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Abstract We show that maximal one-sided ideals of the non-commutative Schwartz
space are closed. We also characterize all closed one-sided ideals of this algebra. As
a result, all maximal left ideals are fixed.
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1 Introduction

The problemof characterizing ideals of a given topological algebra belongs to classical
ones and there is vast literature devoted to it. The aim of this paper is to address
this problem in the case of one particular lmc Fréchet ∗-algebra, the so-called non-
commutative Schwartz space. This object has received reasonable attention recently,
mostly due to Ciaś—see [3], Domański—see [7] and the author—see [21,22]. This
paper is a continuation of the previous work. The motivation for the investigation of
the non-commutative Schwartz space—which we will denote from now on by S—
comes from several directions. First, it has several, natural function (and sequence)
space representations, for instance S is isomorphic (as a topological vector space)
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to the space C∞(M) of smooth functions on a compact smooth manifold M or to
the Schwartz space S(R) of test functions for tempered distributions (again as a tvs).
This last isomorphism justifies also the name for S (the other name algebra of smooth
operators—used e.g. by Ciaś—comes from the first-mentioned isomorphism). This
links our object with the structure theory of Fréchet spaces, especially with questions
concerning nuclearity or splitting of short exact sequences—see [17, Part IV]. This
algebra appears also in the context of K-theory—see [4,20] or in the context of cyclic
cohomology for crossed products—see [12,23]. Another interestingmotivation comes
from the theory of operator spaces and its locally convex analogues—see [10,11]. The
non-commutative Schwartz space plays also a role in quantum mechanics, where it is
called the space of physical states and its dual is the so-called space of observables—
see [8] for details. This algebra shares also some nice features with C∗-algebras, e.g.
it admits a Hölder functional calculus—see [3, Th. 5.2] and all positive functionals as
well as all derivations are automatically continuous—see [21, Ths. 11, 13].On the other
hand it causes some technical difficulties, e.g. it has neither a bounded approximate
identity—see [21, Prop. 2] nor is it a locally C∗-algebra—see [13, Ths. 8.2, 8.3].

The paper is divided into four parts. The next section contains basic notation and
terminology. The remaining two sections contain our main results. They are devoted
only to one-sided ideals since S is topologically simple, i.e. there are no non-trivial
closed two-sided ideals—see [21, Th. 4]. In the third Section we show that all maximal
one-sided ideals of S are closed—see Theorem 5. In the last Section we characterize
all closed one-sided ideals of S—see Theorem 7. As a consequence, we obtain that
a left ideal of the non-commutative Schwartz space is maximal if and only if it is
fixed—see Corollary 8.

For unexplained details we refer the reader to [17] in the case of the structure
theory of Fréchet spaces and to [5] in the case of the ‘algebraic-in-flavour’ aspects of
the paper.

The author is very indebted to Tomasz Kania for many valuable comments and
discussions and to David Blecher for pointing out the reference [9].

2 Notation and terminology

Throughout the paper we denote N := {1, 2, 3, . . .} and N0 := N ∪ {0}. Recall that
by

s =
⎧
⎨

⎩
ξ = (ξ j ) j∈N ⊂ C

N : |ξ |2k :=
+∞∑

j=1

|ξ j |2 j2k < +∞ for all k ∈ N0

⎫
⎬

⎭

we denote the space of rapidly decreasing sequences. This space becomes Fréchet
when endowed with the above defined sequence (| · |k)k∈N0 of norms. The basis
(Uk)k∈N0 of zero neighbourhoods of s is defined by Uk := {ξ ∈ s : |ξ |k ≤ 1}. This
space is topologically isomorphic to several spaces of functions, e.g. the spaceC∞(M)

of smooth functions on any smooth, compact manifold M or the Schwartz space of
rapidly decreasing functions S(R)—see [17, Example 29.5(2), (4)]. It is also present
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in the structure theory of (nuclear) Fréchet spaces as well as in the theory of splitting
of short exact sequences of Fréchet spaces—see [17,25, Ch. 30]. The topological dual
of s is

s′ =
⎧
⎨

⎩
η = (η j ) j∈N ⊂ C

N : |η|′2k :=
+∞∑

j=1

|η j |2 j−2k < +∞ for some k ∈ N0

⎫
⎬

⎭
.

If we now endow the space S := L(s′, s) of linear and continuous operators from
the dual of s into s with the topology of uniform convergence on bounded sets then it
becomes a Fréchet space with the sequence (‖ · ‖n)n∈N0 of norms given by

‖x‖n := sup{|xξ |n : ξ ∈ U ◦
n },

whereU ◦
n = {ξ ∈ s′ : ∑

j |ξ j |2 j−2n ≤ 1}. It is fairly easy to observe that the identity
map ι : s↪→s′ is a continuous embedding which allows us to endow the space S with
the multiplication defined by

xy := x ◦ ι ◦ y, x, y ∈ S.

This multiplication is easily seen to be separately continuous therefore by [26, Th.
1.5] it is also jointly continuous. If we define the duality bracket between s and s′ by

〈ξ, η〉 :=
∑

j∈N
ξ jη j , ξ ∈ s, η ∈ s′ (1)

then our algebra can also be given an involution map defined by

〈x∗ξ, η〉 := 〈ξ, xη〉, x ∈ S, ξ, η ∈ s′.

With these operations S becomes a locally multiplicatively convex (lmc for short)
Fréchet ∗-algebra and this will be the main object of the paper. It has several repre-
sentations as the lmc Fréchet ∗-algebra—see e.g. [7, Th. 1.1]. Of particular interest
for us will be the ∗-algebra isomorphism S � K∞, where

K∞ :=
⎧
⎨

⎩
x = (xi, j )i, j∈N : ‖x‖2n :=

∞∑

i, j=1

|xi j |2(i j)2n < +∞ for all n ∈ N0

⎫
⎬

⎭

is the lmc Fréchet ∗-algebra endowed with the topology defined by the sequence of
norms (‖·‖n)n∈N0 , multiplication of matrices and the ‘star’ operation being the matrix
conjugate transpose. It turns out that we also have the isomorphism S � s—this time,
however, as Fréchet spaces. Note that any reasonable multiplication (e.g. pointwise)
on the sequence space s makes it into a commutative algebra while S is highly non-
commutative. Thus, as a Fréchet space, S can be thought of as the space of smooth
functions or the Schwartz space of rapidly decreasing functions. On the other hand, if
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we endow s with the pointwise multiplication and involution being the coordinatewise
complex conjugation then we get a ∗-isomorphism (onto its range) D : s → S sending
a sequence a = (a j ) into a diagonal operator Da := diag(a j ) j . The above-mentioned
Fréchet space isomorphismS � s justifies the name non-commutative Schwartz space
which we will be using throughout the paper.

The isomorphism S � K∞ shows that our algebra can be thought of as an algebra
of matrices. Moreover the zeroth norm in S is just the C∗-algebra norm in B(�2) and
so we obtain a continuous inclusion map S↪→B(�2). In fact we even have S↪→K (�2)

since every element of S is a compact operator on �2. The above inclusions have
several consequences. Among them we point out that the non-commutative Schwartz
space does not have a unit and so by S1 we denote its unitization. This unit is in fact
the identity map on �2 therefore we still have S1 ⊂ B(�2). Furthermore by [7, Th. 2.3]
an element x ∈ S1 is invertible in S1 if and only if it is invertible in B(�2). Recall now
that by the natural inclusions s↪→�2 and �2↪→s′ we have SB(�2)S ⊂ S. Therefore,
if we denote by σA(x) the spectrum of an element x in the algebra A, by [2, Prop.
A.2.8] (cf. [7, Cor. 2.5]) we have

σS1(x) = σB(�2)(x), x ∈ S1.

This equality shows in particular that an element x ∈ S is positive in S if and only if it
is positive as an operator on �2. Consequently, the order structure, multiplication and
the ‘star’ operation in S and S1 are inherited from the C∗-algebra B(�2). Furthermore,
the space of self-adjoint elements of S, denoted by Ssa is a real Fréchet space and the
set S+ of positive elements is a convex cone in S. Moreover by [7, Cor. 2.4] S1 is a
Q-algebra and by [13, Ths. 8.2, 8.3] the topology of both S and S1 cannot be given
by a sequence of C∗-norms. It has also been shown recently in [3] that S as well as
S1 admit a functional calculus for normal elements. Its description is a bit technical
nevertheless we can work with the Hölder functions which vanish at 0. In particular
we can take roots of positive elements. To obtain this functional calculus one has to
apply a purely Fréchet space property (called (DN )) which holds trivially in Banach
spaces—see [3, Th. 5.2] for details.

3 Closedness of maximal one-sided ideals

In this Section we prove that all maximal one-sided ideals of the non-commutative
Schwartz space are closed. Recall that one-sided ideals are in fact all ideals one can
consider since by [21, Th. 4] S is topologically simple, i.e. there are no non-trivial
two-sided ideals. We will show in fact a stronger property, namely that null sequences
in S factor, i.e. for every sequence (xn)n∈N ⊂ S tending to 0 there is a single element
a ∈ S and another sequence (yn)n∈N ⊂ S also tending to zero such that xn = ayn

for all n ∈ N. This property may also be defined for algebra modules—see [5, Def.
2.6.11]—however we will not need this general setting here. It turns out that if null
sequences in a Banach algebra factor then maximal right ideals are closed—see [14,
Th. 3] (cf. also [5, Prop. 2.6.13]). However the proof of this result carries over onto
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Fréchet lmc algebras. If the algebra is involutive, this applies also to maximal left
ideals. We state this result explicitly.

Theorem 1 If null sequences in a Fréchet lmc ∗-algebra factor then all maximal
one-sided ideals are closed.

In order to prove that null sequences in S factor we cannot follow the Banach-algebra
proof of Varopoulos, who proved in [24] that if a Banach algebra admits a bounded
approximate identity then null sequences in this algebra factor. Instead we will rely
on [1] and [9]. Our proof will be divided into several steps. We start by defining α-
additive ordered Fréchet spaces (we restrict ourselves to the Fréchet-space setting but
this definition can mutatis mutandis be extended onto arbitrary lcs). By an ordered
locally convex space we mean a real lcs partially ordered by a closed convex cone of
positive elements. Our definition is slightly different from the one used e.g. by Asimov
in the setting of Banach spaces—see [1, p. 118]. While the dual to a Banach space is
still a Banach space (with the dual order if the initial space was ordered), this is no
longer true for Fréchet spaces (these are called (DF)-spaceswhich are notmetrizable in
general). Therefore we think such a slight change is reasonable. Of course for Banach
ordered spaces (which are by definition also Fréchet spaces) we get two different
notions of α-additiveness. The relation between these notions for an arbitrary ordered
Banach space X is that it is α-additive in our sense if and only if the dual ordered
Banach space X ′ (with the dual order) is α-additive in the sense used by Asimov.

Definition 2 Let α� 0. An ordered Fréchet space X is α-additive if for any p ∈ N

there exists q ∈ N such that for any n ∈ N and an arbitrary choice of n positive
functionals φ1, . . . , φn ∈ X ′ we have that

n∑

k=1

‖φk‖∗
q ≤ α

∥
∥
∥
∥
∥

n∑

k=1

φk

∥
∥
∥
∥
∥

∗

p

.

Proposition 3 Ssa is π2

6 -additive.

Proof We will be using in the proof the representation S � K∞ with the �∞-norms
of the matrices that is

‖x‖k,∞ := sup{|xi j |(i j)k : i, j ∈ N}.
Consequently, the dual norms in S ′ are given by the formulae

‖φ‖∗
k,1 :=

+∞∑

i, j=1

|φi j |(i j)−k (φ ∈ S ′).

Take a single positive functional φ. Positivity then implies—see [18, Ex. 3.2(i), p. 39]
or the proof of [21, Lemma 5]—that

|φi j |2 ≤ φi iφ j j for all i, j ∈ N.
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By Cauchy–Schwarz this leads to

‖φ‖∗
k,1 =

+∞∑

i, j=1

|φi j |(i j)−k ≤
⎛

⎝
+∞∑

i, j=1

|φi j |2(i j)−2(k−1)

⎞

⎠

1
2
⎛

⎝
+∞∑

i, j=1

(i j)−2

⎞

⎠

1
2

≤ π2

6

⎛

⎝
+∞∑

i, j=1

φi iφ j j (i j)−2(k−1)

⎞

⎠

1
2

= π2

6

+∞∑

j=1

φ j j j−2(k−1).

For arbitrary positive functionals φ1, . . . , φn this gives

n∑

m=1

‖φm‖∗
k ≤ π2

6

+∞∑

j=1

(
n∑

m=1

φm
j j

)

j−2(k−1) ≤ π2

6

∥
∥
∥
∥
∥

n∑

m=1

φm

∥
∥
∥
∥
∥

∗

k−1,1

.

We have thus shown that for any k ∈ N0, n ∈ N and arbitrary choice of positive
functionals φ1, . . . φn ∈ S ′

n∑

m=1

‖φm‖∗
k+1,1 ≤ π2

6

∥
∥
∥
∥
∥

n∑

m=1

φm

∥
∥
∥
∥
∥

∗

k,1

.

This proves that Ssa is π2

6 -additive.

The next step is to show that Ssa is quasi-directed. An ordered locally convex space
is (see [9]) quasi-directed if for any neighbourhood U of zero there is another neigh-
bourhood V of zero such that every finite subset of V is majorized by some element
of U . We will now prove that the ordered self-adjoint part of the non-commutative
Schwartz space is quasi-directed. The idea of proof comes from the proof of [1, Th.
1.1]. However at some point we will have to modify it in order to adapt it to the
Fréchet-space setting.

Proposition 4 Ssa is quasi-directed.

Proof Let α = π2

6 and fix n ∈ N. Following Asimov we denote by S(n)
sa the n-fold

Cartesian product of Ssa with itself. The topology in this Fréchet space is given by the
basis (U(n)

k )k∈N0 of zero neighbourhoods, where

U(n)
k = {

x(n) = (x1, . . . , xn) ∈ S(n)
sa : ‖x(n)‖k := max{‖x j‖k : j = 1, . . . , n} ≤ 1

}
.

With the closed positive cone P(n) := {p(n) : p j�0, j = 1, . . . , n}S(n)
sa becomes an

ordered Fréchet space. We also define D(n)
k := {x(n) = (x, . . . , x) : , ‖x‖k ≤ α} to be

the diagonal in S(n)
sa and

A(n)
k := D(n)

k − P(n) = {(x − p1, . . . , x − pn) : ‖x‖k ≤ α, p j�0}.

Following exactly the proof of [1, Th. 1.1] we obtain that
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U(n)
k+1 ⊂ A(n)

k (k ∈ N0). (2)

Now we modify the proof of Asimov. Let x(n) ∈ U(n)
k+1. By (2) there is z(n)

1 − p(n)
1 ∈

A(n)
k such that

‖x(n) − (z(n)
1 − p(n)

1 )‖k+2 <
1

2
, ‖z(n)

1 ‖k ≤ α, p(n)
1 � 0.

If y(n)
1 := x(n) − (z(n)

1 − p(n)
1 ) then x(n) = y(n)

1 + z(n)
1 − p(n)

1 ≤ y(n)
1 + z(n)

1 and

y(n)
1 ∈ 1

2A
(n)
k+1. Therefore there is z

(n)
2 − p(n)

2 ∈ 1
2A

(n)
k+1 such that

‖y(n)
1 − (z(n)

2 − p(n)
2 )‖k+3 <

1

22
, ‖z(n)

2 ‖k+1 ≤ α

2
, p(n)

2 � 0.

If y(n)
2 := y(n)

1 − (z(n)
2 − p(n)

2 ) then x(n) ≤ z(n)
1 + z(n)

2 + y(n)
2 and y(n)

2 ∈ 1
22
A(n)
k+2.

Proceeding recursively we will find sequences (y(n)
m )m∈N, (z(n)

m )m∈N ⊂ Ssa such that

‖y(n)
m ‖k+1+m ≤ 1

2m
, z(n)

m ∈ 1

2m−1D
(n)
k−1+m, x(n) ≤ z(n)

1 + · · · + z(n)
m + y(n)

m (m ∈N).

It is now easy to show that y(n)
m → 0 when m tends to infinity and the series

∑+∞
m=1 z

(n)
m

converges absolutely. Therefore there is z(n) := ∑+∞
m=1 z

(n)
m and x(n) ≤ z(n). Moreover

‖z(n)‖k ≤
+∞∑

m=1

‖z(n)
m ‖k−1+m ≤ 2α.

The above argument was independent of the choice of n ∈ N which means that for
any k ∈ N0, n ∈ N and for arbitrary self-adjoint x1, . . . , xn ∈ Uk+1 there is z ∈ 2αUk

such that x j ≤ z for all j = 1, . . . , n. Since (Uk)k is a basis of zero neighbourhoods
this implies that Ssa is quasi-directed. ��

Now we are ready to prove the following result.

Theorem 5 Null sequences in the non-commutative Schwartz space factor. Conse-
quently, all maximal one-sided ideals of S are closed.

Proof Let (xn)n∈N be a null sequence in S. By [21, Lemmata 8 and 12] we have

xn = (xn x∗
n )

1
4 yn, ‖yn‖k,∞ ≤ √

2‖xn‖4k,∞ (n ∈ N),

where ‖a‖k,∞ = sup{|ai j |(i j)k : i, j ∈ N} for a ∈ S. This implies that the sequences

(yn)n∈N ∈ S and (zn)n∈N ∈ S+, zn := (xn x∗
n )

1
4 both tend to zero. By Proposition 4

and [9, Th. 1] there is a positive element z ∈ S which majorizes the sequence (zn)n ,
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i.e. zn ≤ z for all n ∈ N. Now we apply [21, Lemma 12] to the pairs (z, zn) and we
obtain a decomposition

z
1
2
n = z

1
4 wn, ‖wn‖k,∞ ≤ √

2max

{
∥
∥
∥z

1
4

∥
∥
∥
2k,∞ ,

∥
∥
∥
∥z

1
2
n

∥
∥
∥
∥

1
2

4k,∞

}

(n ∈ N). (3)

Consequently,

xn = zn yn = z
1
4

(
wnz

1
4 wn yn

)
:= z

1
4 tn (n ∈ N).

By (3) the sequence (wnz
1
4 wn)n∈N is bounded and yn → 0 therefore the sequence

(tn)n∈N is a null sequence and the proof is complete. ��
Remark The �∞-norms of the sequence (wn)n∈N in (3) can in fact be controlled in

a more convenient way. More precisely, since the squre root is an operator monotone
function on [0,+∞)—see [19, Prop. 1.3.8], we can combine this fact with [21, Cor.

6, Lemma 8] in order to get ‖wn‖k,∞ ≤ √
2‖z

1
2 ‖

1
2
4k,∞ for all n ∈ N.

4 Description of closed one-sided ideals

The description we are going to provide is analogous to the characterization of closed
one-sided ideals of the algebra of compact (or nuclear) operators on a Hilbert space
– see [16, Th. (III. 2.5)]. The proof of this result relies strongly on the fact that
every closed subspace in a Hilbert space is complemented which is not the case for
the Schwartz space. Therefore we choose to adapt the proof of [15, Prop. 7.3]. The
general idea is the same however in several points we have to appeal to the fact that
we are dealing precisely with the Schwartz space instead of just a Banach space with
the approximation property (which is the case in [15]).

Recall for convenience that

s =
⎧
⎨

⎩
ξ = (ξ j ) j∈N ⊂ C

N : |ξ |2k :=
+∞∑

j=1

|ξ j |2 j2k < +∞ for all k ∈ N0

⎫
⎬

⎭
.

In particular the zeroth norm ‖·‖0 is just the �2-norm of a rapidly decreasing sequence
and we can compute the inner product 〈·, ·〉 of two vectors in s. In this case this inner
product is in fact given by the duality (1). The definition below which we start with
goes back to Grønbæk’s paper. Let F be a closed subspace in s and let I be a closed
left ideal of S. We define

�(F) := lin{ξ ⊗ η : ξ ∈ s, η ∈ F},
�(I ) := {η ∈ s : ∃ ξ �= 0 : ξ ⊗ η ∈ I }.

Remark It can be easily observed that �(F) is a closed left ideal of S. Moreover,
�(I ) is a closed subspace of s. Indeed, take any non-zero ζ ∈ s and let η ∈ �(I ). By
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definition there is some non-zero element ξ ∈ s such that ξ ⊗ η ∈ I . Since I is a left
ideal we get

ζ ⊗ η =
(

ζ ⊗ 1

‖ξ‖20
ξ

)

(ξ ⊗ η) ∈ I.

Therefore

�(I ) = {η ∈ s | ∀ ξ ∈ s : ξ ⊗ η ∈ I }.

Let now ηn → η, (ηn)n∈N ⊂ �(I ). For arbitrary ξ ∈ s we have

ξ ⊗ η = lim
n

ξ ⊗ ηn ∈ I

since I is closed. Consequently, η ∈ �(I ).

Proposition 6 Let F be a closed subspace in s and let I be a closed left ideal of S.
Then

(i) I = �(�(I )),
(ii) F = �(�(F)).

Proof (i) The inclusion ‘⊃’ is clear. To show the other one choose x ∈ I and for every

n ∈ N define un :=
(

In 0
0 0

)

, where In is the n × n identity map. Then for all n ∈ N

we have un x ∈ I and dim im un x < +∞. We may suppose that

un x =
mn∑

j=1

ξ j ⊗ η j , ξ j , η j ∈ s, j = 1, . . . , mn (4)

and the vectors (ξ j ) j are linearly independent. By the Gram–Schmidt orthogonaliza-
tion we obtain orthogonal vectors e1, . . . , emn ∈ �2 satisfying

〈ξmn , emn 〉 �= 0 and 〈ξ j , emn 〉 = 0 ( j = 1, . . . , mn − 1). (5)

But e j ’s are linear combinations of ξ j ’s therefore (e j )
mn
j=1 ⊂ s. By (5) this leads to

ξmn ⊗ ηmn = 1

〈ξmn , emn 〉
(ξmn ⊗ emn )un x ∈ I.

Reenumerating the indices in (4) if necessary,

ξ j ⊗ η j ∈ I ( j = 1, . . . , mn).

Therefore

η j ∈ �(I ) ( j = 1, . . . , mn).
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Consequently, un x ∈ �(�(I )) for all n ∈ N. By [21, Prop. 2] (un)n∈N is a sequential
approximate identity therefore x ∈ �(�(I )) and the desired equality follows.

(ii) This time the inclusion ‘⊂’ is clear. Let now η ∈ �(�(F)) and take ξ �= 0
such that ξ ⊗ η ∈ �(F). By definition

ξ ⊗ η = lim
n→+∞ xn, xn =

mn∑

j=1

ξn
j ⊗ ηn

j , ξ ∈ s, ηn
j ∈ F (n ∈ N, j = 1, . . . , mn).

Let ζ := 1
‖ξ‖20

and define ηn := ∑mn
j=1〈ξn

j , ζ 〉ηn
j . Then each ηn ∈ F and (ξ ⊗ ζ )xn =

ξ ⊗ ηn . This implies that

ξ ⊗ η = lim
n→+∞ ξ ⊗ ηn .

Consequently, for every k ∈ N0 we have

‖η − ηn‖k = 1

‖ξ‖k
‖ξ ⊗ η − ξ ⊗ ηn‖k → 0.

Therefore η ∈ F and the proof is thereby complete. ��
Theorem 7 Let I be a closed one-sided ideal of the non-commutative Schwartz space.

(i) If I is a left ideal then there is a closed subspace E ⊂ s′ such that

I = {x ∈ S : x |E ≡ 0}.

(ii) If I is a right ideal then there is a closed subspace E ⊂ s′ such that

I = {x ∈ S : im x = E⊥}.

Proof (i) Let I be a closed left ideal of S and define E := ∩η∈�(I ) ker η ⊂ s′ and
J := {x ∈ S : x |E ≡ 0}. It is clear that �(�(I )) ⊂ J and so by Proposition 6(i)
we get I ⊂ J . On the other hand J = �(�(J )) since it is a closed left ideal of S.
Suppose now η ∈ �(J ). Then�(J )⊥ ⊂ (C·η)⊥ and by theBipolar Theorem [17,
Th. 22.13] C · η ⊂ �(I ) (recall these are closed subspaces). Consequently,
�(J ) ⊂ �(I ) and �(�(J )) ⊂ �(�(I )). Thus again by Proposition 6(i) J ⊂ I
and the equality follows.

(ii) If I is a closed right ideal then I ∗ := {x∗ : x ∈ I } is a closed left ideal. By (i)
there is E ⊂ s′ such that I ∗ = {x∗ : x∗|E ≡ 0}. Using now the duality (1) it is
easy to obtain the desired conclusion.

Formaximal left ideals the above characterizationmay be rephrased in the language
of fixed ideals. Following [6] a fixed ideal is a left ideal I of the form

I = Iξ := {x ∈ S : x(ξ) = 0} (ξ ∈ s′\{0}).
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Corollary 8 A left ideal of the non-commutative Schwartz space is maximal if and
only if it is fixed.

Proof If I is a maximal left ideal then by Theorem 5 it is closed. Therefore by Theo-
rem 7(i) I = {x ∈ S : x |E ≡ 0} for some closed subspace E ⊂ s′. Maximality of I
gives now dim E = 1. On the other hand every fixed ideal is maximal. Indeed, let Iξ
be a fixed ideal and take y ∈ S with 0 �= y(ξ) ∈ s. This means that 〈y(ξ), e j 〉 for some
coordinate functional e j : s → C, e j (η) := η j . But such a functional is easily seen to
be a rapidly decreasing sequence therefore there exists μ ∈ s such that 〈y(ξ), μ〉 = 1.
For any n ∈ N denote ξn := (ξ1, . . . , ξn, 0, 0, . . .). Then (un − (ξn ⊗ μ)y)(ξ) = 0.
Thus un − (ξn ⊗ μ)y ∈ Iξ and, consequently,

un = un − (ξn ⊗ μ)y + (ξn ⊗ μ)y ∈ 〈Iξ ∪ {y}〉 (n ∈ N).

Since (un)n∈N ⊂ S is an approximate identity, we arrive at S = 〈Iξ ∪ {y}〉 and the
proof is complete. ��
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7. Domański, P.: Algebra of smooth operators. http://main3.amu.edu.pl/domanski/salgebra1.pdf (unpub-
lished manuscript)

8. Dubin, D.A., Hennings, M.A.: Quantum Mechanics, Algebras and Distributions, vol. 238. Pitman
Research Notes in Mathematics Series. Longman Scientific & Technical. Harlow; copublished in the
United States with Wiley, New York, 1990

9. Duhoux, M., Ng, K.F.: Decomposition of precompact operators in ordered locally convex spaces. J.
Lond. Math. Soc. (2) 13(3), 387–392 (1976)

10. Effros, E.G., Webster, C.: Operator analogues of locally convex spaces. In: Operator algebras and
applications (Samos, 1996), vol. 495. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Kluwer Acad.
Publ., Dordrecht, pp. 163–207 (1997)

11. Effros, E.G., Winkler, S.: Matrix convexity: operator analogues of the bipolar and Hahn-Banach the-
orems. J. Funct. Anal. 144(1), 117–152 (1997)

12. Elliott, G.A., Natsume, T., Nest, R.: Cyclic cohomology for one-parameter smooth crossed products.
Acta Math. 160(3–4), 285–305 (1988)

13. Fragoulopoulou, M.: Topological Algebras with Involution. North-Holland Mathematics Studies, vol.
200. Elsevier Science B.V, Amsterda (2005)

123

http://main3.amu.edu.pl/domanski/salgebra1.pdf


610 K. Piszczek

14. Green, M.D.: Maximal one-sided ideals in Banach algebras. Math. Proc. Camb. Philos. Soc. 80(1),
109–111 (1976)

15. Grønbæk, N.: Morita equivalence for Banach algebras. J. Pure Appl. Algebra 99(2), 183–219 (1995)
16. Helemskii, A.Y.: Banach and Locally Convex Algebras. Oxford Science Publications. The Clarendon

Press, Oxford University Press, New York (1993). Translated from the Russian by A. West
17. Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol.

2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by
M. S. Ramanujan and revised by the authors

18. Paulsen, V.: Completely Bounded maps and Operator Algebras. Cambridge Studies in Advanced
Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

19. Pedersen, G.K.: C∗-algebras and their Automorphism Groups. London Mathematical Society Mono-
graphs, vol. 14. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York
(1979)

20. Phillips, N.C.: K -theory for Fréchet algebras. Int. J. Math. 2(1), 77–129 (1991)
21. Piszczek, K.: Automatic continuity and amenability in the noncommutative Schwartz space. In: Work-

shop on Functional Analysis Valencia 2013, Adam Mickiewicz University in Poznań, Valencia, Spain
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