − 1) are odd. If j is even then
the products (4n − 1)(4n − 3) · · · (4n − 2 j + 1) and 1 · 3 · · · (2 j − 1) have the same
number of factors congruent to 3 modulo 4, hence they are congruent modulo 4 and
their difference is divisible by 4. If j is odd then

ν2

((
2n

j

))

= ν2

(
2n

j

(
2n − 1

j − 1

))

≥ 1.
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Thus the numbers
(2n
j

)
and (4n − 1)(4n − 3) · · · (4n − 2 j + 1) − 1 · 3 · · · (2 j − 1) are

even which implies that 4 | (4n2 j
)− (2nj

)
. ��

The lemma given below is well known and we omit of its proof.

Lemma 4.16 We will call a polynomial P(x) = ∑d
j=s c j x

j ∈ Z[x], cs, cd 
= 0,
palindromic, if cd− j = cs+ j for each j ∈ {0, 1, . . . , d − s}. Each palindromic poly-
nomial P ∈ Z[x] of order s and degree d can be uniquely written in the form (we recall
that if P(x) = ∑d

j=s a j x j , where as 
= 0, then we define the order of polynomial P
as the number ord P = s)

P(x) =

⌊
d−s
2

⌋

∑

j=0

as+ j x
s+ j (1 + x)d−s−2 j ,

where as+ j ∈ Z. Then as = cs . Moreover, if polynomials P1, P2, . . . , Pr are palin-
dromic and there exists c ∈ N such that ord Pi +deg Pi = c for every i ∈ {1, 2, . . . , r}
then the polynomial

∑r
i=1 Pi is palindromic.

Lemma 4.17 We have

h1,k+1,2(x) =
k∑

j=0

a j,k x
j (1 + x)2k−2 j , k ∈ N,

h2,k+1,4(x) =
k∑

j=0

b j,k x
j (1 + x)2k−2 j , k ∈ N+,

where a0,k = 2, b0,k = 14, 8 | a j,k and 8 | b j,k for j > 0.

Proof We proceed by induction on k. If k = 0 then h1,0+1,2(x) = 2. Assume now
that h1,k+1,2(x) = ∑k

j=0 a j,k x j (1 + x)2k−2 j for some k ∈ N, where a0,k = 2 and
8 | a j,k for j > 0. Then

h1,k+2,2(x) = 1

2

(
(1 + √

x)2k+4h1,k+1,2(
√
x) + (1 − √

x)2k+4h1,k+1,2(−√
x)
)

=
k∑

j=0

1

2
a j,k

(√
x
j
(1 + √

x)4k−2 j+4 + (−√
x) j (1 − √

x)4k−2 j+4
)

.

(19)
For each j ∈ {0, 1, . . . , k} the expression

1
2a j,k

(√
x j

(1 + √
x)4k−2 j+4 + (−√

x) j (1 − √
x)4k−2 j+4

)
is a palindromic poly-

nomial inZ[x] of degree 2k− j+
⌊

j
2

⌋
+2 and order

⌈
j
2

⌉
. Hence the sum of degree and

the order of the j th summand is equal to 2k + 2 and by Lemma 4.16 the polynomial
h1,k+2,2(x) is palindromic. The degree of h1,k+2,2 is 2k+2 and its leading coefficient
is equal to a0,k = 2, thus by Lemma 4.16 this polynomial can be uniquely written in
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the form h1,k+2,2(x) =∑k+1
j=0 a j,k+1x j (1 + x)2k+2−2 j , where a0,k+1 = 2. It suffices

to show that 8 | a j,k+1 for j > 0. Since 8 | a j,k for j > 0, the j th summand in (19),
j > 0, has no influence on the values a j,k+1 (mod 8), so we can skip them. Let us
consider the 0th summand in (19).

(
(1 + √

x)4k+4 + (1 − √
x)4k+4

)
= 2

2k+2∑

j=0

(
4k + 4

2 j

)

x j

= 2(1 + x)2k+2 + 2
2k+1∑

j=1

((
4k + 4

2 j

)

−
(
2k + 2

j

))

x j

= 2(1 + x)2k+2 + 8x
2k∑

j=0

α j x
j

= 2(1 + x)2k+2 + 8x
k∑

j=0

a′
j x

j (1 + x)2k− j ,

where we use Lemma 4.15 to write
(4k+4

2 j

)− (2k+2
j

) = 4α j and clearly α2k− j = α j .
Finally, a j,k+1 ≡ 8a′

j−1,k+1 ≡ 0 (mod 8).
The proof for polynomials h2,k+1,4 is analogous, so we leave its details for the

reader. ��

Now we are ready to prove Theorem 4.14.

Proof of Theorem 4.14 Since the proof for polynomials h2k+2,k+1,4 is completely
analogous, we will only present the proof for polynomials h2k+1,k+1,2.

We compute h2k+1,k+1,2 using Lemma 4.17.

h2k+1,k+1,2 = 1

2
√
x

(
(1 + √

x)2k+2h1,k,2(
√
x) − (1 − √

x)2k+2h1,k,2(−√
x)
)

=
k−1∑

j=0

1

2
√
x
a j,k−1

(√
x
j
(1 + √

x)4k−2 j − (−√
x) j (1 + √

x)4k−2 j
)

.

It remains to show that 4(x+1) | 1
2
√
x

(√
x j

(1 + √
x)4k−2 j − (−√

x) j (1 + √
x)4k−2 j

)

for even j and x + 1 | 1
2
√
x

(√
x j

(1 + √
x)4k−2 j − (−√

x) j (1 + √
x)4k−2 j

)
for odd

j , since 2 | a0,k−1 and 8 | a j,k−1 for j > 0. If j is even then

1

2
√
x

(√
x
j
(1 + √

x)4k−2 j − (−√
x) j (1 + √

x)4k−2 j
)

= 1

2
√
x
x

j
2

(
(1 + √

x)4k−2 j − (1 + √
x)4k−2 j

)
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is divisible by 1
2
√
x

(
(1 + √

x)4 − (1 − √
x)4
) = 4(1 + x). If j is odd then

1

2
√
x

(√
x
j
(1 + √

x)4k−2 j − (−√
x) j (1 + √

x)4k−2 j
)

= 1

2
x

j−1
2

(
(1 + √

x)4k−2 j + (1 + √
x)4k−2 j

)

is divisible by 1
2

(
(1 + √

x)2 + (1 − √
x)2
) = 1 + x . ��

Let i ∈ {0, 1} and observe that the generating function for the sequence
(hi,1,m(x))m∈N is rational. More precisely, we have

G0,1(x, T ) =
∞∑

m=0

h0,1,m(x)Tm =
∞∑

m=0

1

2
((1 + √

x)m + (1 − √
x)m)Tm

= T − 1

(x − 1)T 2 + 2T − 1
,

G1,1(x, T ) =
∞∑

m=0

h1,1,m(x)Tm =
∞∑

m=0

1

2
√
x
((1 + √

x)m − (1 − √
x)m)Tm

= − T

(x − 1)T 2 + 2T − 1
.

This suggests that for any given k ∈ N+ and i ∈ {0, . . . , 2k − 1} the sequence
(hi,k,m(x))m∈N should satisfy a linear recurrence. We confirm this in the following
result.

Theorem 4.18 Let k ∈ N+ and i ∈ {0, . . . , 2k − 1} and define

Gi,k(x, T ) =
∞∑

m=0

hi,k,m(x)Tm .

Then the function Gi,k is rational (as a function in two variables x, T ). In particu-
lar the sequence (hi,k,m(x))m∈N is annihilated by the difference operator Vk defined
recursively in the following way:

V1(x, θ) = (x − 1)θ2 + 2θ − 1, Vk+1(x, θ) = Vk(
√
x, (1 + √

x)k+1θ)

Vk(−√
x, (1 − √

x)k+1θ),

where θ((an)n∈N≥r ) = (an−1)n∈N≥r+1 .

Proof If k = 1 then the function Gi,1(x, T ) is rational with respect to variables x

and T for i ∈ {0, 1}. Assume now that Gi,k(x, T ) = Pi,k (x,T )

Qi,k (x,T )
for some k ∈ N+ and

every i ∈ {0, 1, . . . , 2k − 1}, where Pi,k, Qi,k ∈ Z[x, T ], Qi,k 
= 0. Then we use the
recurrence from Lemma 4.7. We thus have for i ∈ {0, 1, . . . , 2k − 1}:
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Gi,k+1(x, T ) =
∞∑

m=0

hi,k+1,m(x)Tm

=
∞∑

m=0

1

2

(
hi,k,m(

√
x)(1 + √

x)m(k+1) + hi,k,m(−√
x)(1 − √

x)m(k+1)
)
Tm

= 1

2

(
Gi,k(

√
x, (1 + √

x)k+1T ) + Gi,k(−√
x, (1 − √

x)k+1T )
)

= 1

2

(
Pi,k(

√
x, (1 + √

x)k+1T )

Qi,k(
√
x, (1 + √

x)k+1T )
+ Pi,k(−√

x, (1 − √
x)k+1T )

Qi,k(−√
x, (1 − √

x)k+1T )

)

= P̂i,k+1(
√
x, T )

Q̂i,k+1(
√
x, T )

,

Gi+2k ,k+1(x, T ) =
∞∑

m=0

hi+2k ,k+1,m(x)Tm

=
∞∑

m=0

1

2
√
x

(
hi,k,m(

√
x)(1 + √

x)m(k+1) − hi,k,m(−√
x)(1 − √

x)m(k+1)
)
Tm

= 1

2
√
x

(
Gi,k(

√
x, (1 + √

x)k+1T ) − Gi,k(−√
x, (1 − √

x)k+1T )
)

= 1

2
√
x

(
Pi,k(

√
x, (1 + √

x)k+1T )

Qi,k(
√
x, (1 + √

x)k+1T )
− Pi,k(−√

x, (1 − √
x)k+1T )

Qi,k(−√
x, (1 − √

x)k+1T )

)

= P̂i+2k ,k+1(
√
x, T )

Q̂i+2k ,k+1(
√
x, T )

,

where

P̂i,k+1(
√
x, T ) =1

2

(
Pi,k(

√
x, (1 + √

x)k+1T )Qi,k(−√
x, (1 − √

x)k+1T )

+Pi,k(−√
x, (1 − √

x)k+1T )Qi,k(
√
x, (1 + √

x)k+1T )
)

,

P̂i+2k ,k+1(
√
x, T ) = 1

2
√
x

(
Pi,k(

√
x, (1 + √

x)k+1T )Qi,k(−√
x, (1 − √

x)k+1T )

−Pi,k(−√
x, (1 − √

x)k+1T )Qi,k(
√
x, (1 + √

x)k+1T )
)

,

Q̂i,k+1(
√
x, T ) =Q̂i+2k ,k+1(

√
x, T ) = Qi,k(

√
x, (1 + √

x)k+1T )

× Qi,k(−√
x, (1 − √

x)k+1T ).

(20)
One can easily check that the polynomials P̂i,k+1, Q̂i,k+1, P̂i+2k ,k+1, Q̂i+2k ,k+1 ∈
Z[√x, T ], treated as functions, are even with respect to the first variable. Hence

P̂i,k+1(
√
x, T ) = Pi,k+1(x, T ),

P̂i+2k ,k+1(
√
x, T ) = Pi+2k ,k+1(x, T ),

Q̂i,k+1(
√
x, T ) = Qi,k+1(x, T ),

Q̂i+2k ,k+1(
√
x, T ) = Qi+2k ,k+1(x, T )

(21)
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and as a result Gi,k+1(x, T ) = Pi,k+1(x,T )

Qi,k+1(x,T )
and Gi+2k ,k+1(x, T ) = Pi+2k ,k+1(x,T )

Qi,k+1(x,T )
.

Since deg Pi,0 < deg Qi,0 for i ∈ {0, 1}, by formulae (20) and (21) we conclude
that deg Pi,k < deg Qi,k for any k ∈ N and i ∈ {0, 1, . . . , 2k − 1}. Hence the
equality Qi,k(x, T )Gi,k(x, T ) = Pi,k(x, T ) implies annihilation of the sequence
(hi,k,m(x))m∈N by the operator Vk(x, θ) = Qi,k(x, θ). ��

5 Questions, remarks and conjectures

In this section we present several questions and conjectures which appeared during
our work on this paper. We also present some related results.

We proved that the sequence ν2(t2k (n)) is 2-regular. This result motivates the fol-
lowing

Question 5.1 Let m ∈ N≥2 be given. Is the sequence (ν2(tm(n))n∈N 2-regular?

Numerical computations inWolframMathematica [20] make us state the following
conjecture on the 2-adic valuation of numbers t2k+1(n), n ∈ N, where k ∈ N2 is fixed.

Conjecture 5.2 For each n ∈ N we have the following equalities:

ν2(t5(4n + j)) = 4

⌈
ν2(n + 1)

2

⌉

− (ν2(n + 1) (mod 2)), j ∈ {0, 1, 2, 3},

ν2(t9(8n + j)) = 5

⌈
ν2(n + 1)

2

⌉

− 2(ν2(n + 1) (mod 2)), j ∈ {0, 1, . . . , 7}.

In general, for each k ∈ N2 there exists a strictly increasing sequence (Ak,n)n∈N of
nonnegative integers such that Ak,0 = 0 and

ν2(t2k+1(2
kn + j)) = Ak,ν2(n+1)

for each n ∈ N and j ∈ {0, 1, . . . , 2k − 1}.
Using Lemma 3.2 we can verify that ν2(t2k+1(2

kn + j)) = 0 if and only if n is
even.

We believe that the following more general statement is true.

Conjecture 5.3 Let m ∈ N≥2 be given and suppose that m is not of the form 2k − 1
for k ∈ N+. Then the sequence (ν2(bm(n)))n∈N is unbounded.

We performed extensive calculations in the case ofm = 2 and observed some inter-
esting phenomena concerning the solutions of the equation ν2(b2(n)) = a, where a is
fixed positive integer. In order to investigate this equation we computed all polynomi-
als hi,k,2(x) for k ≤ 8 and i ≤ 2k − 1 and looked for these satisfying the congruence
hi,k,2(x) ≡ 0 (mod 2a) in Z[x]. For any given polynomial of this type we immedi-
ately got the inequality ν2(b2(2kn+i)) ≥ a for each n ∈ N. Then we checked whether
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the inequality is in essence an equality. In order to verify this it is enough to check
whether the following congruence holds

Hi,k,2(x)

2a
= hi,k,2(x)

2a(1 − x)2k
H2(x) ≡ 1

1 − x
(mod 2).

However, H2(x) ≡ (1 − x)2 (mod 2) and thus it is enough to check whether

hi,k,2(x)

2a(1 − x)2(k−1)
≡ 1

1 − x
(mod 2) ⇐⇒ hi,k,2(x)

2a
≡ (1 − x)2k−3 (mod 2).

This is easy (at least in the range we considered) and we were able to prove the
following

Theorem 5.4 The following equalities are true:

ν2(b2(4n + 3)) = 3,

ν2(b2(8n + 5)) = 3,

ν2(b2(16n + i)) = 3 f or i ∈ {6, 9, 12},
ν2(b2(32n + i)) = 3 f or i ∈ {8, 17, 26},
ν2(b2(64n + i)) = 3 f or i ∈ {16, 33, 50},
ν2(b2(128n + i)) = 3 f or i ∈ {32, 65, 98},
ν2(b2(256n + i)) = 3 f or i ∈ {64, 129, 194},
ν2(b2(32n + i)) = 4 f or i ∈ {4, 30},
ν2(b2(64n + i)) = 4 f or i ∈ {10, 56},
ν2(b2(128n + i)) = 4 f or i ∈ {48, 82},
ν2(b2(256n + i)) = 4 f or i ∈ {96, 162},
ν2(b2(64n + i)) = 5 f or i ∈ {20, 46},
ν2(b2(128n + i)) = 5 f or i ∈ {42, 88},
ν2(b2(256n + i)) = 5 f or i ∈ {18, 240},
ν2(b2(128n + i)) = 6 f or i ∈ {14, 116},
ν2(b2(256n + i)) = 6 f or i ∈ {106, 152},
ν2(b2(256n + i)) = 7 f or i ∈ {78, 180}.

We also expect that the following congruences are true.

Conjecture 5.5 Let m be a fixed positive integer. Then for each n ∈ N and k ≥ m+2
the following congruence holds:

b2m
(
2k+1n

)
≡ b2m

(
2k−1n

)
(mod 2k).
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Conjecture 5.6 Let m be a fixed positive integer. Then for each n ∈ N and k ≥ m+2
the following congruence holds:

b2m−1

(
2k+1n

)
≡ b2m−1

(
2k−1n

)
(mod 24


k+1
2 �−2).

In fact we expect the following.

Conjecture 5.7 Let m be a fixed positive integer. Then for each n ∈ N and given
k � 1 there is a non-decreasing function f : N → N such that f (k) = O(k) and the
following congruence holds

bm
(
2k+1n

)
≡ bm

(
2k−1n

)
(mod 2 f (k)).

According to numerical computations we noticed that for m ≥ 2 we have

tm(3n) > 0, tm(3n + 1) < 0

for most values n ∈ N. However, tm(3n) < 0 for some n and similarly tm(3n+1) > 0
for some n. Hence we have the following supposition.

Conjecture 5.8 Let m be a positive integer ≥ 2. Let us define

Am, j =
{
n ∈ N : sgn tm(3n + j) 
= (−1) j

}
, j ∈ {0, 1}.

Then the sets Am, j are infinite and they have asymptotic density equal to 0, i.e.,

lim
n→+∞


Am, j ∩ {0, 1, . . . , n − 1}
n

= 0.

We also have seen that for initial valuesm, n ∈ N+,m ≥ 2, the numbers tm(n−1),
tm(n), tm(n+1) do not have the same sign, as well. Moreover we noted that tm(n)2 >

tm(n − 1)tm(n + 1).

Conjecture 5.9 For any m, n ∈ N+, m ≥ 2, the numbers tm(n − 1), tm(n), tm(n + 1)
do not have the same sign and tm(n)2 > tm(n − 1)tm(n + 1).

The above conjecture was proved in Sect. 3 for m = 2.
We stated that (−1)n

(
bm(n)2 − bm(n − 1)bm(n + 1)

)
> 0 for m ∈ {1, 2} and

n ∈ N+.We noticed that the behaviour of the expressions bm(n)2−bm(n−1)bm(n+1)
for m > 2 is different. Namely, we expect that following is true.

Conjecture 5.10 If m ≥ 4 then bm(n)2 − bm(n − 1)bm(n + 1) > 0 for any n ∈ N+.
For m = 3 there exists n0 ∈ N+ such that (−1)n

(
b3(n)2 − b3(n − 1)b3(n + 1)

)
>

0 for n ≤ n0 and b3(n)2 − b3(n − 1)b3(n + 1) > 0 for n > n0.
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6 Appendix by Andrzej Schinzel

Lemma 6.1 The sequence (t2(n))n∈N satisfies the following recurrence relation:
t2(0) = 1, t2(1) = −2 and for n ≥ 1 we have

t2(2n) = t2(n) + t2(n − 1), t2(2n + 1) = −2t2(n).

Proof We have by the formula (4) with m = 2

t2(n) =
∑

a+b=n

(−1)s2(a)+s2(b). (22)

If n = 2n1 + 1, then either a = 2a1 + 1, b = 2b1, a1 + b1 = n1 and s2(a) +
s2(b) = s2(a1) + s2(b1) + 1 or a = 2a1, b = 2b1 + 1, a1 + b1 = n1 and then
s2(a) + s2(b) = s2(a1) + s2(b1) + 1, thus t2(2n1 + 1) = −2t2(n1).

If n = 2n1, then either a = 2a1, b = 2b1, a1 + b1 = n1 and s2(a) + s2(b) =
s2(a1) + s2(b1) or a = 2a1 + 1, b = 2b1 + 1, a1 + b1 = n1 − 1 and s2(a) + s2(b) =
s2(a1) + s2(b1), thus t2(2n1) = t2(n1) + t2(n1 − 1). ��
Lemma 6.2 For n ∈ N we have t2(2n) ≡ 1 + 2n (mod 4).

Proof By (22) we have

t2(2n) = 2
∑

a+b=2n,a<b

(−1)s2(a)+s2(b) + 1 (23)

and clearly
∑

a+b=2n,a<b

(−1)s2(a)+s2(b) ≡ |{(a, b) ∈ Z × Z : 0 ≤ a < b, a + b = 2n}| ≡ n (mod 2). (24)

Lemma 6.2 follows from (23) and (24). ��
We have the following result concerning the existence of solutions of the equation

t2(n) = m with fixed m.

Theorem 6.3 For all integers n ≥ 0 and m if t2(n) = m, then t2(n) = −t2(n′), where

n′ = n + (−1)
ν2(m)+m−2ν2(m)

2ν2(m)+1 2ν2(m)+1.

Proof First, we shall show that n′ ≥ 0. Assuming the contrary, we have n′ < 0,
thus n < 2ν2(m)+1 and since by (22) n + 1 ≥ |m|, it follows that m = ±2ν2(m), n =
2ν2(m)−1,m = (−2)ν2(m) and finally n′ = 2ν2(m)+1+2ν2(m)−1 > 0, a contradiction.
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In order to prove that t2(n) = −t2(n′)we proceed by induction on n. For n = 0, 1, 2
the theorem is true, since t2(0) = 1, t2(1) = −2, t2(2) = −1, t2(5) = 2. Assume now
that the theorem is true for all n < N with N ≥ 3. If N is odd, we have by Lemma 6.1

t2(N ) = −2t2

(
N − 1

2

)

, t2(N
′) = −2t2

(
N ′ − 1

2

)

and by the induction hypothesis it suffices to show that
( N−1

2

)′ = N ′−1
2 . However,

t2(
N−1
2 ) = −m

2 , ν2
(−m

2

) = ν2(m) − 1 and

(−1)
ν2(m)−1+ −m

2 −2ν2(m)−1

2ν2(m) 2ν2(m) = 1

2

(

(−1)
ν2(m)+m−2ν2(m)

2ν2(m)+1 2ν2(m)+1

)

and our result follows in the case of N odd.
If N is even, N = 2N1, N1 ≥ 2 we have by Lemma 6.1 the identity t2(N ) =

t2(N1) + t2(N1 − 1) and by Lemma 6.2

N ′ = N + (−1)
t2(2N1)−1

2 2 = N + (−1)N12.

Therefore, if N1 ≡ 0 (mod 2) we have by Lemma 6.1

t2(N
′) = t2(N + 2) = t2(N1 + 1) + t2(N1),

which gives the equivalence

t2(N ) = −t2(N
′) ⇐⇒ t2(N1 − 1) + t2(N1 + 1) = −2t2(N1)

⇐⇒ −2t2

(
N1

2
− 1

)

− 2t2

(
N1

2

)

= −2t2(N1)

⇐⇒ t2(N1) = t2

(
N1

2

)

+ t2

(
N1

2
− 1

)

.

The last equality is true by Lemma 6.1 with n = N1/2.
If N1 ≡ 1 (mod 2) we have by Lemma 6.1

t2(N
′) = t2(N − 2) = t2(N1 − 1) + t2(N1 − 2),

which gives the equivalence

t2(N ) = −t2(N
′) ⇐⇒ t2(N1) + t2(N1 − 2) = −2t2(N1 − 1)

⇐⇒ −2t2

(
N1 − 1

2

)

− 2t2

(
N1 − 3

2

)

= −2t2(N1 − 1)

⇐⇒ t2(N1 − 1) = t2

(
N1 − 1

2

)

+ t2

(
N1 − 3

2

)

.
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The last equality is true by Lemma 6.1 with n = N1−1
2 . Our theorem is proved. ��

Lemma 6.4 We have

S1 =
∑

j1 + 2 j2 + · · · + njn = n
j1 + j2 + · · · + jn ≤ m

m!
(
m −∑n

ν=1 jν
)! j1! · . . . · jn ! =

(
n + m − 1

m − 1

)

,

where jν (1 ≤ ν ≤ n) are non-negative integers.

Proof Consider the sum
S0 =

∑

i1+···+im=n

1,

where iμ (1 ≤ μ ≤ m) are non-negative integers. Let ν occur among iμ exactly jν
times, thus S1 = S0. By Perron [14, Satz 18] we have S0 = (n+m−1

m−1

)
. ��

Theorem 6.5 If m > n2
log 2 , then tm(n) 
= 0.

Proof We have
tm(n) =

∑

i1+···+im=n

(−1)
∑m

ν=1 s2(iν )

and by the argument used in the proof of Lemma 6.4

tm(n) =
∑

j1+2 j2+···+njn=n

(−1)
∑n

ν=1 jνs2(ν) m!
(
m −∑n

ν=1 jν
)! j1! · . . . · jn ! .

The summand corresponding to j1 = n is

(−1)n
m!

(m − n)!n! = (−1)n
(
m

n

)

.

The sum of the absolute values of the remaining terms is by Lemma 6.4

(
n + m − 1

m − 1

)

−
(
m

n

)

.

Therefore, tm(n) = 0 implies

(
n + m − 1

m − 1

)

≥ 2

(
m

n

)

thus

(m + n − 1)!
(m − 1)! ≥ 2

m!
(m − n)!
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and on taking logarithms

n−1∑

i=0

n − 1

m − n + 1 + i
≥

n−1∑

i=0

log

(

1 + n − 1

m − n + 1 + i

)

≥ log 2. (25)

However,
n−1∑

i=0

1

m − n + 1 + i
<

∫ m

m−n

dt

t
= log

m

m − n
<

n

m − n
(26)

and for m > n2
log 2 we obtain

m − n >
n2 − n

log 2

and from (25) and (26) we get

log 2 > log 2,

which is impossible. ��
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