
Monatsh Math (2013) 172:357–378
DOI 10.1007/s00605-013-0504-3

Shadowing, entropy and minimal subsystems

T. K. Subrahmonian Moothathu · Piotr Oprocha

Received: 13 November 2012 / Accepted: 20 April 2013 / Published online: 7 May 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We consider non-wandering dynamical systems having the shadowing
property, mainly in the presence of sensitivity or transitivity, and investigate how
closely such systems resemble the shift dynamical system in the richness of various
types of minimal subsystems. In our excavation, we do discover regularly recurrent
points, sensitive almost 1-1 extensions of odometers, minimal systems with positive
topological entropy, etc. We also show that transitive semi-distal systems with shad-
owing are in fact minimal equicontinuous systems (hence with zero entropy) and,
in contrast to systems with shadowing, the entropy points do not have to be densely
distributed in transitive systems.
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358 T. K. S. Moothathu, P. Oprocha

1 Introduction

The concept of shadowing of approximate trajectories entered mathematical literature
from the very influential and important works of Anosov and Bowen obtained in early
1970s (e.g. [5,14] contain independent proofs of the so-called classical shadowing
lemma; see a book by Pilyugin [29] for more historical remarks on the development of
this important topic). On one hand, shadowing is a natural property to consider since
it ensures that approximate trajectories “mimic” evolution of true orbits. On the other
hand they are present in many systems with sufficient expansion of distance, hence
there are many natural examples of systems with this property. Most of the work done
on shadowing in the last century was related to hyperbolic systems. While hyperbol-
icity can be expressed in many equivalent ways, the natural topological assumption is
shadowing with some kind of expansivity (e.g. see [26]). It is worth mentioning here
that shadowing is a C0-generic property (i.e. with respect to the topology of uniform
convergence) in various cases (e.g. see [8,21] and the references therein). This gives
a motivation for further research on non-hyperbolic systems with shadowing, but also
generates many problems, since non-expansive systems with shadowing are much
harder to study.

It is worth emphasizing that there is known example [9] of a 3-dimensional man-
ifold with a C1-diffeomorphism whose neighborhood (in C1-topology on the space
diffeomorphisms) consists of maps without shadowing. But even in this case of C1-
diffeomorphisms on smooth manifolds, there are strong connections between shad-
owing and stability. First, it was proved by Sakai [31] that the C1-interior of the set of
diffeomorphisms with the shadowing property coincides with the set of structurally
stable diffeomorphisms and recently it was proved by Pilyugin and Tikhomirov [30]
that structurally stable diffeomorphisms coincide with the class of diffeomorphisms
with Lipschitz shadowing property (in this kind of shadowing, there is a Lipschitz
constant L bonding together δ in the definition of pseudo-orbit with the accuracy of
shadowing Lδ).

In this paper we mainly focus on the structure of minimal subsystems in non-
wandering systems with shadowing (the reader who is not familiar with the shadowing
property is referred to books [6] or [28,29]). This does not limit generality of our
considerations, since it is well known that the restriction of a continuous surjection
to its non-wandering set gives a non-wandering system with shadowing (e.g. see
section §3.4 in [6]). One of the reasons for considering non-wandering maps (e.g.
instead of systems having the stronger property of transitivity) is that minimal points
(and systems) are dense in every non-wandering system with shadowing [25], so it
seems natural that knowledge about the structure of these systems can throw light on
the possible types of global dynamical behaviors.

Probably the best known examples of minimal systems are periodic orbits and
their generalizations: irrational rotations on the tori and odometers (also called adding
machines) on the Cantor set. While irrational rotations do not have shadowing, odome-
ters have this property and furthermore they are the only possible examples of infinite
minimal systems with shadowing [23]. While there is no complete characterization
of minimal systems, some sufficient conditions on the structure of spaces admitting
minimal maps are avilable [7]. What is immediately visible is the richness of possible
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types of minimal systems. In the full shift (Smale’s horseshoe) there are uncountably
many minimal subsystems, representing various types of dynamics (almost 1-1 exten-
sions of odometers, weakly mixing systems with zero or positive entropy, systems
chaotic in various senses etc.). Since full shift is an accessible example of a system
with shadowing on one hand, and has very rich dynamics on the other hand, it is inter-
esting to explore as to what extent minimal subsystems of full shift can be present in
a less standard system with shadowing.

Our starting point (and main motivation) is [25] where many problems on dynamics
of non-wandering systems with shadowing were left open. We answer most of the
questions from [25]. Some of our main results are summarized as follows.

(i) Non-wandering systems with shadowing have a dense set of regularly recurrent
points (Theorem 3.2). If the system is also sensitive, then non-periodic regularly
recurrent points, and minimal points that are not regularly recurrent are also dense
in the system (Corollay 4.3).

(ii) In a non-wandering sensitive dynamical system with shadowing, subsystems that
are sensitive almost 1-1 extensions of odometers as well as minimal subsystems
with positive entropy are densely distributed (Theorems 4.2, 5.2).

(iii) Let (X, f ) be a non-wandering sensitive system with shadowing, and let U ⊂ X
be a nonempty open set. Then some power of f has a subsystem contained in U
such that the full shift is a factor of this subsystem (Theorem 5.2).

2 Preliminaries

A set A ⊂ N is syndetic if there is K > 0 such that [n, n + K ] ∩ A �= ∅ for every
n ∈ N. If A ⊂ N is a set such that N\A is not syndetic, then we say that A is thick. If
N\A is finite, then we say that A is cofinite.

If (X, d) is a compact metric space, x ∈ X and r > 0, then B(x, r), and B(x, r)
denote, respectively, the open and closed ball centered at x , and with radius r . More
generally, for A ⊂ X and r > 0, we set B(A, r) = {x ∈ X : dist(x, A) < r} and
B(A, r) = {x ∈ X : dist(x, A) ≤ r}. Closure of a set D ⊂ X is as usual denoted as
D.

A pair (X, f ) is a dynamical system if (X, d) is a compact metric space and f : X →
X is a continuous map. The orbit of a point x ∈ X is the set O( f, x) = { f n(x) : n ≥ 0}.
The set of limit points of the orbit O( f, x) is called the ω-limit set of x , and is denoted
by ω( f, x).

2.1 Dynamics of points, pairs and sets

Given U, V ⊂ X and x ∈ X we denote N (x,U ) = {n ∈ N : f n(x) ∈ U } and
N (U, V ) = {n ∈ N : f n(U ) ∩ V �= ∅}. A point x ∈ X is: periodic if there is n > 0
such that f n(x) = x ; recurrent if N (x,U ) �= ∅ for every neighborhood U of x ;
regularly recurrent if kN ⊂ N (x,U ) for some integer k = k(U ) > 0 and every open
neighborhood U of x ; minimal if N (x,U ) is syndetic for any open set U containing
x . Obviously, every periodic point is regularly recurrent, every regularly recurrent
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point is minimal and every minimal point is recurrent (but not vice-versa). Denote by
P( f ), R( f ), M( f ) and RR( f ), respectively, the set of all periodic, recurrent, minimal
and regularly recurrent points of f . We say that x ∈ X is a non-wandering point if
N (U,U ) �= ∅ for every neighborhood U of x . The set of all non-wandering points of f
is denoted as�( f ). Observe that�( f ) is closed and f (�( f )) ⊂ �( f ). If�( f ) = X ,
the system is said to be non-wandering. It is known that any non-wandering system
has a dense set of recurrent points (e.g. see [18, Theorem 1.27]).

We say that f is transitive if for every pair of nonempty open subsets U and V of
X there is an n ≥ 0 such that f n(U )∩ V �= ∅, f is totally transitive if f n is transitive
for any n ≥ 1, f is weakly mixing if f × f is transitive, and f is mixing if for any
nonempty open sets U and V there is an N > 0 such that f n(U ) ∩ V �= ∅ for all
n ≥ N . Observe that f is transitive, provided that N (U, V ) is infinite for any two
nonempty open sets U, V , and mixing when N (U, V ) is cofinite for any two nonempty
open sets U, V . If ω( f, x) = X then we say that x is a transitive point.

A dynamical system (X, f ) has dense small periodic sets if for every nonempty
open set U ⊂ X there is a nonempty closed subset A ⊂ U and n > 0 such that
f n(A) = A. The later property was introduced by Huang and Ye [20] and it is closely
related to the Smale’s spectral decomposition for maps with shadowing (see [27],
where it appears as property (P)). Note that when regularly recurrent points are dense
then automatically f has dense small periodic sets. When a system is minimal, then
it has dense small periodic sets iff it has a dense set of regularly recurrent points iff
it has a regularly recurrent point [19,20]. For more extensive comments on transitive
systems with dense small periodic sets, the reader is referred to [22].

A point x ∈ X in a dynamical system (X, f ) is sensitive if there is λ > 0 such that
for every nonempty open neighborhood U of x we have diam( f n(U )) > λ for some
n > 0. A dynamical system (X, f ) is sensitive if there is λ > 0 with the property that
for every nonempty open set U ⊂ X , there is n > 0 such that diam( f n(U )) > λ.
In this case we say that λ is a sensitivity constant for f , or that f is λ-sensitive.
Another extreme, completely opposite to sensitivity, is the notion of equicontinuity:
f is equicontinuous if for every λ > 0, there is δ > 0 with the property that for every
a, b ∈ X , condition d(a, b) < δ implies that d( f n(a), f n(b)) < λ for every n ∈ N.

The set {(x, y) ∈ X2 : limn→∞ d( f n(x), f n(y)) = 0} of all asymptotic pairs of f
is denoted as Asy( f ), and the set {(x, y) ∈ X2 : lim infn→∞ d( f n(x), f n(y)) = 0}
of all proximal pairs of f is denoted as Prox( f ). Note that if (x, y) ∈ Prox( f ) then
{n ∈ N : d( f n(x), f n(y)) < ε} is thick for every ε > 0. Consequently, Prox( f k) =
Prox( f ) for every k ∈ N. Also Asy( f k) = Asy( f ). A pair (x, y) is distal if it is not
proximal. A dynamical system (X, f ) is distal if Prox( f ) reduces to the diagonal of
X2, and semi-distal if R( f × f ) ∩ [Prox( f ) \ Asy( f )] = ∅. For more information
about asymptoticity, proximality and distality, the reader is referred to the books [2,4].

Let (X, f ) be a dynamical system. Fix any ε > 0 and δ > 0. A sequence {xn}∞n=0 ⊂
X is a δ-pseudo orbit if d( f (xn), xn+1) < δ for n = 0, 1, 2, . . .; a point z ∈ X is
ε-tracing a pseudo-orbit {xn}∞n=0 when d( f n(z), xn) < ε for all n = 0, 1, . . .. We say
that φ : (0,∞) → (0,∞) is a tracing function for f if:

(i) φ(ε) < ε for every ε ∈ (0,∞), and
(ii) every φ(ε)-pseudo orbit of f is ε-traced by some point in X .
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A map f has the shadowing property (or pseudo-orbit tracing property) if there exists
a tracing function for f . In other words, f has shadowing property if for any ε > 0
there is δ > 0 such that every δ-pseudo orbit is ε-traced by a point in X . Note that if
φ : (0,∞) → (0,∞) is a tracing function for f , then any ψ : (0,∞) → (0,∞) with
ψ ≤ φ is also a tracing function for f .

A set D ⊂ X is f-invariant (or simply invariant) if f (D) ⊂ D. A nonempty
invariant set D is minimal, if O( f, x) = D for every x ∈ D. It was first proved by
Birkhoff (c.f. p. 93 of [13]) that a point x is minimal if and only if O( f, x) is a minimal
set.

Let (X, f ) and (Y, g) be dynamical systems. If there is a continuous surjection
π : X → Y with π ◦ f = g ◦ π then we say that π is a factor map, the system (Y, g)
is a factor of (X, f ) and (X, f ) is an extension of (Y, g). If π : (X, f ) → (Y, g)
is a factor map and if Z := {x ∈ X : #π−1(π(x)) = 1} is residual in X , then
(X, f ) is called an almost 1-1 extension of (Y, g), and π−1(y) is called a singleton
fibre for any y ∈ Y with #π−1(y) = 1. If we also have Z = X , i.e., if π is also a
homeomorphism, then we say thatπ is a conjugacy and the dynamical systems (X, f ),
(Y, g) are conjugate. Conjugate dynamical systems can be considered the same from
the dynamical point of view.

2.2 Expansive systems

The classical definition of expansivity is given for invertible systems. It can be stated as
follows. A homeomorphism f : X → X is expansive if there a constant b > 0 (called
an expansive constant) such that for any distinct x, y ∈ X there is n ∈ Z such that
d( f n(x), f n(y)) ≥ b. In the case of non-invertible dynamical systems, there are a few
possibilities to extend this definition. The classical approach is to define expansivity
in terms of the acting (semi)-group. This way we obtain the definition applicable to
all actions of topological groups, which in case of continuous surjections takes the
following form. A dynamical system (X, f ) is positively expansive if there exists
b > 0 such that for any x, y ∈ X , x �= y there is n ≥ 0 such that d( f n(x), f n(y)) ≥
b.

But in the case of continuous surjections there is another possibility. In place of
expansivity of the action of f we may check expansivity of the natural shift homeo-
morphism on the inverse limit of f . We present this definition after [6]. A continuous
surjection f : X → X is c-expansive if there is a constant b > 0 such that if for any
x, y ∈ X and any two full orbits {xn}n∈Z, {yn}n∈Z through x and y respectively, the
condition

d(xn, yn) < b for all n ∈ Z

implies that x = y, where by a full orbit thorough x (resp. y) we mean any sequence
{zn}n∈Z such that f (zn) = zn+1 for every n ∈ Z and z0 = x (resp. z0 = y).

Clearly, in the case of homeomorphisms expansivity and c-expansivity are
the same property. A positively expansive map is always c-expansive but not
vice-versa.
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2.3 Odometers

We briefly present the definition of an odometer (also called an adding machine)
which is an important example of minimal equicontinuous system. Let s = (s j )

∞
j=1

be a strictly increasing sequence of positive integers such that s1 ≥ 2 and s j

divides s j+1. Let X ( j) = {0, 1, . . . , s j − 1} and Xs = {x ∈ ∏∞
j=1 X ( j) :

x j+1 ≡ x j (mod s j )}. Then Xs is a Cantor space with respect to the subspace
topology (where

∏∞
j=1 X ( j) has the product topology). Let f : Xs 
 x �→

y ∈ Xs , where y j = x j + 1 (mod s j ) for each j = 1, 2, . . .. The dynami-
cal system (Xs, f ) is called an odometer defined by the sequence s = {

s j
}∞

j=1.
Note that f is an invertible isometry with respect to a suitable metric on Xs ,
and in particular f is equicontinuous. It may also be seen that (Xs, f ) is min-
imal but not totally transitive. Minimal equicontinuous maps of Cantor spaces
are conjugate to odometers [1]; see the survey [16] for more details about
odometers.

It can be proved (e.g. see [16, Theorem 5.1]) that a minimal system D obtained
as the closure D = O( f, x) of the orbit of a regularly recurrent point x ∈ R R( f )
is an almost 1-1 extension of an odometer. Furthermore, singleton fibers coincide
with the set R R( f ) ∩ D, so (D, f |D) is conjugate to an odometer exactly when
D = D ∩ R R( f ).

2.4 Entropy

There are various (equivalent) definitions of topological entropy for dynamical systems
on compact metric spaces. Here we will follow the approach introduced by R. Bowen.
Let K ⊂ X be a nonempty closed set. Given an integer n > 0 and ε > 0, we say that
a set A ⊂ K is (K , n, ε)-separated for f if for each pair x, y of distinct points in A,
there is an integer 0 ≤ k < n such that d( f k(x), f k(y)) > ε. Denote by s( f, K , n, ε)
the maximal possible cardinality of a (K , n, ε)-separated set for f contained in K (this
number is always well defined by the compactness of X ). Using the above quantity,
we define the following limit

h( f, K ) = lim
ε→0

[

lim sup
n→∞

log s( f, K , n, ε)

n

]

Note that h( f, K ) is always well defined, since for any two integers n,m > 0 we have
s( f, K , n + m, ε) ≤ s( f, K , n, ε)s( f, K ,m, ε) and s( f, K , n, ε) is a non-increasing
function of ε > 0. The topological entropy of f is defined as h( f ) = h( f, X).
We say that x ∈ X is an entropy point if h( f,U ) > 0 for every open neighbor-
hood U of x . Entropy points were introduced in [33] as natural elements of systems
with positive topological entropy. We will denote by E p( f ) the set of all entropy
points of f .
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2.5 Subshifts

For any integer m ≥ 2, the space {0, 1, . . . ,m − 1}N is a Cantor space with respect to
the product topology. A metric inducing the product topology on this space is

d
({xn}∞n=1 , {yn}∞n=1

) =
∞∑

n=1

2−n min {1, |xn − yn|} .

The shift map σ : {0, 1, . . . ,m − 1}N → {0, 1, . . . ,m − 1}N is defined by
the condition that (σ (x))n = xn+1 for n ∈ N. It is a continuous surjection and
({0, 1, . . . ,m − 1}N, σ ) is called the shift dynamical system. Clearly one may use
any finite set with at least two members in the place of {0, 1, . . . ,m − 1}. If
X ⊂ {0, 1, . . . ,m − 1}N is a σ -invariant nonempty closed subset, then the subsystem
(X, σ ) is called a subshift. A member w of {0, 1, . . . ,m − 1}n is said to be a word
of length n over the alphabet {0, 1, . . . ,m − 1} and we write |w| = n. If (X, σ ) is a
subshift, then its language L(X) is the collection of all words w (including the empty
word) appearing in some x ∈ X .

The above objects are defined analogously, when we consider two-sided full shift
{0, 1, . . . ,m − 1}Z. The only difference now is that

d
({xn}n∈Z , {yn}n∈Z

) =
∑

n∈Z

2−|n| min{1, |xn − yn|}.

3 Small minimal sets and density of RR( f )

As the first result, we show that shadowing implies the existence of small minimal
sets for a sequence of powers of f , and moreover these minimal sets can be chosen to
form certain periodic cycles modulo some prescribed error.

Lemma 3.1 Let (X, f ) be a non-wandering dynamical system having shadowing. Let
u ∈ X, λ > 0, and let {λk}∞k=1 be a sequence of positive reals with

∑∞
k=1 λk < λ.

Then there exist an increasing sequence {mk}∞k=1 of natural numbers and a sequence
{Ak}∞k=1 of subsets of X such that for every k ∈ N we have:

(1) mk divides mk+1.
(2) Ak is a minimal set for f mk and diam(Ak) ≤ λk .
(3) Ak ⊂ B(u,

∑k
j=1 λ j ) ⊂ B(u, λ).

(4) f m j n(Ak) ⊂ B(A j ,
∑k

i= j λi ) for 1 ≤ j ≤ k and every n ≥ 0.

Proof Let φ : (0,∞) → (0,∞) be a tracing function for f given by the shadowing
property, and let εk = 4−1λk for k ∈ N. We use induction on k to prove the lemma.
Even though the technical details are a little complicated, the basic idea on which the
proof is built is relatively simple: start with a minimal point, use it to form a periodic
pseudo orbit, then choose a minimal point from the ω-limit set of a point tracing this
pseudo orbit, and repeat the process.
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The initial step of induction is as follows. By shadowing, minimal points are dense
in X by [25, Corollary 1]. Let z0 ∈ M( f ) ∩ B(u, ε1) and choose m1 ∈ N such that
d(z0, f m1(z0)) < φ(ε1). Let y1 ∈ X be a point ε1-tracing the periodic φ(ε1)-pseudo
orbit

ξ0 = (z0, f (z0), . . . , f m1−1(z0), z0, f (z0), . . . , f m1−1(z0), z0, . . .).

Then for every n ≥ 0 we have f m1n(y1) ∈ B(z0, ε1). Let A1 be a minimal set of f m1

contained inω( f m1 , y1)∩B(z0, ε1) ⊂ B(u, λ1). Since diam(A1) ≤ diam B(z0, ε1) ≤
2ε1 < λ1, the first step of induction is completed.

Now fix k ∈ N and assume that m j , A j have been chosen as required for 1 ≤ j ≤ k.
We describe below how to choose mk+1 and Ak+1. Consider zk ∈ Ak . Since zk is also
a minimal point for f mk (e.g. see [18, Theorem 9.11(iv)]), we can find a multiple mk+1
of mk such that d(zk, f mk+1(zk)) < φ(εk+1). Let yk+1 ∈ X be a point εk+1-tracing
the periodic φ(εk+1)-pseudo orbit

ξk = (zk, f (zk), . . . , f mk+1−1(zk), zk, f (zk), . . . , f mk+1−1(zk), zk, . . .).

Then for every n ≥ 0 we have f mk+1n(yk+1) ∈ B(zk, εk+1). Let Ak+1 be a minimal set
of f mk+1 contained inω( f mk+1 , yk+1)∩B(zk, εk+1). Since zk ∈ Ak ⊂ B(u,

∑k
j=1 λ j )

by induction assumption together with inequality εk+1 < λk+1, we have Ak+1 ⊂
B(u,

∑k+1
j=1 λ j ) ⊂ B(u, λ). Also diam(Ak+1) ≤ diam B(zk, εk+1) ≤ 2εk+1 < λk+1.

Now it remains to prove assertion (4).
Fix any x ∈ Ak+1, n ≥ 0 and 1 ≤ j ≤ k + 1. We need to show that

f m j n(x) ∈ B(A j ,
∑k+1

i= j λi ). Since x ∈ Ak+1 ⊂ ω( f mk+1, yk+1) and since m j

divides mk+1, there is an increasing sequence {ql}∞l=1 of positive integers such that
x = liml→∞ f m j ql (yk+1). Hence f m j n(x) = liml→∞ f m j (n+ql )(yk+1). Fix l ∈ N

and let q = n + ql . There is 0 ≤ p ≤ mk+1/m j such that m j p ≡ m j q (mod mk+1).
Then by the choice of yk+1, we get that f m j q(yk+1) ∈ B( f m j p(zk), εk+1). But

f m j p(zk) ∈ f m j p(Ak) ⊂ B(A j ,
∑k

i= j λi ) by induction assumption, and therefore

f m j (n+ql )(yk+1)

= f m j q(yk+1) ∈ B

⎛

⎝B

⎛

⎝A j ,

k∑

i= j

λi

⎞

⎠ , εk+1

⎞

⎠ ⊂ B

⎛

⎝A j ,

k∑

i= j

λi + εk+1

⎞

⎠ .

It follows that f m j n(x) ∈ B(A j ,
∑k

i= j λi + εk+1) ⊂ B(A j ,
∑k+1

i= j λi ), completing
the proof. ��

In [25] the author asked the following question:

– When can we say that RR(f) is dense for a dynamical system having shadowing?

We answer it below by deducing density of the set of regularly recurrent points from
the existence of small minimal sets in Lemma 3.1.

Theorem 3.2 Let (X, f ) be a non-wandering dynamical system having shadowing.
Then the set R R( f ) is dense in X.
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Proof Let U ⊂ X be nonempty and open. We need to find a point z ∈ U ∩ R R( f ).
Choose u ∈ U and λ > 0 such that B(u, λ) ⊂ U . If we put λk = 4−kλ, then∑∞

k=1 λk < λ, and therefore there exist positive integers mk and f mk -minimal sets
Ak for every k ∈ N as specified by Lemma 3.1. Pick a point zk ∈ Ak for each k ∈ N.
If k1, k2 ≥ j , then both zk1 and zk2 belong to B(A j ,

∑∞
i= j λi ) by assertion (4) of

Lemma 3.1. Since diam(A j ) ≤ λ j , we have

d(zk1 , zk2) ≤ λ j + 2
∞∑

i= j

λi ≤ 3
∞∑

i= j

λi

But lim j→∞
∑∞

i= j λi = 0, which shows that {zk}∞k=1 is a Cauchy sequence, and hence
we can define z = limk→∞ zk . Since zk ∈ Ak ⊂ B(u, λ) for every k ∈ N, we have
z ∈ B(u, λ) ⊂ U . We now claim that z ∈ R R( f ).

For any j ∈ N and n ≥ 0, by Lemma 3.1(4) we have

f m j n(z) = lim
k→∞ f m j n(zk) ∈ B

⎛

⎝A j ,

∞∑

i= j

λi

⎞

⎠

and therefore

d
(
z, f m j n(z)

) ≤ diam(A j )+ 2
∞∑

i= j

λi ≤ 3
∞∑

i= j

λi

It follows that for any given β > 0, there is j ∈ N such that d(z, f m j n(z)) < β for
every n ∈ N. This proves our claim that z ∈ R R( f ), and completes the proof. ��
Corollary 3.3 Let (X, f ) be a dynamical system having shadowing. Then R R( f ) is
dense in the non-wandering set �( f ).

Proof By Lemma 1 and Corollary 1 of [25] (see also [6, Theorem 3.4.2]), f |�( f ) is
a non-wandering map having shadowing. Hence Theorem 3.2 applies. ��

4 Density of M( f ) \ RR( f ) and RR( f ) \ P( f )

We know by [25] that minimal points are dense in non-wandering dynamical systems
having shadowing. If the system (X, f ) is also sensitive, we can improve the conclusion
and show that both M( f )\ R R( f ) and R R( f )\ P( f ) are dense in X . For this purpose
we need Lemma 4.1.

Lemma 4.1 The following assertions hold:

(i) There are pairwise disjoint syndetic sets S1, S2, . . . ⊂ N with the property that
Sk ⊂ kN for every integer k ∈ N.

(ii) There is x ∈ {0, 1}N with the following properties:
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(a) for every k, q ∈ N and every thick set T ⊂ N, there is an integer s such that
[s, s + q] ∩ N ⊂ T and xks = 0, xk(s+1) = 1.

(b) for every k,m, q ∈ N and every thick set T ⊂ N, there is an integer s such
that [kms, km(s + q)] ∩ N ⊂ T and xks = 0, xk(s+1) = 1.

Proof (i) : It is enough to put Sk = {all odd multiples of k!2k} for k = 1, 2, . . ..
Simply, if we take any pair of integers 0 < l < k and any j ∈ Sk then there is an
odd integer n such that

j = n(k!)2k = (l!)2l
(

n
k!
l! 2k−l

)

/∈ Sl .

(ii) : Let S1, S2, . . . be as above. Consider n ∈ N. If n does not belong to any Sk , we
put xn = 1. Otherwise, there is a unique k ∈ N such that n ∈ Sk . Define xn = 0
or xn = 1, respectively, depending on whether n occupies an odd or even position
in Sk when the members of Sk are arranged as an increasing sequence.
Now consider a thick set T ⊂ N and k, q ∈ N. Let S̃k = Sk/k = {n/k : n ∈ Sk}.
Since S̃k is syndetic and T is thick, we can find integers s1 < · · · < sq+1 in S̃k ∩T
with the following properties: [s1, sq+1] ∩ N ⊂ T , the integer ks1 occupies an
odd position and ks2 occupies an even position in Sk when the members of Sk

are arranged in increasing order. Then xks1 = 0 and xks2 = 1 by our definition
of x . Let s ∈ [s1, s2) ∩ N be the largest integer with xks = 0. Then xk(s+1) = 1.
Moreover, [s, s +q] ∩N ⊂ [s1, sq+1] ∩N ⊂ T . This proves part (a). For part (b),
apply part (a) to the thick set T ′ := {s ∈ N : [kms, km(s + q)] ∩ N ⊂ T }. ��

Now we are ready to prove the promised result. We will also establish the existence
of minimal sensitive subsystems, and this will be crucial for obtaining the full shift as
a factor for some power of f in the next section.

Theorem 4.2 Let (X, f ) be a non-wandering dynamical system having shadowing.
If f is sensitive, then for any nonempty open set U ⊂ X, there is a regularly recurrent
point z ∈ U such that the subsystem (O( f, z), f ) is sensitive. In particular z is not a
periodic point.

Proof The proof will extend techniques introduced in Theorem 3.2. The long proof
is divided into four steps for the convenience of the reader. In the first step we state
a claim, and the second step proves the theorem assuming the claim. Then we prove
the claim using induction in steps three and four.
Step-1: Let φ : (0,∞) → (0,∞) be a tracing function for f . Choose λ > 0 and u ∈ U

such that f is 2λ-sensitive and B(u, λ) ⊂ U . Let λk = 4−kλ for k ∈ N. We claim that
there exist a sequence {Ak}∞k=1 of subsets of X , a sequence {zk}∞k=1 of points in X , and
three increasing sequences {mk}∞k=1,

{
m′

k

}∞
k=1,

{
m′′

k

}∞
k=1 of positive integers such that

for every k ∈ N we have:

(1) k divides mk , and mk divides mk+1.
(2) Ak is a minimal set for f mk , and diam(Ak) ≤ λk .
(3) zk ∈ Ak ⊂ B(u,

∑k
j=1 λ j ) ⊂ B(u, λ).
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(4) f m j n(Ak) ⊂ B(A j ,
∑k

i= j λi ) for 1 ≤ j ≤ k and every n ≥ 0.
(5) m′

k < m′′
k , and mk divides m′′

k − m′
k .

(6) d( f m′
j (zk), f m′′

j (zk)) > 2−1λ for 1 ≤ j ≤ k.
(7) For every γ > 0, there are positive integer l, r ′ (depending on γ ) such that

d(zk, f lmk (zk)) < γ and d( f r ′
(zk), f lmk+r ′

(zk)) > λ+ λk .

Step-2: Suppose first that the claim holds. As in the proof of Theorem 3.2, we may

check that {zk}∞k=1 is a Cauchy sequence in X and z := limk→∞ zk ∈ B(u, λ) ∩
R R( f ) ⊂ U ∩ R R( f ). Let K = O( f, z). We need to show that the subsystem (K , f )
is sensitive. If (K , f ) is not sensitive, then it must be equicontinuous by minimal-
ity [3]. Choose β > 0 so that d(z′, z′′) < β implies d( f n(z′), f n(z′′)) < 2−1λ

for every z′, z′′ ∈ K and every n ∈ N. Since z is regularly recurrent, there is
p ∈ N such that d(z, f np(z)) < β for every n ∈ N. Hence by the choice
of β, we have d( f m′

p (z), f m′′
p (z)) < 2−1λ since p divides m′′

p − m′
p by asser-

tion (5) of our claim. On the other hand, by (6) we have d( f m′
p (z), f m′′

p (z)) =
limk→∞ d( f m′

p (zk), f m′′
p (zk)) ≥ 2−1λ, a contradiction. Hence (K , f ) must be sen-

sitive.
It remains to prove the claim. We will prove it by induction on k. Let ε = 4−1λ

and εk = 4−1λk for k ∈ N. Note that εk = 4−kε for every k ∈ N. Let x ∈ {0, 1}N
be provided by Lemma 4.1(ii). We will make use of x to construct pseudo orbits of
special type at each step of the induction.
Step-3: The initial step of induction is done as follows. Let z0 = u. By the sensitivity

of f and density of M( f × f ) in X2, there are a1, b1 ∈ B(z0, 4−1φ(ε1)) and r1 ∈ N

such that (a1, b1) ∈ M( f × f ) and d( f r1(a1), f r1(b1)) > 2λ = 8ε. Let m1 > r1
be an integer for which we have d(a1, f m1(a1)) < 4−1φ(ε1) and d(b1, f m1(b1)) <

4−1φ(ε1). Define two finite sequences η1(0) and η1(1) in X as follows:

η1(0) = (a1, f (a1), . . . , f m1−1(a1)),

η1(1) = (b1, f (b1), . . . , f m1−1(b1)).

Let y1 ∈ X be a point ε1-tracing the φ(ε1)-pseudo orbit

ξ1 = η1(0)η1(x1)η1(x2)η1(x3) · · · .

Then for every n ≥ 0 we have f m1n(y1) ∈ B(z0, 4−1φ(ε1) + ε1) ⊂ B(z0, 2ε1).
Let A1 be a minimal set of f m1 contained in ω( f m1 , y1) ∩ B(z0, 2ε1) ⊂ B(u, λ1) ⊂
B(u, λ). We have diam(A1) ≤ diam B(z0, 2ε1) ≤ 4ε1 = λ1. By Auslander-Ellis
theorem (see [18, Proposition 8.6]) applied to f m1 , we can find a point z1 ∈ A1 such
that (y1, z1) ∈ Prox( f m1) = Prox( f ). Since the set

T1 := {n ∈ N : d( f n(y1), f n(z1)) < ε1}

is thick, we may find an integer s1 > 0 such that [m1s1,m1(s1 + 2)] ∩ N ⊂ T1 and
xs1 = 0 and xs1+1 = 1, which is guaranteed by Lemma 4.1(ii) with k = 1. Observe
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that by the definition of the φ(ε1)-pseudo orbit ξ1, the (m1s1 + r1)th term in ξ1 is
f r1(a1) and the (m1(s1 + 1)+ r1)th term in ξ1 is f r1(b1). Hence

d( f r1(a1), f m1s1+r1(y1)) ≤ ε1, and d( f r1(b1), f m1(s1+1)+r1(y1)) ≤ ε1.

Since d( f r1(a1), f r1(b1)) > 2λ = 8ε, we deduce that (recall that ε1 = 4−1ε):

d( f m1s1+r1(z1), f m1(s1+1)+r1(z1)) > 8ε − (ε1 + ε1 + ε1 + ε1) ≥ 7ε > 2−1λ.

Taking m′
1 = m1s1 + r1 and m′′

1 = m1(s1 + 1)+ r1, we see that (6) is satisfied.
To complete first step of induction, we need to show that (7) holds with k = 1. Fix

γ > 0. Since z1 ∈ M( f ) = M( f m1), there is l ∈ N such that d(z1, f lm1(z1)) < γ .
Since T1 is thick, there is an integer s such that [lm1s, lm1(s + 2)] ∩ N ⊂ T1, and
xls = 0, xl(s+1) = 1 by Lemma 4.1. Then for r ′ := lm1s + r1, we have that

d( f r1(a1), f r ′
(y1)) ≤ ε1, and d( f r1(b1), f lm1+r ′

(y1)) ≤ ε1.

Since r ′, lm1 + r ′ ∈ [lm1s, lm1(s + 2)] ∩ N ⊂ T1, we also have

d( f r ′
(y1), f r ′

(z1)) < ε1 and d( f lm1+r ′
(y1), f lm1+r ′

(z1)) < ε1.

Since d( f r1(a1), f r1(b1)) > 2λ = 8ε, we deduce as in the proof of assertion (6) that

d( f r ′
(z1), f lm1+r ′

(z1)) > 8ε − (ε1 + ε1 + ε1 + ε1) ≥ 7ε > 4ε + ε = λ+ λ1.

Indeed (7) holds, and so the first step of induction is completed.
Step-4: Now fix k > 1, and assume that we have chosen z j , A j ,m j ,m′

j ,m′′
j for

1 ≤ j < k as specified by conditions (1)–(7). We describe below how to choose
zk, Ak,mk,m′

k, and m′′
k .

Let ε′k ∈ (0, εk) be such that every point of B(zk−1, 4ε′k) satisfies (6), that is if

v ∈ B(zk−1, 4ε′k) then d( f m′
j (v), f m′′

j (v)) > 2−1λ for every 1 ≤ j < k.
By induction assumption, and to be specific, by assertion (7) of the claim there are

l ′, rk ∈ N such that the points ak := zk−1 and bk := f l ′mk−1(zk−1) from Ak−1 satisfy

d(ak, bk) < 4−1φ(ε′k) and d( f rk (ak), f rk (bk)) > λ+ λk−1 > 4ε.

Since (ak, bk) ∈ M( f × f ), we can find an integer mk > rk satisfying

d(ak, f mk (ak)) < 4−1φ(ε′k) and d(bk, f mk (bk)) < 4−1φ(ε′k).

Since M( f × f ) = M( f j × f j ) for every j ∈ N, without loss of generality we may
assume that both k and mk−1 divide mk . Define two finite sequences ηk(0) and ηk(1)
in X as follows:

ηk(0) = (ak, f (ak), . . . , f mk−1(ak)),

ηk(1) = (bk, f (bk), . . . , f mk−1(bk)).
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Let yk ∈ X be a point ε′k-tracing the φ(ε′k)-pseudo orbit

ξk = ηk(0)ηk(x1)ηk(x2)ηk(x3) · · · .

Then for every n ≥ 0 we have f mk n(yk)∈ B(zk−1, 4−1φ(ε′k)+ε′k) ⊂ B(zk−1, 2ε′k).
Let Ak be a minimal set of f mk contained in ω( f mk , yk) ⊂ B(zk−1, 2ε′k). We have
diam(Ak) ≤ diam B(zk−1, 2ε′k) ≤ 4ε′k < 4εk = λk . Note that zk−1 ∈ Ak−1 ⊂
B(u,

∑k−1
j=1 λ j ) by induction assumption, and therefore Ak ⊂ B(u,

∑k
j=1 λ j ) ⊂

B(u, λ) also.
Observe that we have completed the proofs of assertions (1), (2), (3) in the kth

step of induction. The proof of (4) is as in the proof of Lemma 3.1. We present it for
completeness.

Fix any y ∈ Ak , n ≥ 0 and 1 ≤ j ≤ k. We need to show f m j n(y) ∈
B(A j ,

∑k
i= j λi ). Since y ∈ Ak ⊂ ω( f mk , yk) and since m j divides mk , there is

an increasing sequence {ql}∞l=1 of positive integers such that y = liml→∞ f m j ql (yk).
Hence f m j n(y) = liml→∞ f m j (n+ql )(yk). Fix l ∈ N and let q = n + ql . There is
0 ≤ p ≤ mk/m j such that m j p ≡ m j q (mod mk). Then by the choice of yk , we get
that either

f m j q(yk) ∈ B( f m j p(ak), εk), or f m j q(yk) ∈ B( f m j p(bk), εk).

But ak, bk ∈ Ak−1 by our choice, and f m j p(Ak−1) ⊂ B(A j ,
∑k−1

i= j λi ) by induc-
tion assumption. Therefore

f m j (n+ql )(yk)

= f m j q(yk) ∈ B

⎛

⎝B

⎛

⎝A j ,

k−1∑

i= j

λi

⎞

⎠ , εk

⎞

⎠ ⊂ B

⎛

⎝A j ,

k−1∑

i= j

λi + εk

⎞

⎠ .

It follows that f m j n(y) ∈ B(A j ,
∑k−1

i= j λi + εk) ⊂ B(A j ,
∑k

i= j λi ), completing the
proof of (4).

It remains to establish assertions (5)–(7). By Auslander-Ellis theorem (see [18,
Proposition 8.6]) applied to f mk , we can find a point zk ∈ Ak such that (yk, zk) ∈
Prox( f mk ) = Prox( f ).

Since zk ∈ Ak ⊂ B(zk−1, 2ε′k) ⊂ B(zk−1, 4ε′k), we obtain by the choice of ε′k that

d( f m′
j (zk), f m′′

j (zk)) > 2−1λ for every 1 ≤ j < k.

Since Tk := {n ∈ N : d( f n(yk), f n(zk)) < ε′k} is thick, we may find by Lemma
4.1(ii) an integer sk > 0 such that [skmk, (sk + 2)mk] ⊂ Tk and additionally xsk = 0
and xsk+1 = 1. Since d( f rk (ak), f rk (bk)) > 4ε and ε′k < εk < 4−kε, we may deduce
the same way as in the initial step of induction that

d( f mk sk+rk (zk), f mk (sk+1)+rk (zk)) > 4ε − (ε′k + ε′k + ε′k + ε′k) > 3ε > 2−1λ.
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Taking m′
k = mksk + rk and m′′

k = mk(sk + 1)+ rk , the proofs of (5) and (6) in the
kth step of induction are also completed.

As the last step, we need to prove (7). Fix any γ > 0. Since zk ∈ M( f ) = M( f mk ),
there is l > 0 be such that d(zk, f lmk (zk)) < γ . Since Tk is thick, there is an integer
s such that [lmks, lmk(s + 2)] ∩ N ⊂ Tk , and xls = 0, xl(s+1) = 1 by Lemma 4.1.
Then for r ′ := lmks + rk , we have that

d( f rk (ak), f r ′
(yk)) ≤ ε′k, and d( f rk (bk), f lmk+r ′

(yk)) ≤ ε′k .

Since r ′, lmk + r ′ ∈ [lmks, lmk(s + 2)] ∩ N ⊂ Tk , we also have

d( f r ′
(yk), f r ′

(zk)) < ε′k and d( f lmk+r ′
(yk), f lmk+r ′

(zk)) < ε′k .

Since 4ε′k < 4εk = λk = 4−kλ and since d( f rk (ak), f rk (bk)) > λ + λk−1,
similarly as before we obtain that

d( f r ′
(zk), f lmk+r ′

(zk)) > λ+ λk−1 − 4ε′k > (1 + 4−(k−1) − 4−k)λ

> (1 + 4−k)λ = λ+ λk .

Indeed (7) in the k-th step of induction holds. This completes the induction, proving
the claim and ending the proof of theorem at the same time. ��
Corollary 4.3 Let (X, f ) be a non-wandering dynamical system having shadowing
property. If f is sensitive, then:

(1) R R( f )\P( f ) is dense in X,
(2) M( f )\R R( f ) is dense in X.

Proof Since a periodic orbit is an equicontinuous dynamical system, (1) is an immedi-
ate consequence of Theorem 4.2. For the proof of (2) fix a nonempty open set U ⊂ X
and use Theorem 4.2 to find y ∈ R R( f ) ∩ U such that D = O( f, y) is sensitive.
Then D\R R( f ) �= ∅ as otherwise (D, f |D) is conjugated to an odometer by [16,
Theorem 5.1], and in particular is not sensitive. Fix z ∈ D\R R( f ) and observe that
there is n ≥ 0 such that z ∈ f −n(U ), since D ⊂ ⋃∞

j=0 f − j (U ). Then f n(z) ∈ U
which ends the proof since f n(z) ∈ M( f )\R R( f ). ��
Remark 4.4 Downarowicz and Ye [17] constructed a non-minimal dynamical system
(X, f ) with property that every point is either transitive or periodic (and both types
of points are present). Such a system cannot have shadowing by the above Corollary.
This can also be deduced using Theorem 5.2 from the next section.

5 Shift factor and minimal subsystems with positive entropy

The presence of the shift dynamical system as a factor of some subsystem is an
indication of high complexity for a dynamical system. A classical example of this
type is Smale’s horseshoe. In this section we will show that non-wandering, sensitive
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dynamical systems (X, f ) with shadowing have the property that the full shift is
a factor for some subsystem of some power of f . In fact, we will show that such
subsystems can be found everywhere in the phase space.

Theorem 5.1 Let (X, f ) be a dynamical system having shadowing, and U ⊂ X
be open. If there is a minimal sensitive subsystem (M, f ) with M ∩ U �= ∅, then
there exist m ∈ N, a subsystem (Y, f m) for f m with Y ⊂ U, and a factor map
π : (Y, f m) → ({0, 1}N, σ ).
Proof Let u ∈ M ∩ U , and let λ > 0 be a sensitivity constant for (M, f ) such that
B(u, λ) ⊂ U . Let S := N f (u, B(u, 4−1λ)). Write S = {0 = s0 < s1 < s2 < · · · },
and let q ∈ N be a bound for the gaps in the syndetic set S. Choose ε > 0 with the
property that d(a, b) ≤ 4ε implies d( f i (a), f i (b)) < 2−1λ for every a, b ∈ X and
0 ≤ i ≤ q. Keep in mind that ε < 8−1λ by our choice.

Let φ : (0,∞) → (0,∞) be a tracing function for f . By the minimality and sensi-
tivity of (M, f ), there exist r > q and t ∈ N such that v := f t (u) ∈ B(u, 4−1φ(ε))

and d( f r (u), f r (v)) > 2−1λ. Then by the syndetic nature of S and the choice of ε,
there is at least one sp ∈ S such that d( f sp (u), f sp (v)) ≥ 4ε.

Now assume that p ∈ N is the smallest such that sp ∈ S satisfies d( f sp (u),
f sp (v)) ≥ 4ε. Then d( f sp−1(u), f sp−1(v)) < 4ε, and therefore d( f sp (u), f sp (v)) <

2−1λ by the choice of ε. We have d(u, f sp (u)) < 4−1λ by the definition of S, and
d(u, f sp (v)) ≤ d(u, f sp (u))+d( f sp (u), f sp (v)) < 4−1λ+2−1λ. Therefore if we put
C(0) = B( f sp (u), ε), and C(1) = B( f sp (v), ε), then C(0) ∪ C(1) ⊂ B(u, λ) ⊂ U .
Observe that d(c0, c1) ≥ 2ε for every (c0, c1) ∈ C(0) × C(1), and in particular
C(0) ∩ C(1) = ∅. We will construct the required Y as a subset of C(0) ∪ C(1).

Since v = f t (u), we have (u, v) ∈ M( f × f ), and therefore there is an integer
m > sp such that d(u, f m(u)) < 4−1φ(ε) and d(v, f m(v)) < 4−1φ(ε). Define two
finite sequences

η(0) = (u, f (u), . . . , f m−1(u)), (5.1)

η(1) = (v, f (v), . . . , f m−1(v)). (5.2)

Fix a transitive point x ∈ {0, 1}N for the shift map σ , and let y′ ∈ X be a point
ε-tracing the φ(ε)-pseudo orbit η(x1)η(x2)η(x3) · · · . If we put y = f sp (y′), then
f mn(y) ∈ C(xn) for every n ≥ 0. Let Yx = { f mn(y) : n = 0, 1, 2, . . .} and Y =
Yx ⊂ C(0) ∪ C(1) ⊂ U . Define π : Yx → {0, 1}N as π( f mn(y)) = σ n(x) for n ≥ 0.
Note that π( f m(z)) = σ(π(z)) for every z ∈ Yx by definition.

We claim that π is uniformly continuous on Yx . Given k ∈ N, choose β > 0 such
that d(a, b) < β implies d( f im(a), f im(b)) < ε for every a, b ∈ X and 0 ≤ i ≤ k.
Consider z1, z2 ∈ Yx with d(z1, z2) < β. Let n1, n2 ≥ 0 be such that z1 = f mn1(y)
and z2 = f mn2(y). We have d( f m(n1+i)(y), f m(n2+i)(y)) < ε for 0 ≤ i ≤ k by
the choice of β. Since d(c0, c1) ≥ 2ε for any (c0, c1) ∈ C(0) × C(1), we conclude
that both f m(n1+i)(y) and f m(n2+i)(y) are in C(xn1+i ) for 0 ≤ i < k. Consequently,
π(z1)i = σ n1(x)i = σ n2(x)i = π(z2)i for 1 ≤ i ≤ k, and this establishes our claim.
Therefore, π extends to a continuous map π : Y → {0, 1}N having the property that
π ◦ f m = σ ◦ π . Since the orbit of the transitive point x is contained in the image of
π , it follows that π is surjective, and thus π is a factor map. ��
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Theorem 5.2 Let (X, f ) be a non-wandering dynamical system having shadowing.
Suppose f is sensitive, and let U ⊂ X be a nonempty open set. Then the following
assertions hold.

(1) There exist m ∈ N, a subsystem (Y, f m) for f m with Y ⊂ U, and a factor map
π : (Y, f m) → ({0, 1}N, σ ).

(2) There are m ∈ N and a minimal sensitive subsystem (M, f m) for f m such that
M ⊂ U, M ∩ R R( f m) = ∅ and h( f m |M ) > 0.

(3) There is a minimal sensitive subsystem (M ′, f ) for f such that M ′ ∩ U �= ∅,
M ′ ∩ R R( f ) = ∅ and h( f |M ′) > 0.

Proof (1) : By Theorem 4.2, there is a minimal sensitive subsystem (M, f ) with
M ∩U �= ∅. Then by Theorem 5.1, there are m ∈ N, a subsystem (Y, f m) for f m

with Y ⊂ U , and a factor map π : (Y, f m) → ({0, 1}N, σ ).
(2) : Let m,Y, π be as above. Let Q ⊂ {0, 1}N be such that the subshift (Q, σ ) is

minimal, has positive entropy and does not contain regularly recurrent points. For
example we can start with an extension of Chacon subshift [12] which are formally
subsystems of ({0, . . . , k}N , σ ) for some k > 0, hence can naturally viewed as
a subsystem of ({0, 1}N , σ k). But M(σ ) ∩ R R(σ ) = M(σm) ∩ R R(σm), so it
induces a minimal subshift Q ⊂ {0, 1}N with positive topological entropy.
Then π−1(Q) is an f m-invariant closed set. Let M ⊂ π−1(Q) ⊂ Y ⊂ U be a
minimal set for f m . Then π(M) = Q by the minimality of (Q, σ ), and therefore
h( f m |M ) ≥ h(σ |Q) > 0. By the same argument M ∩ R R( f m) = ∅ (otherwise
Q would contain regularly recurrent points). It is also well-known that a minimal
system with positive entropy must be sensitive (since equicontinuous systems
have zero entropy).

(3) : Take M ′ = ⋃m−1
j=0 f j (M). Take any y ∈ M ′. Then x ∈ M( f m) = M( f ) and

ω( f, x) =
m−1⋃

j=0

ω( f m, f j (x)) =
m−1⋃

j=0

f j (ω( f m, x)) =
m−1⋃

j=0

f j (M) = M ′.

Indeed M ′ is a minimal set and

h( f |M ′) = 1

m
h( f m |M ′) ≥ 1

m
h( f m |M ) > 0.

Restrict f to M ′. For any open set U ⊂ M ′ there is s > 0 such that M ′ =⋃s
j=0 f − j (U ), in particular there is j ≥ 0 such that f − j (U ) ∩ M �= ∅. This

immediately implies that f |M ′ is sensitive, since M is sensitive. Finally, M ′ ∩
R R( f ) = ∅, as otherwise M ∩ R R( f ) �= ∅ which is impossible. ��

Corollary 5.3 Let (X, f ) be a non-wandering dynamical system having shadowing.
Suppose f is sensitive, and let U ⊂ X be a nonempty open set. Then there exist
(xi , yi ) ∈ U × U for i = 1, 2, 3 such that

(1) (x1, y1) ∈ Asy( f ) and x1 �= y1.
(2) (x2, y2) ∈ Prox( f )\Asy( f ).
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(3) x3 �= y3, both are distal points, and in particular (x3, y3) ∈ X2\Prox( f ).

Proof By Theorem 5.2, there exist m ∈ N and a minimal sensitive subsystem (M, f m)

for f m such that M ⊂ U and h( f m |M ) > 0. Since h( f m |M ) > 0, we have that
Asy( f m |M ) contains non-diagonal pairs by [11], and Prox( f m |M )\Asy( f m |M ) �= ∅
(in fact, uncountable) by [10]. But Asy( f ) = Asy( f m), and Prox( f )\Asy( f ) =
Prox( f m)\Asy( f m). This proves (1) and (2).

By Theorem 4.3 there is a non-periodic, regularly recurrent (hence distal) point
x3 ∈ U . The orbit of x3 does not have any periodic or isolated points, and so there is
another non-periodic, regularly recurrent point y3 ∈ U ∩ O( f, x3). ��

Note that by Theorem 3.2 the assertion (3) in Corollary 5.3 holds when X has no
isolated points, irrespective of whether f is sensitive or not.

Dynamical system (X, f )with surjective f which is c-expansive and has shadowing
property is usually called topologically hyperbolic, since it mimics many properties
of hyperbolic systems in smooth dynamics. A classical result related to topologically
hyperbolic systems, proved first by Bowen, says that every transitive topologically
hyperbolic homeomorphism is a factor of a special subshift (so-called shift of finite
type) via a bounded-to-one factor map (e.g. see [6, Theorem 4.3.6]). Then it is not
surprising that Theorem 5.2 can be extended to the following.

Theorem 5.4 Let (X, f ) be a non-wandering and topologically hyperbolic dynamical
system, where X has no isolated points. Then for any nonempty open set U ⊂ X
there exist m ∈ N and a subsystem (Y, f m) for f m with Y ⊂ U, and a conjugacy
π : (Y, f m) → ({0, 1}Z, σ ).
Proof For the purposes of this proof, by a bi-infinite δ-pseudo-orbit we mean any
sequence {zn}n∈Z satisfying d( f (zn), zn+1) < δ for every n, and ε-tracing by a full
orbit {xn}n∈Z means that d(xn, zn) < ε for every n ∈ Z.

First apply spectral decomposition due to Bowen (see [6, Theorem 3.4.4]) obtaining
disjoint closed sets �1, . . . , �r and an integer q > 0 such that X = ⋃r

i=1�i and
f q |�i is topologically mixing for every i = 1, 2, . . . , r . Since X does not have any
isolated points, none of the sets �i is a singleton, in particular f is sensitive.

Note that by shadowing and compactness there is a tracing function φ with the
property that for every bi-infiniteφ(ε)-pseudo-orbit {zn}n∈Z there is a full orbit {xn}n∈Z

which ε-traces it, that is d(xn, zn) < ε for every n ∈ Z. Fix an expansive constant
β > 0 and observe that if ε < β/2 then the tracing full orbit above is uniquely
determined.

By Theorem 4.2, there is a minimal sensitive subsystem (M, f )with M∩U �= ∅. Let
u ∈ M ∩U , and let λ > 0 be a sensitivity constant for (M, f ) such that B(u, λ) ⊂ U .
Let S := N f (u, B(u, 4−1λ)). Write S = {0 = s0 < s1 < s2 < · · · }, and let q ∈ N

be a bound for the gaps in the syndetic set S. Choose 0 < ε < β/3 with the property
that d(a, b) ≤ 4ε implies d( f i (a), f i (b)) < 2−1λ for every a, b ∈ X and 0 ≤ i ≤ q.
Keep in mind that ε < 8−1λ by our choice.

Now proceed exactly as in the proof of Theorem 5.1 by choosing C(0),C(1), etc.
till defining the two finite sequences in (5.1) and (5.2):

η(0) = (u, f (u), . . . , f m−1(u)), and η(1) = (v, f (v), . . . , f m−1(v)).
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For any point x ∈ {0, 1}Z let zx = q0, where {qn}n∈Z is the full orbit which is ε-tracing
the bi-infinite φ(ε)-pseudo orbit

ξx = (. . . y−1 y0 y1 y2 . . .) = (. . . η(x−1).η(x0)η(x1)η(x2)η(x3) . . .)

where symbol “.” in the above sequence indicates the position of y0, i.e. y0, y1, . . .

are elements just after “.”.
Note that the point zx is unique by the choice of ε. Moreover, it may be seen that

zx �= zx ′ if x �= x ′ since d(c0, c1) ≥ 2ε for any (c0, c1) ∈ C(0)×C(1). Hence setting
Y = {zx : x ∈ {0, 1}Z} ⊂ C(0) ∪ C(1) ⊂ U , we see that the map π : Y → {0, 1}Z
defined as π(zx ) = x is a well-defined bijection. Clearly, π ◦ f m = σ ◦π , and it may
be verified as in the proof of Theorem 5.1 that π is continuous. This completes the
proof. ��
Example 5.5 Take any continuous map f : [0, 1] → [0, 1] and assume that ([0, 1], f )
is a non-wandering dynamical system with shadowing. A particular example here is
the full tent map f (x) = 1 − |1 − 2x | or various other maps from the family of tent
maps [15].

It is easy to verify that f is mixing (it is straightforward to show that N (U, V ) is
cofinite for any two open intervals U, V ). Now, if we fix any open interval U , then
shadowing with mixing immediately imply that there are two disjoint closed intervals
J0, J1 ⊂ U and m > 0 such that f m(J0) ∩ f m(J1) ⊃ J0 ∪ J1. But then, by results
of [24] (see the proof of [24, Theorem 9]), there is a closed set � ⊂ J0 ∪ J1 ⊂ U
and s > 0 such that � is invariant for f m+s such that (�, f m+s) is conjugated to
({0, 1}N , σ ).

We have seen that for an infinite non-wandering system with shadowing, c-
expansivity is a sufficient condition to make the factor map in Theorem 5.2 a con-
jugacy. The examples of interval maps given above are not c-expansive (see [6]), and
this shows that c-expansivity is not a necessary condition. So the following question
is natural.

Question 1 Is there a simple necessary and sufficient condition for the factor map in
Theorem 5.2 to be a conjugacy?

Remark 5.6 We proved so far that every non-wandering and sensitive dynamical sys-
tem having shadowing contains dense collections of two types of minimal systems:

(1) sensitive, almost 1-1 extensions of odometers,
(2) systems with positive entropy and without regularly recurrent points (this is much

stronger than simply saying that M( f )\R R( f ) is dense).

It is well known that for non-wandering topologically hyperbolic dynamical system
there is m > 0 and there are disjoint closed sets D1, . . . , Dk invariant for f m such that
(Di , f m) is mixing for each i = 1, 2, . . . , k (it is the so-called spectral decomposition
due to Smale, e.g. see [6]). It can also be proved that each (Di , f m) contains plenty
of minimal weakly mixing subsystems (because it is bounded-to-one factor of a shift
of finite type [6]). This is no longer true if we drop expansivity assumption.
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Example 5.7 Let (X, f ) be a dynamical system obtained as the Cartesian product of
an odometer and full shift. Then (X, f ) is transitive, and has shadowing since both the
odometer and the full shift have the shadowing property. But if M ⊂ X is a minimal
set for f m then (M, f m) has an odometer as its factor (it is enough to take projection
onto the first co-ordinate), in particular its maximal equicontinuous factor is not a
singleton. It implies that (M, f m) is not weakly mixing.

The above observations motivate the following question.

Question 2 Does every weakly mixing dynamical system with shadowing contain a
weakly mixing minimal subsystem?

Motivated by Corollary 3.3 we may also ask another question about the possible
existence of minimal subsystems with highly non-chaotic behavior:

Question 3 Does every non-wandering sensitive dynamical system with shadowing
contain an equicontinuous minimal subsystem?

6 Answering two questions: about semi-distality and entropy points

We answer two more questions from [25]. First we show that an infinite transitive
semi-distal system with shadowing must be a minimal equicontinuous system on a
Cantor space, completing the results of [25, Theorem 5].

We recall two interesting known facts.

Theorem 6.1 (Theorem 2.7(c), [4]) If (X, f ) is transitive and semi-distal, then (X, f )
is minimal.

Theorem 6.2 (Proposition 2.7, [32]) Let (X, f ) be a dynamical system, let x ∈ R( f )
and let A be a minimal set contained in O( f, x). Then there is y ∈ A such that
(x, y) ∈ Prox( f ) ∩ R( f × f ).

Now we have two (related) proofs for our promised result.

Corollary 6.3 Let (X, f ) be an infinite transitive dynamical system having shadow-
ing. If f is semi-distal, then f is a minimal equicontinuous map of the Cantor space.

Proof It suffices to show that f is minimal, for then the required conclusion follows
by Theorem 6 of [25]. The minimality of f follows either directly by Theorem 6.1, or
in the following manner: if f is not minimal, then by considering a transitive point x
and applying Theorem 6.2, we see that there exists (x, y) ∈ R( f × f )∩ Prox( f )\�,
and in particular (x, y) �∈ Asy( f ) also, which contradicts the assumption that f is
semi-distal. ��

We digress a little bit to note down a Corollary of Theorem 6.2.

Corollary 6.4 Let (X, f ) be a dynamical system and x, y ∈ X. If (x, y) ∈ Prox( f )
then there is z ∈ M( f )∩ O( f, x)∩ O( f, y) such that ((x, y), (z, z)) ∈ Prox( f × f ).
In addition, if (x, y) ∈ R( f × f ), then the point z can be chosen to satisfy the extra
property that (x, y, z) ∈ R( f × f × f ).
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Proof Let g = f × f , �X be the diagonal in X2 and A = �X ∩ O((x, y), g).
Then A is closed, g-invariant, and A �= ∅ since (x, y) ∈ Prox( f ). Applying [18,
Proposition 8.6] we get (z, z) ∈ A ∩ M(g) such that ((x, y), (z, z)) ∈ Prox(g). If
we also have (x, y) ∈ R(g), then by Theorem 6.2 we may additionally assume that z
satisfies the property (x, y, z, z) ∈ R(g × g). ��

It was proved in [25] that if f has shadowing then sensitive points are entropy points,
and hence when f is a sensitive dynamical system with shadowing then E p( f ) = X .
Since f (E p( f )) ⊂ E p( f ) and E p( f ) is closed, we immediately obtain that E p( f ) =
X in any minimal system with positive topological entropy (and clearly, every such a
system is sensitive). This motivated the author of [25] to state the following question:

– If X is a compact metric space and f : X → X is a transitive map with h( f ) > 0,
is it true that E p( f ) = X?

The following theorem shows that the answer for the above question from [25] is
negative.

Theorem 6.5 There is a mixing subshift (X, σ )with positive entropy over the alphabet
{a, b, c} such that

(i) X contains elements starting with a, but
(ii) X has no entropy point starting with a.

Proof Let X ⊂ {a, b, c}N be the collection of all x satisfying the following condition:
ifw is a word of length 2n (where n ∈ N) appearing in x and ifw starts with the letter
a, then #{i : wi �= b} ≤ n. It is easy to see (X, σ ) is a subshift. Since {b, c}N ⊂ X ,
the system (X, σ ) has positive entropy.

Let L(X) denote the language of X . If u, w ∈ L(X), then ubkwb∞ ∈ X for all
sufficiently large k, and this shows (X, σ ) is mixing. Since ab∞ ∈ X , condition (i) is
also satisfied.

Let α(m) be the number of words w ∈ L(X) of length m and starting with a.
Considerw ∈ L(X) of length 2n such thatw starts with a. Suppose #{i : wi �= b} = k.
The number of ways to choose k positions from 2n positions is bounded from the above
by (2n)k = 2kn . The number of ways to fill k positions with two letters is 2k . Hence

α(2n) ≤
n∑

k=0

2kn+k ≤ (n + 1)2n2+n ≤
(

22n2
)2n = 24n3

for all n ∈ N. Now, given m ∈ N, take n ∈ N such that 2n−1 ≤ m < 2n . Then
α(m) ≤ α(2n), and therefore

logα(m)

m
≤ logα(2n)

2n−1 ≤ 4n3 log 2

2n−1 .

This implies that

h(CX (a), σ |X ) = lim sup
m→∞

α(m)

m
≤ lim

n→∞
8n3 log 2

2n
= 0.
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where CX (a) = {x ∈ X : x0 = a}. This gives (ii), completing the proof. ��
It is known that on many manifolds, shadowing homeomorphisms with positive

entropy are generic [21]. Hence the following question is natural to ask:

Question 4 Is there a compact topological manifold M and a transitive homeomor-
phism f : M → M such that ∅ �= E p( f ) �= M?
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