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The statement of Theorem 1.2 in the original article is incorrect and should read as
follows. The notation is from the original article.

Theorem 1.2 The spectra of the Cesàro operator C acting on the Fréchet space
C∞(R+) are given by

σpt (C) =
{
1

n
: n ∈ N

}

and
σ(C) = σ ∗(C) = σpt (C).

The proof of Theorem 1.2 is based on Proposition 3.2 in the original article, which
is where the error occurs. The correct statement of this result is the following one.

The online version of the original article can be found under doi:10.1007/s00605-015-0863-z.
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With this new version of Proposition 3.2 (note that only (0.1) changes) the proof of
Theorem 1.2 above proceeds as in the original article.

Proposition 3.2 The family (T (t))t∈R is a uniformly continuous, locally equicon-
tinuous C0-group on C∞(R+). The infinitesimal generator A of (T (t))t∈R is the
continuous, everywhere defined linear operator

(A f )(x) := −x f ′(x), x ∈ R+, f ∈ C∞(R+).

Moreover, (T (t))t≥0 is an equicontinuous C0-semigroup on C∞(R+).Concerning the
spectra of A, it is the case that

σpt (A) = {−n : n ∈ N0}

and that
σ(A) = σ ∗(A) = σpt (A). (0.1)

Concerning the proof of Proposition 3.2 above, the spectrum of A can be calculated

directly as follows. Define Tm g(x) := ∑m
j=0

g( j)(0)
j ! x j , for m ∈ N0 := {0} ∪ N, i.e.,

the mth Taylor polynomial, for any g ∈ C∞(R+). Fix λ ∈ C\{0,−1,−2, . . .} and
select n ∈ N such that Reλ > −n. The resolvent operator of A at λ is then given by

R(λ, A) f (x) = xn
∫ 1

0

f (xy) − Tn−1 f (xy)

(xy)n
yn+λ−1 dy +

n−1∑
j=0

f ( j)(0)

j !
x j

(λ + j)

=: Hn(λ) f (x) + Kn(λ) f (x), (0.2)

for every f ∈ C∞(R+) and x ∈ R+. Indeed, direct calculation shows that
R(λ, A)(λI − A) f = I f = (λI − A)R(λ, A) f for each f (x) = xk , k ∈ N0,
from which the claim follows provided that the continuity of R(λ, A) is established.
For this we proceed as follows.

Select ε > 0 such that if μ ∈ C satisfies |μ − λ| < ε, then Reμ > (δ − n) and
|μ + j | > δ for each j ∈ N0 and some δ > 0. Since (Kn(μ) f )(m)(x) = 0, for m ≥ n
and x ∈ R+, it follows that

(Kn(μ) f )(m) (x) =
n−1∑
r=m

f (r)(0)xr−m

(r − m)!(μ + r)
, f ∈ C∞(R+), 0 ≤ m < n.

It is then routine to show that {Kn(μ) f : |μ−λ| < ε} is a bounded subset ofC∞(R+).
Accordingly, {Kn(μ) : |μ − λ| < ε} is an equicontinuous set in L(C∞(R+)).

The equicontinuity of {Hn(μ) : |μ − λ| < ε} is more involved. One first treats
n = 1, in which case (H1(μ) f )(m) (x) equals

m
∫ 1

0
ym+μ−1 (

C( f ′)
)(m−1)

(xy) dy + x
∫ 1

0
ym+μ

(
C( f ′)

)(m)
(xy) dy
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for x ∈ R+ and m ∈ N0. This formula leads to the estimates needed to show that
{H1(μ) f : |μ − λ| < ε} is a bounded set in C∞(R+). Now fix n ≥ 2. It follows from
(0.2) that

(Hn(μ) f )(m) (x) =
∫ 1

0

⎛
⎝ f (m)(xy) −

n−1∑
j=m

f ( j)(0)

( j − m)! (xy) j−m

⎞
⎠ ym+μ−1 dy,

for x ∈ R+ and m = 1, . . . , (n − 2), and that

(Hn(μ) f )(n−1) (x) = H1(n + μ − 1) f (n−1)(x), x ∈ R+,

with (n + μ − 1) ∈ (−1, 0]. Via these identities one can deduce the estimates needed
to verify that {Hn(μ) f : |μ − λ| < ε} is a bounded subset of C∞(R+) for each
f ∈ C∞(R+).
The authors thank Prof. P. Domanski for pointing out the error. He also suggested

a formula needed to correctly calculate R(λ, A), as above. Further information con-
cerning the operator P(xd/dx) acting in the space C∞(R+), for P(z) a polynomial,
can be found in [1].

Reference
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