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Abstract We employ moving frames along pairs of curves at constant separation to
derive various conditions for a curve to belong to the surface of a circular cylinder.
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1 Introduction

While it is easy to find in the literature an ordinary differential equation characterising
a spherical curve in terms of its curvature, torsion and their derivatives [2,5], an
analogous condition for a curve to belong to a cylinder of revolution seems to remain
elusive in its explicit form, i.e., as a single equation involving only curvature, torsion
and their derivatives. This is perhaps surprising given the simple nature of the surface. It
was shown in [2] that a necessary condition may be formulated as a vanishing resultant
of two auxiliary polynomials of the sixth and eighth degree with their coefficients
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depending on the curvature, torsion, their first derivatives and the second derivative
of the curvature. Technically, the condition may be written out explicitly as a single
polynomial of degree ≤88 + 6, but, clearly, doing this makes little sense. An earlier
attempt to characterise cylindrical curves resulted in a system of two equations with an
extra angular variable [3]. Here we present several alternative necessary and sufficient
conditions for a curve to lie on a cylinder. We also allow for a slightly wider class of
curves (that may contain straight pieces). A particularly elegant criterion is obtained
in terms of the geometric properties of the curve as it lies in the surface, i.e., the
geodesic torsion and geodesic and normal curvatures (Proposition 1). Some of the
alternative criteria given here may be more convenient than existing criteria in certain
applications (e.g, in computer vision). Our strategy is to regard a curve on a cylinder
as a special case of two constant-separation curves, the second curve being the axis of
the cylinder.

2 Constant-separation curves and moving frames

Consider a regular C3-curve r(s) ∈ R
3, s ∈ [0, L], parametrised by arclength. We

call this curve the primary curve. We denote by t(s) = r′(s) the unit tangent vector.
Here and in the following a prime denotes differentiation with respect to s.

Let d(s) be a unit normal vector of differentiability class C2. Given a constant
ρ �= 0 we define the secondary curve a(s) := r(s) + ρd(s). The unit tangent to this
curve is ta(s) = a′(s)

|a′(s)| . It is defined for |a′(s)| > 0. Clearly, ta(s) · d(s) ≡ 0. We say
that r and a are constant-separation curves.

We define the following moving frames (all our frames are right-handed). First,
for curves having nonvanishing curvature �(s) := |t′(s)| > 0, let {t(s), n(s), b(s)}
be the Frenet frame for the original curve, where n(s) = t′(s)/�(s) is the principal
normal and b(s) = t(s) × n(s) the binormal. Next, we construct the unit vector
u(s) = t(s)×d(s) to define the moving (or Darboux) frame {t(s), d(s), u(s)}. Finally,
we define the analogous moving frame at the secondary curve {ta(s), d(s), v(s)}, where
v(s) = ta(s) × d(s).

After choosing a coordinate system we may identify the orientations of the above
three frames with elements of the group of orthogonal 3 × 3 matrices:

RF (s) := (t(s), n(s), b(s)) ∈ SO(3),

R(s) := (t(s), d(s), u(s)) ∈ SO(3),

Ra(s) := (ta(s), d(s), v(s)) ∈ SO(3).

These define three skew-symmetric 3×3 matrices in the Lie algebra so(3) as follows:

̂ω̃ = Rᵀ
F R′

F , ω̂ = RᵀR′, ̂Ω = Rᵀ
a R′

a, (1)
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where we have introduced the ‘hat’ isomorphism between skew-symmetric matrices

ŵ =
(

0 −w3 w2
w3 0 −w1

−w2 w1 0

)

in so(3) and rotation (or Darboux) vectors w = (w1, w2, w3)

in R
3.

Thus we have defined three rotation vectors ω̃,ω,Ω, where ω = (ω1, ω2, ω3) is
the rotation vector of the frame {t, d, u},Ω = (Ω1,Ω2,Ω3) is the rotation vector of
the frame {ta, d, u} and ω̃ = (ω̃1, ω̃2, ω̃3) is the rotation vector of the Frenet frame
{t, n, b} so that ω̃1 = τ, ω̃2 = 0, ω̃3 = �, where τ is the torsion of the primary curve
r(s).

The orthonormal frames form a sequence under consecutive rotations about t and
d. Thus

R = RF R1(ξ), Ra = R R2(η), (2)

where

R1(ξ) = exp(ξ ê1) =
⎛

⎝

1 0 0
0 cos ξ − sin ξ

0 sin ξ cos ξ

⎞

⎠ ∈ SO(3), e1 = (1, 0, 0),

R2(η) = exp(η ê2) =
⎛

⎝

cos η 0 sin η

0 1 0
− sin η 0 cos η

⎞

⎠ ∈ SO(3), e2 = (0, 1, 0),

and ξ is the angle, about t, measured from the principal normal n to d and η is the
angle, about d, from the first tangent, t, to the second, ta . From Eqs. (1) and (2) it
follows that the rotation vectors of the various frames are related as

ω̂ = Rᵀ
1 (ξ)̂ω̃R1(ξ) + Rᵀ

1 (ξ)R′
1(ξ), (3)

̂Ω = Rᵀ
2 (η)̂ωR2(η) + Rᵀ

2 (η)R′
2(η). (4)

The relation Eq. (3) can be rewritten explicitly in component form:

ω̃1 = ω1 − ξ ′, (5)

ω̃2 = ω2 cos ξ − ω3 sin ξ, (6)

ω̃3 = ω2 sin ξ + ω3 cos ξ. (7)

Before writing down the analogous component equations for Eq. (4) we express the
angle η as a function of the components of ω as follows. Differentiating the secondary
curve a = r + ρd with respect to s and using Eq. (1) yields

sin η = − ρω1
√

(ρω1)2 + (ρω3 − 1)2
, cos η = 1 − ρω3

√

(ρω1)2 + (ρω3 − 1)2
, (8)

and hence

ω1 =
(

ω3 − 1

ρ

)

tan η. (9)
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Equation (4) in component form can now be written as

Ω1 = ω1 cos η − ω3 sin η = ω1
√

(ρω1)2 + (ρω3 − 1)2
, (10)

Ω2 = ω2 + η′ = ω2 + ρω′
1(ρω3 − 1) − ρ2ω1ω

′
3

(ρω1)2 + (ρω3 − 1)2 , (11)

Ω3 = ω1 sin η + ω3 cos η = ω3(1 − ρω3) − ρω2
1

√

(ρω1)2 + (ρω3 − 1)2
. (12)

In summary, the Darboux frame {t, d, u} is always defined, the Frenet frame {t, n, b}
and the angle ξ are defined if the curvature � does not vanish, and the secondary curve
frame {ta, d, v} and the angle η are defined if (ρω1)

2 + (ρω3 − 1)2 > 0. In this setup,
the ωi , ξ and η are all C1. Note that in this case the primary curve r(s) lies on a
tubular surface of radius |ρ| about the secondary curve a(s). In the following section
we derive criteria for cylindrical curves by viewing such cylindrical curves as curves
whose secondary curves are straight lines.

3 Cylindrical curves

3.1 Criterion for a curve to be cylindrical

Proposition 1 Let C = {r(s), s ∈ [0, L]} be a C3-curve in R
3.

(i) Let {t(s), d(s), u(s)} be a moving frame along C with t(s) the tangent and with
Darboux vector ω = (ω1, ω2, ω3) of class C1 satisfying

ω3 = ρ
(

ω2
1 + ω2

3

)

, (13)

ω′
3 = 2ω1ω2 (14)

for some constant ρ �= 0. Then the curve C belongs to the surface of a circular
cylinder of radius |ρ|. The vector d is normal to the surface and the components ωi

are, respectively, the geodesic torsion, geodesic curvature and normal curvature:
ω1 = τg, ω2 = �g, ω3 = �N .

(ii) Conversely, if the curve C lies on a circular cylinder of radius ρ > 0, then its
geodesic torsion τg, geodesic curvature �g and normal curvature �N satisfy

�N = ρ(�2
N + τ 2

g ), (15)

� ′
N = 2�gτg. (16)

Proof (i) We interpret d as a chord as in Sect. 2 defining a secondary curve a(s) =
r(s)+ρd(s) at constant separation |ρ| to C . Consider first the case when (ρω1)

2 +
(ρω3 − 1)2 > 0. The tangent ta to a is then defined and so is the moving frame
{ta(s), d(s), v(s)}. This moving frame has Darboux vector Ω = (Ω1,Ω2,Ω3)

whose components are given by Eqs. (10)–(12). We see that after substitution of
ω2

1 from Eq. (13) the last component Ω3 vanishes identically. By differentiating
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Eq. (13) and using the resulting equation together with Eq. (14) to eliminate the
derivatives in the expression for Ω2, we see that also Ω2 = 0. Thus, the secondary
curve has vanishing curvature, i.e., it is a straight line. This implies that the curve
C lies at constant separation |ρ| from a straight line, i.e., it belongs to the surface
of a cylinder of revolution with normal vector d(s).

Now consider the case when ω1(s) = 0 and ω3(s) = 1/ρ for some interval
s ∈ [s1, s2], s2 > s1 (we only need to consider a single such interval). The
secondary curve then shrinks to a point over this interval and the primary curve
makes a circular arc of radius |ρ|, which clearly belongs to the surface of a circular
cylinder. We need to show that this is the same cylinder as that containing the part
of the curve for 0 ≤ s < s1 (which is cylindrical by virtue of the first part of
the proof). This is, however, ensured by the smoothness of the curve r (C3) and
the chord d (C2): continuity of d implies that the axes of the two cylinders must
intersect and continuity of the tangent r′, and the fact that this tangent must be
orthogonal to both axes at the joining point s1, then implies that the two axes in
fact coincide. One similarly shows that the curve remains on the same cylinder
for s > s2. The case of a single point where τg = 0 and �N = 1/ρ is also treated
similarly.

(ii) Let d(s) be the unit normal to the cylinder at s along C . Then the moving frame
{r′(s), d(s), u(s)} has Darboux vector (ω1, ω2, ω3) = (τg, �g, �N ), where τg is
the geodesic torsion, �g the geodesic curvature and �N the normal curvature [4].
Use the vector d(s), which is at least C2 by smoothness of the cylindrical surface,
as chord to construct the secondary curve a(s) = r(s) + ρd(s). Then this curve
coincides with the cylinder axis. If (ρτg)

2 + (ρ�N − 1)2 > 0 then the tangent
ta(s) and the secondary curve are defined and we can construct the moving frame
{ta(s), d(s), v(s)} with rotation vector Ω = (Ω1,Ω2,Ω3) given by Eqs. (10)–
(12). Vanishing curvature of the cylinder axis implies Ω2 ≡ 0 and Ω3 ≡ 0. The
latter equation immediately yields Eq. (15), while from the first one we have

2�gτg = −
2τg

[

ρτ ′
g(ρ�N − 1) − ρ2τg�

′
N

]

(ρτg)2 + (ρ�N − 1)2 .

Differentiating Eq. (15) and substituting τg and τgτ
′
g from Eq. (15) and its deriv-

ative into the right-hand side of the above expression we obtain 2�gτg = � ′
N ,

which proves Eq. (16).
If there exists an interval [s1, s2], s2 > s1, such that τg(s) = 0 and �N (s) = 1/ρ

for s ∈ [s1, s2], then � ′
N (s) = 0 and Eqs. (15) and (16) are both satisfied in the

interior of the interval, and by smoothness of r and d also over the entire interval
[0, L].
Finally, consider isolated points where both τg = 0 and �N = 1/ρ. At such points
the tangent to the curve is along the direction of maximum principal curvature
(orthogonal to the axis of the cylinder) and therefore � ′

N = 0. Equations (15) and
(16) are thus satisfied.

Remark 1 As noted in [4] (p. 193), the quantity � ′
N −2�gτg , like �N and τg and unlike

�g , depends only on t(s). It is called the Laguerre function of direction. The curves
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on surfaces for which Eq. (16) holds are called Laguerre lines. These lines are the
only curves that possess the following property: for every point of a Laguerre line the
normal plane of the surface containing the tangent to the Laguerre line in this point,
cuts the surface along another curve that has contact of the third order with its circle
of curvature at this point. Indeed, for any direction of the tangent vector t different
from the axis ta , the normal section of the cylinder is an ellipse and the point where
this ellipse touches the cylindrical curve is a vertex of the ellipse. Thus, the curvature
of the cross-sectional ellipse, which is �N , is stationary in this point and the circle of
curvature is superosculating to the ellipse, so any direction on the cylinder is along a
Laguerre line. It is, therefore, not surprising that one of the conditions for a curve to
be cylindrical is that the curve be a Laguerre line.

Proposition 1 gives a criterion in terms of geometric properties (τg, �g and �N )

of the curve as it lies in a surface. It may be desirable to have a criterion in terms of
the intrinsic properties (i.e., curvature and torsion) of the curve. In the following two
subsections we derive such criteria.

3.2 Sufficient conditions for a curve to be cylindrical

Proposition 2 Let a C4-curve C = {r(s), s ∈ [0, L]} in R
3, parametrised by

arclength, have curvature � �= 0 and torsion τ satisfying the differential-algebraic
system of two equations

� cos ξ = ρ[(τ + ξ ′)2 + �2 cos2 ξ ], (17)

� ′ cos ξ = �(2τ + 3ξ ′) sin ξ, (18)

for some C2-function ξ(s) and for some constant ρ �= 0. Then the curve C belongs to
the surface of a circular cylinder of radius |ρ|.
Proof For nonvanishing curvature, the Frenet frame {t(s), n(s), b(s)} is well defined.
Define another moving frame {t(s), d(s), u(s)} that is obtained from the Frenet frame
by rotation about the tangent through the angle ξ(s) as defined in Sect. 2. Note that since
n(s) and ξ(s) are both C2, the vector d(s) is also C2, as required. Then by Eqs. (5)–(7)
this frame has Darboux vector (ω1, ω2, ω3) = (τ + ξ ′, � sin ξ, � cos ξ). Substitution
into Eqs. (17)–(18) gives Eqs. (13)–(14) and the claim follows from Proposition 1(i).

Remark 2 We can eliminate ξ ′ from Eqs. (17)–(18) and obtain an equation of the form
F(�, τ, � ′, ξ) = 0. From this equation we can find (at least numerically) tan ξ as a
root of an eighth-degree polynomial with coefficients that are functions of �, τ and
� ′. Formally differentiating this solution tan ξ and using one of Eqs. (17)–(18) we can
then arrive at an equation of the form G(�, τ, � ′, τ ′, � ′′) = 0, with dependence on
derivatives of � and τ up to the same order as in [2].

In applications such as computer vision it may be useful to have a criterion for
cylindrical curves not involving the radius ρ, which may be a priori unknown. ρ may
be eliminated from Eqs. (17)–(18), at the cost of higher derivatives, by solving the first
equation with respect to ρ and differentiating the resulting expression with respect to s.
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The characterisation of cylindrical curves in Proposition 2 involves a differential
equation. Explicit conditions for � and τ can be derived by using the angle η (or its
lift) instead of the angle ξ , as follows.

Proposition 3 Let a C4-curve C = {r(s), s ∈ [0, L]} in R
3, parametrised by

arclength, have curvature

� =
√

θ ′2 + sin4 θ

ρ2 > 0 (19)

and torsion

τ = sin θ [ρ2(θ ′′ sin θ − 3θ ′2 cos θ) − sin4 θ cos θ ]
ρ(ρ2θ ′2 + sin4 θ)

, (20)

for some C3-function θ(s) and some constant ρ �= 0. Then the curve C belongs to the
surface of a circular cylinder of radius |ρ| and θ is the angle between the tangent to
the curve and the axis of the cylinder.

Proof The curvature � of C does not vanish, hence the Frenet frame {t, n, b} and the
torsion τ are well defined. We construct a secondary curve as follows. First we define
a moving frame {t(s), d(s), u(s)} by rotating the Frenet frame through an angle

ξ := arctan

(

−θ ′

�
,

sin2 θ

ρ�

)

about the tangent t. Note that since n(s) and ξ(s) are both C2, the vector d(s) is
also C2, as required. We compute the components of the rotation vector of the frame
{t, d, u} as

ω1 = τ + ξ ′, (21)

ω2 = � sin ξ = −θ ′, (22)

ω3 = � cos ξ = 1

ρ
sin2 θ (23)

[the inverse of Eqs. (5)–(7)] and easily verify that Eqs. (13)–(14) are satisfied. The
claim then follows from Proposition 1(i).

Remark 3 Unlike spherical curves, cylindrical curves can have vanishing curvature.
A straight line belongs to a continuum of cylinders aligned with the line. The presence
of a straight interval between curvilinear pieces can make these curvilinear pieces
belong to different cylinders. The characterisation of cylindrical curves in terms of
curvature and torsion stops working in this situation. That is why the requirement of
nonvanishing curvature appears in the statement of Propositions 2 and 3.
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3.3 Necessary conditions for a curve to be cylindrical

Proposition 4 Let a C3-curve C = {r(s), s ∈ [0, L]} in R
3, parametrised by

arclength, belong to the surface of a circular cylinder of radius ρ > 0. Then there
exists a C1-function ξ(s) such that the curvature � and torsion τ satisfy the differential-
algebraic system of two equations

� cos ξ = ρ[(τ + ξ ′)2 + �2 cos2 ξ ], (24)

� ′ cos ξ = �(2τ + 3ξ ′) sin ξ (25)

in all points where � �= 0.

Proof If � �= 0 then the Frenet frame is defined. We choose for d(s) the vector
normal to the cylinder at a point s along C . The secondary curve a = r + ρd then
coincides with the axis of the cylinder and the rotation vector of the moving frame
{r′, d, u} along the primary curve has components (ω1, ω2, ω3) = (τg, �g, �N ). We
first consider intervals where (ρω1)

2 + (ρω3 − 1)2 �= 0, so that the rotation vector of
the secondary curve (Ω1,Ω2,Ω3) and the angle η ∈ (−π/2, π/2) are well-defined
[see Eqs. (8)–(12)]. Since the secondary curve is a straight line we have Ω2 = 0 = Ω3.
Equations (9)–(12) then imply

τg = − 1

ρ
sin η cos η, (26)

�g = −η′, (27)

�N = 1

ρ
sin2 η. (28)

To write these conditions in terms of curvature � and torsion τ of the curve we use
Eqs. (5)–(7) to get

τ + ξ ′ = − 1

ρ
sin η cos η, (29)

� sin ξ = −η′, (30)

� cos ξ = 1

ρ
sin2 η, (31)

where ξ(s) is the angle between the principal normal n(s) and d(s) along C . According
to Eq. (5), for a C3-curve, ξ(s) is a C1-function. By eliminating η from these equations
we obtain Eqs. (24)–(25).

Now consider the case that, for some interval [s1, s2], 0 ≤ s1 < s2 ≤ L , both
τg = 0 and �N = 1/ρ. Then, over this interval, the curve is a circular arc with
curvature � = 1/ρ = const, torsion τ = 0 and angle ξ identically equal to zero.
Equations (24)–(25) are thus satisfied in the interior of the interval and by smoothness
also at s = s1 and s = s2. By the same smoothness argument the equations are also
satisfied if τg = 0 and �N = 1/ρ at an isolated point s = s1.
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Proposition 5 Let a C3-curve C = {r(s), s ∈ [0, L]} in R
3, parametrised by

arclength, belong to the surface of a circular cylinder of radius ρ > 0. Then there
exists a C2-function θ(s) such that the curvature equals

� =
√

θ ′2 + sin4 θ

ρ2 (32)

and, in points where � �= 0, the torsion equals

τ = sin θ [ρ2(θ ′′ sin θ − 3θ ′2 cos θ) − sin4 θ cos θ ]
ρ(ρ2θ ′2 + sin4 θ)

. (33)

θ is the angle between the tangent to the curve and the axis of the cylinder.

Proof Following the proof of Proposition 4 we choose the normal to the cylinder as our
d(s) and construct a moving frame and secondary curve that coincides with the axis of
the cylinder. For nonvanishing curvature and on intervals where (ρω1)

2+(ρω3−1)2 �=
0 we again arrive at Eqs. (29)–(31), but now eliminate ξ to obtain

ρ2(�2 − η′2) = sin4 η, (34)

� ′ sin2 η = �η′(ρτ + 3 sin η cos η). (35)

Solving Eq. (34) for the curvature gives Eq. (32) for θ = η + πn, n ∈ Z, where n is
chosen to make θ continuous. Differentiating Eq. (32) to obtain � ′, substituting the
result into Eq. (35) and solving for the torsion gives Eq. (33). For a C3 curve, η (and
hence θ ) is generally C1. However, Eq. (34) [or Eq. (33)] shows that for the present
case of a cylindrical curve, θ is in fact C2.

If the curvature vanishes on an interval then the tangent t(s) must be aligned with
the direction of least principal curvature on the cylindrical surface, i.e., parallel to the
axis of the cylinder and we have η = 0, and also η′ = 0, and hence θ ′ = 0, in the
interior of the interval, so Eq. (32) holds. At the end points of the interval we can use
smoothness to take limits and thus show that Eq. (32) holds too. Similarly, in isolated
points of zero curvature, the angle η (and hence θ ) is, strictly speaking, not defined,
but we can take limits and set θ = 0 = θ ′ in such points to obtain a C2-function θ(s).

Intervals or points where both τg = 0 and �N = 1/ρ are dealt with in the same
way as in the proof of Proposition 4.

Remark 4 It is perhaps unexpected that in the sufficiency propositions of Sect. 3.2 the
curve r(s) is required to be C4, while in the necessity propositions of Sect. 3.3 it is
only required to be C3. The reason is that in the former we have no (tubular) surface
until we have constructed a chord vector d, for which we use the Frenet frame of the
curve, while in the latter we are given a smooth surface (a cylinder) and use this to
construct a d. This d(s) must be C2 for the curvatures Ωi of the secondary curve to be
defined, so the principal normal n(s) of the Frenet frame must also be C2 and hence
r(s) must be C4, while on a smooth cylinder a C3-curve is sufficient to guarantee the
required smoothness of d(s).
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Fig. 1 Left function θ(s) = π/2 + cos s + s/4, s ∈ [0, 8π ] and the curvature κ and torsion τ as given by
Eqs. (32) and (33). Right corresponding curve on the surface of a cylinder (ρ = 1). Red beads mark points
of minimum curvature, zero geodesic curvature and maximum torsion (colour figure online)

Remark 5 Equations (34)–(35) are essentially those in [3] (after elimination of the
second derivative).

4 A sufficient condition for a cylindrical curve to be closed

In [1] a necessary and sufficient condition was given for a planar curve of periodic
curvature to be closed. Since a cylinder is a developable surface this result immediately
gives a sufficient condition for a cylindrical curve to be closed provided we replace
(signed) curvature by geodesic curvature:

Proposition 6 Let C = {r(s), s ∈ [0, L]} be a C3-curve in R
3 lying on the surface of a

(not necessarily circular) cylinder and let the geodesic curvature �g have (minimum)
period P. Then the curve C closes up in [0, n P], n ∈ N, n > 1, if there exists an
integer m ∈ Z such that

1

2π

∫ P

0
�g ds = m

n
∈ Q\Z . (36)

Note that we cannot claim Eq. (36) to be a necessary condition because of the
possibility of closed curves that wrap around the cylinder over which we have no
control [indeed, a circular curve around the cylinder has �g = 0 and so Eq. (36) is not
satisfied]. However, Eq. (36) is a necessary condition if we restrict ourselves to closed
curves that are contractible (within the cylindrical surface) to a point.
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5 Example

We illustrate here how the conditions in the previous two sections work in a simple
example. We take ρ = 1 and choose θ(s) = π/2+cos s + s/4. Then, from Eqs. (26)–
(28), we have τg = − sin θ cos θ, �g = −θ ′ = sin s − 1

4 and �N = sin2 θ . We also
compute the curvature and torsion by applying Eqs. (32), (33) (see Fig. 1, left). From
this we compute the curve by integrating the Frenet–Serret equations together with
r′(s) = t(s). The resulting contractible closed curve lies on the surface of a cylinder
of unit radius (see Fig. 1, right). Note that the curvature never vanishes and the torsion
reaches a sharply peaked maximum when the curvature is at a minimum and �g = 0.

Proposition (6) gives a condition on integers m and n for a cylindrical curve with
θ(s) = π

2 + cos s + m
n s to be closed. The geodesic curvature of this curve is �g =

−θ ′ = sin(s) − m
n , which has minimum period P = 2π . In our particular example

m = 1, n = 4, so the curve closes up in [0, 8π ].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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