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Abstract An important result of H. Weyl states that for every sequence (an)n≥1 of
distinct positive integers the sequence of fractional parts of (anα)n≥1 is uniformly
distributed modulo one for almost all α. However, in general it is a very hard problem
to calculate the precise order of convergence of the discrepancy DN of ({anα})n≥1
for almost all α. By a result of R. C. Baker this discrepancy always satisfies NDN =
O(N

1
2+ε) for almost all α and all ε > 0. In the present note for arbitrary γ ∈ (0, 1

2 ]
we construct a sequence (an)n≥1 such that for almost all α we have NDN = O(N γ )

and NDN = �(N γ−ε) for all ε > 0, thereby proving that any prescribed metric
discrepancy behavior within the admissible range can actually be realized.
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1 Introduction

Weyl [12] proved that for every sequence (an)n≥1 of distinct positive integers the
sequence ({anα})n≥1 is uniformly distributed modulo one for almost all reals α. Here,
and in the sequel, {·} denotes the fractional part function. The speed of convergence

Communicated by J. Schoißengeier.

B Christoph Aistleitner
christoph.aistleitner@jku.at

Gerhard Larcher
gerhard.larcher@jku.at

1 Institute of Financial Mathematics and Applied Number Theory, University Linz, Linz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-015-0860-2&domain=pdf


508 C. Aistleitner, G. Larcher

towards the uniform distribution is measured in terms of the discrepancy, which—for
an arbitrary sequence (xn)n≥1 of points in [0, 1 )—is defined by

DN = DN (x1, . . . , xN ) = sup
0≤a<b≤1

∣
∣
∣
∣

AN ([a, b) )

N
− (b − a)

∣
∣
∣
∣
,

where AN ([a, b) ) := # {1 ≤ n ≤ N | xn ∈ [a, b )} . For a given sequence (an)n≥1 it
is usually a very hard and challenging problem to give sharp estimates for the discrep-
ancy DN of ({anα})n≥1 valid for almost all α. For general background on uniform
distribution theory and discrepancy theory see for example the monographs [6,9].

A famous result of Baker [3] states that for any sequence (an)n≥1 of distinct positive
integers for the discrepancy DN of ({anα})n≥1 we have

NDN = O(N
1
2 (log N )

3
2+ε) as N → ∞ (1)

for almost all α and for all ε > 0.
Note that (1) is a general upper bound which holds for all sequences (an)n≥1; how-

ever, for some specific sequences the precise typical order of decay of the discrepancy
of ({anα})n≥1 can differ significantly from the upper bound in (1). The fact that (1)
is essentially optimal (apart from logarithmic factors) as a general result covering
all possible sequences can for example be seen by considering so-called lacunary
sequences (an)n≥1, i.e., sequences for which

an+1
an

≥ 1+ δ for a fixed δ > 0 and all n
large enough. In this case for DN we have

1

4
√
2

≤ lim sup
N→∞

NDN√
2N log log N

≤ cδ

for almost all α (see [10]), which shows that the exponent 1/2 of N on the right-
hand side of (1) cannot be reduced for this type of sequence. For more information
concerning possible improvements of the logarithmic factor in (1), see [5].

Quite recently in [2] it was shown that also for a large class of sequences with
polynomial growth behavior Baker’s result is essentially best possible. For example,
the following result was shown there: let f ∈ Z [x] be a polynomial of degree larger
or equal to 2. Then for the discrepancy DN of ({ f (n)α})n≥1 for almost all α and for
all ε > 0 we have

NDN = �(N
1
2−ε).

On the other hand there is the classical example of the Kronecker sequence, i.e.,
an = n, which shows that the actual metric discrepancy behavior of ({anα})n≥1 can
differ vastly from the general upper bound in (1). Namely, for the discrepancy of the
sequence ({nα})n≥1 for almost all α and for all ε > 0 we have

NDN = O(log N (log log N )1+ε), (2)
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which follows from classical results of Khintchine in the metric theory of continued
fractions (for even more precise results, see [11]). The estimate (2) of course also
holds for an = f (n) with f ∈ Z [x] of degree 1. In [2] further examples for (an)n≥1
were given, where (an)n≥1 has polynomial growth behavior of arbitrary degree, such
that for the discrepancy of ({anα})n≥1 we have

NDN = O((log N )2+ε)

for almost all α and for all ε > 0; see there for more details.
These results may seduce to the hypothesis that for all choices of (an)n≥1 for the

discrepancy of ({anα})n≥1 for almost all α we either have

NDN = O(N ε) (3)

or
NDN = �(N

1
2−ε). (4)

This hypothesis, however, is wrong as was shown in [1]: let (an)n≥1 be the sequence
of those positive integers with an even sum of digits in base 2, sorted in increasing
order; that is (an)n≥1 = (3, 5, 6, 9, 10, . . . ). Then for the discrepancy of ({anα})n≥1for
almost all α we have

NDN = O(N κ+ε)

and

NDN = �(N κ−ε)

for all ε > 0, where κ is a constant with κ ≈ 0.404. Interestingly, the precise value of
κ is unknown; see [8] for the background.

The aim of the present paper is to show that the example above is not a singular
counter-example, but that indeed “everything” between (3) and (4) is possible. More
precisely, we will show the following theorem.

Theorem 1 Let 0 < γ ≤ 1
2 . Then there exists a strictly increasing sequence (an)n≥1

of positive integers such that for the discrepancy of the sequence ({anα})n≥1 for almost
all α we have

NDN = O(N γ )

and

NDN = �(N γ−ε)

for all ε > 0.
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2 Proof of the theorem

For the proof we need an auxiliary result which easily follows from classical work of
Behnke [4].

Lemma 1 Let (ek)k≥1 be a strictly increasing sequence of positive integers. Let ε > 0.
Then for almost all α there is a constant K (α, ε) > 0 such that for all r ∈ N there
exist Mr ≤ er such that for the discrepancy of the sequence ({n2α})n≥1 we have

Mr DMr ≥ K (α, ε)

√
er

(log er )1+ε
.

Proof For α ∈ R let ak (α) denote the kth continued fraction coefficient in the con-
tinued fraction expansion of α. Then it is well-known that for almost all α we have
ak(α) = O (

k1+ε
)

for all ε > 0. Let ε > 0 be given and let α and c (α, ε) be such that

ak(α) ≤ c (α, ε) k1+ε (5)

for all k ≥ 1.
Let ql the lth best approximation denominator of α. Then

ql+1 ≤ (c (α, ε) l1+ε + 1)ql . (6)

Since ql ≥ 2
l
2 in any case, we have l ≤ 2 log ql

log 2 , and we obtain

ql+1 ≤ c1 (α, ε) ql (log ql)
1+ε , (7)

for an appropriate constant c1 (α, ε). In [4] it was shown in Satz XVII that for every
real α we have

∣
∣
∣
∣
∣

N
∑

n=1

e2π in
2α

∣
∣
∣
∣
∣
= �(N

1
2 ).

Indeed, if we follow the proof of this theorem we find that even the following was
shown: for every α and for every best approximation denominator ql of α there exists
an Yl <

√
ql such that

∣
∣
∑Yl

n=1 e
2π in2α

∣
∣ ≥ cabs

√
ql . Here cabs is a positive absolute

constant (not depending on α).
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Let now r ∈ N be given and let l be such that ql ≤ er < ql+1, and let Mr := Yl
from above. Then by (6) and (7) we obtain, for an appropriate constant c2 (α, ε),

∣
∣
∣
∣
∣

Mr∑

n=1

e2π in
2α

∣
∣
∣
∣
∣
≥ cabs

√
ql

≥ c2 (α, ε)

√
ql+1

(log ql)1+ε

≥ c2 (α, ε)

√
el

(log el)1+ε
.

By the fact that (see Chapter 2, Corollary 5.1 of [9])

Mr DMr ≥ 1

4

∣
∣
∣
∣
∣

Mr∑

n=1

e2π in
2α

∣
∣
∣
∣
∣
,

which is a special case of Koksma’s inequality, the result follows. 	


Now we are ready to prove the main theorem.

Proof of Theorem 1 Let (m j ) j≥1 and (e j ) j≥1 be two strictly increasing sequences
of positive integers, which will be determined later. We will consider the following
strictly increasing sequence of positive integers, which will be our sequence (an)n≥1:

1, 2, 3, . . . , m1
︸︷︷︸

=:A1

,

A1 + 12, A1 + 22, A1 + 32, A1 + 42, . . . , A1 + e1
2

︸ ︷︷ ︸

:=B1

,

B1 + 1, B1 + 2, B1 + 3, . . . , B1 + m2
︸ ︷︷ ︸

=:A2

,

A2 + 12, A2 + 22, A2 + 32, A2 + 42, . . . , A2 + e2
2

︸ ︷︷ ︸

=:B2
,

B2 + 1, B2 + 2, B2 + 3, . . . , B2 + m3
︸ ︷︷ ︸

=:A3

,

A3 + 12, A3 + 22, A3 + 32, A3 + 42, . . . , A3 + e3
2

︸ ︷︷ ︸

=:B3
,

...
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Furthermore, let

Fs :=
s

∑

i=1

mi +
s−1
∑

i=1

ei and Es :=
s

∑

i=1

mi +
s

∑

i=1

ei .

The sequence (an)n≥1 is constructed in such a way that it contains sections where it
grows like (n)n≥1 as well as sections where it grows like (n2)n≥1. By this construction
we exploit both the strong upper bounds for the discrepancy of ({nα})n≥1 and the
strong lower bounds for the discrepancy of ({n2α})n≥1, in an appropriately balanced
way, in order to obtain the desired discrepancy behavior of the sequence ({anα})n≥1.
In our argument we will repeatedly make use of the fact that

DN (x1, . . . , xN ) = DN ({x1 + β}, . . . , {xN + β}) (8)

for arbitrary x1, . . . , xN ∈ [0, 1] and β ∈ R, which allows us to transfer the dis-
crepancy bounds for ({nα})n≥1 and ({n2α})n≥1 directly to the shifted sequences
({(M + n)α})n≥1 and ({(M + n2)α})n≥1 for some integer M .

Let α be such that it satisfies (5) with ε = 1
2 . Then it is also well-known (see for

example [9]) that for the discrepancy DN of the sequence ({nα})n≥1 we have

NDN ≤ c1 (α) (log N )
3
2 (9)

for all N ≥ 2.
By the above mentioned general result of Baker, that is by (1), we know that for

almost all α for the discrepancy DN of the sequence ({n2α})n≥1 we have

NDN ≤ c3 (α, ε) N
1
2 (log N )

3
2+ε

for all ε > 0 and for all N ≥ 2, for an appropriate constant c3 (α, ε). Actually an even
slightly sharper estimate was given for the special case of the sequence ({n2α})n≥1 by
Fiedler et al. [7], who proved that

NDN ≤ c4 (α, ε) N
1
2 (log N )

1
4+ε (10)

for almost all α and for all ε > 0 and all N ≥ 2.
Assume that α satisfies (10) with ε = 1

8 . Then

NDN ≤ c2 (α) N
1
2 (log N )

3
8 (11)

for all N ≥ 2. Now for such α and for arbitrary N we consider the discrepancy DN

of the sequence ({anα})n≥1.

Case 1 Let N = Fl for some l. Then NDN ≤ El−1DEl−1 + (N − El−1) DEl−1,Fl ,

where Dx,y denotes the discrepancy of the point set ({anα})n=x+1,x+2,...,y . Hence
by (8), (9) and by the trivial estimate DBl−1 ≤ 1 we have
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NDN ≤ El−1 + c1 (α) (logml)
3
2

≤ 2 (logml)
2

≤ 2 (log N )2

for all l large enough, provided that [condition (i)] ml is chosen such that
(logml)

2 ≥ El−1.

Case 2 Let Fl < N ≤ El for some l. Then by Case 1 and by (8) and (11) we have for
l large enough that

NDN ≤ Fl DFl + (N − Fl) DFl ,N

≤ 2 (log Fl)
2 + c2 (α) (N − Fl)

1
2 (log (N − Fl))

3
8 .

Note that 0 < N − Fl < el .
We choose [condition (ii)]

el :=
⌈

Fl2γ

log
(

Fl2γ
)

⌉

. (12)

Note that conditions (i) and (ii) do not depend on α. Now assume that l is so large that
2 (log Fl)2 <

Fl γ

2 . Then

Fγ

l

2
≤ 2 (log Fl)

2 + (el log el)
1
2 ≤ 2Fγ

l

and (note that γ ≤ 1
2 )

Fl < N ≤ El = Fl + el ≤ 2Fl . (13)

Hence

NDN ≤ max (1, c2 (α)) 2Fγ

l

≤ max (1, c2 (α)) 2N γ .

Case 3 Let El < N < Fl+1 for some l. Then by Case 2 and by (8) and (9) we have

NDN ≤ El DEl + (N − El) DEl ,N

≤ 2max (1, c2 (α)) Eγ

l + c1 (α) (log (N − El))
2

≤ 3max (1, c2 (α)) N γ

for N large enough.
It remains to show that for every ε > 0 we have NDN ≥ N γ−ε for infinitely

many N . Let l be given and let Ml ≤ el with the properties given in Lemma 1. Let
N := Fl + Ml . Then by Lemma 1, Case 1, (8), (12) and (13) for l large enough we
have
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NDN ≥ MlDFl ,N − Fl DFl

≥ K (α, ε)

√
el

(log el)1+ε
− 2 (logml)

2

≥ Fγ

l

(log Fl)3

≥ N γ−ε.

This proves the theorem. 	
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