
Monatsh Math (2012) 168:523–543
DOI 10.1007/s00605-011-0366-5

The first moment of Salié sums

Benoît Louvel

Received: 2 July 2011 / Accepted: 1 December 2011 / Published online: 16 December 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The main objective of this article is to study the asymptotic behavior of
Salié sums over arithmetic progressions. We deduce from our asymptotic formula that
Salié sums possess a bias towards being positive. The method we use is based on the
Kuznetsov formula for modular forms of half-integral weight. Moreover, in order to
develop an explicit formula, we are led to determine an explicit orthogonal basis of
the space of modular forms of half-integral weight.
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1 Introduction

For an odd integer c, the Salié sum is defined as

K2(m, n; c) =
∑

x ( mod c)
xx−1≡1 ( mod c)

( x

c

)
e

(
mx + nx−1

c

)
.
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524 B. Louvel

As usual, for z ∈ C, we write e(z) = exp(2π i z). We use the subscript K2 in order
to distinguish the Salié sums from the Kloosterman sums, defined analogously, but
without the presence of the Jacobi symbol (x/c).

Classically, these sums have been investigated over the set of primes. For a prime
p, one has, by a classical theorem of Salié, that

K2(m, n; p) = 2 cos

(
4πx

p

) ∑

y ( mod p)

e

(
y2

p

)
, x2 ≡ mn (mod p). (1)

From the equidistribution of roots of quadratic congruences modulo prime moduli
(proved in [5]) and from (1), follows that for given m and n, the angles of Salié sums
K2(m, n; p) are equidistributed with respect to the uniform measure.

In this paper, we investigate the distribution of the sums K2(m, n; c), when c runs
over the set of integers. Individually, these sums are well understood. One can gener-
alize (1) to any modulus c and show that Salié sums satisfy the individual bound

|K2(m, n; c)| � 2ω(c)
√

c, (2)

where ω(c) is the number of distinct prime divisors of c. Nevertheless, as for most
of (complete) exponential sums, the understanding of the behavior of these sums as
function of the moduli c is a difficult problem. Using methods of analytic number
theory, one might expect to catch important properties of Salié sums by looking at
their L-function, but it turns out that, due to a twisted multiplicativity, the L-function
has neither a functional equation nor an Euler product, rendering the investigation of
Salié sums very involved.

One way these sums can be approached is by the analytic theory of automorphic
forms. It is known that Kloosterman sums (or their twists) appear as Fourier coeffi-
cients of Poincaré series. In 1987, in his breakthrough paper [10], Iwaniec succeded
in proving a new upper bound for the Fourier coefficients of modular forms of half-
interval weight, by estimating sums on Salié sums. This leads naturally to the problem
of studying Salié sums on average, and more precisely to detect cancellation among
these sums. Inspired by the work of Livné and Patterson [13], where the authors study
the first moment of cubic exponential sums, we obtain a complete determination of
the first moment of Salié sums over arithmetic progressions. A crucial point for us is
that the L-function associated to Salié sums possesses an exceptional pole, related to
the minimal eigenvalue of the Laplacian operator. It should be emphasized that this
phenomenon is reminiscent to the situation in [13], and ultimately lies at the heart of
the problem.

We study the distribution of the normalized Salié sums K2(m, n; c), for fixed m
and n, when c runs over an arithmetic sequence c ≡ 0 (mod D). One of the principal
consequences of our main theorem is that, in most cases, the Salié sums K2(m, n; c)
exhibit much cancellation and that, in the remaining cases, our formula shows a defin-
itive bias for the Salié sums towards being positive.

As usual, we write d | b∞ if d is supported by b, i.e. if d is a product of primes
dividing b, and (a, b∞) for the greatest divisor of a supported by b. For a positive
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integer d, we denote by χd the primitive quadratic character corresponding to the
field extension Q(

√
d)/Q. Let us define the symbol εc, for odd integers c, by εc = 1

if c ≡ 1 (mod 4), and εc = i if c ≡ 3 (mod 4). One easily sees that the numbers
K2(m, n; c)εc are real.

Theorem 1 Let D and f be odd positive integers, mutually coprime and let χ be an
even primitive Dirichlet character modulo f . Let m, n ∈ Z. Let ε > 0 and let X � 1.

If χ �= χ f , or if m < 0 or if n < 0, then

∑

0<c�X
c≡0 ( mod D)

K2(m, n; c)√
c

εcχ(c) = O
(

X3/4+ε) .

If χ = χ f and m, n > 0, then

∑

0<c�X
c≡0 ( mod D)

K2(m, n; c)√
c

εcχ(c) = C(D, f,m, n)X + O
(

X3/4+ε) ,

for some real number C(D, f,m, n). Assume that m and n are of the form

{
m = t f s2m′2

n = t f s2n′2,

for some positive integers t , s, m′, n′ satisfying the following conditions:

(i) t is square-free, t ≡ 1 (mod 4), s is supported by t and s2t3|D,
(ii) (m′, t) = (n′, t) = 1,

(iii) (m′, D1) = (n′, D1), where D = Dt D0 D2
1 , where Dt = (D, t∞) and D0 is

square-free.

Then, one has

C(D, f,m, n) = 8

π2

s
√

t

D

(
f m′n′

t

)
(m′, D1)

∏

p|D f

(1 + p−1)−1

×
∏

p|t
(1 − p−1)−1

∏

p|D1/(m′,D1)

(1 − p−1)−1. (3)

Moreover, if m and n are not of the form described above, then C(D, f,m, n) = 0. In
particular, C(1, f,m, n) ≥ 0.

Let us now mention some other problems related to Theorem 1. Consider the sum

S(m, �; c) =
∑

x ( mod c)
x2≡m ( mod c)

e

(
2x�

c

)
. (4)
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526 B. Louvel

These sums are related to Salié sums by the formula

S(m, �; c) =
∑

d|(�,c)

√
d

c
εc/d K2

(
m,

�2

d2 ; c

)
. (5)

From (5) and Theorem 1, we obtain the following corollary.

Corollary 1 Let m, �, c ∈ Z. Then for any ε > 0, one has

∑

c�X

S(m, �; c) = C(m, �)X + Om,�

(
X3/4+ε) ,

with

C(m, �) =
{

0 if m is not a square
8
π2 X σ(�)

�
if m is a square.

Here, σ(�) is the sum of the divisors of �.

A similar result to Corollary 1 is given in [9, Theorem 1], where the author obtains a
control on the dependence on � of the error term, but only in the case where m is not
a square. Note that recently, Duke, Imamoglu and Tóth have conjectured in [6] that

d−1/2
∑

c>0

S(d,m; c) sin

(
4πm

√
d

c

)

 σ1(m)T rd(1), (6)

where T rd(1) is a trace of singular moduli; for example, if d > 1 is a fundamen-
tal discriminant, then T rd(1) = L(1, χD). Theorem 1 could also be applied to the
asymptotic distribution of Dedekind sums, using the connection between Salié sums
and Dedekind sums; this has been studied for example by Vardi in [19].

Let us now give some indications on our proof of Theorem 1. For a congruence
subgroup 	 ⊂ 	0(4), one can define exponential sums Kσ,τ (m, n; c), which are asso-
ciated to two cusps of 	. The geometric Salié sums Kσ,τ (m, n; c) appear as Fourier
coefficients of non-holomorphic Poincaré series, and therefore one can relate sums
of geometric Salié sums with the spectrum of Maaß forms of weight 1/2, using the
Kuznetsov trace formula. The geometric side of the trace formula is the easiest to
deal with: we can choose in an appropriate way the cusps of the congruence subgroup
	 = 	0(4D f ), so that one can relate the geometric Salié sums to the classical Salié
sums K2(m, n; c). The spectral side of the trace formula is more subtle to handle. A
specific feature of Maaß forms of weight 1/2 is to have an exceptional eigenvalue
located at λ = 3/16. We will show that square-integrable Maaß forms with respect to
the exceptional eigenvalue λ = 3/16 are in bijection with modular forms of weight
1/2. As a result of independent interest (Theorem 2), we are able to obtain an explicit
orthogonal basis for the space of modular forms of half-integral weight. This result
then allows us to finally obtain an explicit expression for the spectral side of the trace
formula.
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Remark 1 In principle, Theorem 2 could be used to complete a result of Blomer in
[1]. There, the author studies the eigenvalues of Hecke eigenforms over quadratic
polynomials and obtains a formula for their asymptotic behavior. In the case where
the eigenform is chosen to be a Poincaré series, one can get an explicit expression for
the asymptotic constant appearing in [1, (1.4)], by means of our Theorem 2.

Finally, in order to illustrate the rate of convergence of sums of Salié sums, some
numerical examples for Theorem 1 are presented in Sect. 5. For a related discussion on
this subject, concerning the distribution of Salié sums and other arithmetical functions,
we refer to [15].
Notations For a complex number z, we define its argument to be in the interval [0, 2π [.
The greatest common divisor of a and b is denoted by (a, b) = gcd(a, b), μ is the
Möbius function and ϕ the Euler function. Let χ be a Dirichlet character of modulus
f . By χχd , we mean the primitive character associated to the product of χ and χd . We
denote the conductor of the primitive character associated to χχd by fd ; thus in par-
ticular, f1 | f , with equality if and only if χ is primitive. For any element g = (

a b
c d

)
,

let g′(z) = (cz + d)−2 and χ(g) = χ(d). In this paper, χ will always be an even
character.

2 Modular forms of half-integral weight

As usual, H = {z ∈ C : �(z) > 0} is the upper half-plane and 	0(4N ) is the congru-
ence subgroup modulo 4N . Let κ : 	0(4) −→ {±1,±i} be the multiplicative system
for the group 	0(4) defined by

γ ′(z)1/4ϑ(γ (z)) = κ(γ )ϑ(z), ∀γ ∈ 	0(4),∀z ∈ H, (7)

where ϑ(z) = ∑
n∈Z

e(n2z). The Jacobi symbol (u/v) is defined, for v odd, as exten-
sion of the Legendre symbol (u/p) defined for any prime p �= 2, with the additional
condition that (0/v) = 1. More precisely, and for v positive and u �= 0, we define
(u/v) multiplicatively in v and we set (u/ − v) = (u/v) (see [3], Exercise 1). The
symbol κ satisfies κ(γ ) = κ(−γ ), and, if γ = (

a b
c d

) ∈ 	0(4) with d > 0, then, with
the convention that arg(z) ∈ [0, 2π [ for z ∈ C, we have

κ(γ ) =
( c

d

)

2
εd

{
i if c > 0

1 if c ≤ 0.
(8)

Formula (8) has been proved in several places, but with different choices of notations
(see e.g. [12] or [18, (1.9)–(1.10)]). Let α be the multiplier factor of weight 1/2, i.e.

(gh)′(z)1/4 = g′ (h(z))1/4 h′(z)1/4α(g, h), ∀g, h ∈ SL2(R).

Let N be a positive integer. Recall that any even Dirichlet character χ modulo N , of
conductor f dividing N , defines a character on 	0(4N ). On the other side, one easily
verifies that the symbol κ satisfies
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528 B. Louvel

κ(gh) = κ(g)κ(h)α(g, h), ∀g, h ∈ 	0(4N ). (9)

The cusps of 	0(4N ) are of the form σ−1(∞) with σ ∈ SL2(Z). There exists some
positive integer qσ such that the subgroup 	σ = {γ ∈ 	0(4N ) : γ (σ−1(∞)) =
σ−1(∞)} is of the form

	σ = σ−1
(±1 �σ

0 ±1

)
σ,

with �σ = qσZ. We define, for each cusp σ−1(∞) of 	0(4N ), the real number
�σ ∈ [0, 1[, as

κχ

(
σ

(
1 qσ
0 1

)
σ

)
= e(−�σ ).

Lemma 1 Let σ−1(∞) be a cusp of 	0(4N ), and let γσ = σ−1
( ε qσ n

0 ε

)
σ ∈ 	σ , for

some ε = ±1 and n ∈ Z. Then,

κχ(γσ )α(σ, γσ ) = κχ(γσ )α(γσ , σ
−1) = e(−εn�σ ).

Let M(N , χ) be the space of functions f holomorphic on H and at the cusps of
	0(4N ), which satisfy

γ ′(z)1/4 f (γ (z)) = κχ(γ ) f (z) ∀z ∈ H, γ ∈ 	0(4N ).

With these notations, modular forms have a Fourier expansion of the form

σ−1(z)1/4 f (σ (z)) =
∑

n∈Z

a f (σ, n)e

(
z(n − �σ )

qσ

)
,

with a f (σ, n) = 0 if n −�σ < 0. The Petersson scalar product on the space M(N , χ)
of modular forms of weight 1/2 is given by

〈 f, g〉 =
∫

	0(4N )\H

f (z)g(z)�(z)1/2 dμ(z),

where dμ(z) = y−2 dxdy is the invariant measure.
For a character ψ , one defines

ϑψ(z) =
∑

ψ(n)e(n2z).

We introduce an other twist of ϑ(z), namely

ϑd,s,q(z) =
∑

n∈Z

χχd(n)cq(n)e(dn2s2z). (10)
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Here, cq(n) is the Ramanujan’s sum, of which one of the representations is

cq(n) =
∑

d|(q,n)
μ

(q

d

)
d. (11)

The functions ϑd,s,q(z) can be expressed in terms of ϑψ(z) by means of the following
equality, valid for any character ψ :

∑

n∈Z

ψ(n)cq(n)e(n
2z) =

∑

j |q
μ

(
q

j

)
jψ( j)ϑψ( j2z). (12)

Recall that fd is defined as the conductor of χχd . For any triple (d, s, q) of positive
integers, consider the condition (C) given by

(C)

{
d f 2

d s2q2 | N

d square-free, s supported by fd and q coprime to fd .

Theorem 2 Let N ∈ N be an odd integer. Let χ be an even character modulo N. An
orthogonal basis for M(N , χ) is given by the set

B = {ϑd,s,q : (d, s, q) satisfies (C)}.

Moreover,

‖ϑd,s,q‖2 = 2πN
ϕ(q)

s
√

d

∏

p| fd

(1 − p−1)
∏

p|N
(1 + p−1).

Proof In order to simplify notations, let us define

α(d, s) = 2πN

s
√

d

∏

p| fd

(1 − p−1)
∏

p|N
(1 + p−1).

We know from [17, Theorem A] that a basis for M(N , χ) is given by the set

B1 = {ϑψ(t z) : ψ primitive ; cond(ψ)2t |N ;ψχt (n) = χ(n),∀(n, N ) = 1}.

By decomposing t = ds2q2, with d square-free, s supported by fd and q coprime to
fd , one has ψ = χχt = χχd . Therefore, the basis B1 can be written as

B2 = {ϑχχd (ds2q2z) : f 2
d ds2q2 | N }.

We now compute the scalar product of two elements of B2, by using the Rankin–Sel-
berg formula. Let f and g be two elements of M(N , χ). Denote by a f (n) and ag(n)
the coefficients of their Fourier expansion at infinity. Let E(z, s) be the Eisenstein
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530 B. Louvel

series of weight zero for 	0(4N ) defined at the cusp ∞. Then, by the Rankin–Selberg
method, the following equality holds:

〈 f, g〉 = πN
∏

p|N
(1 + p−1)Ress=1

⎛

⎝
∑

n�1

a f (n)ag(n)

ns−1/2

⎞

⎠ . (13)

Recall that since N is odd, all the primes involved in (13), or in the definition ofα(d, s),
are distinct from 2. Note that (13) requires to deal with modular forms, which may be
non-cuspidal. The Rankin–Selberg method for modular forms of non-rapid decay as
been developed by Zagier in [20], where the author also gives several applications of
his main theorem, but none including formula (13). To derive formula (13) from the
main theorem of [20] requires some extra work, however, since a complete proof of
(13) has been given in [4, Theorem 2.2], we can dispense with the details.1

We apply (13) with f = ϑχχd (ds2q2z) and g = ϑχχd′ (d ′s′2q ′2z). Then, for any
n � 1, one has a f (n) = 2χχd(m), if n = ds2q2m2, and ag(n) = 2χχd ′(m′), if
n = d ′s′2q ′2m′2. Therefore, non-trivial contributions will occur only if d = d ′, in
which case (13) gives

〈ϑχχd (ds2q2z), ϑχχd (ds′2q ′2z)〉

= 4πN
∏

p|N
(1 + p−1)× Ress=1

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

n�1
n=ds2q2m2

n=ds′2q ′2m′2

χχd(m)χχd(m′)
ns−1/2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (14)

Non-trivial contributions will occur for integers n of the form n = ds2q2m2 =
ds′2q ′2m′2, with (m, fd) = (m′, fd) = 1. Since s and s′ are supported by fd and
since q and q ′ are coprime to fd , this means that s = s′ and n = ds2q2q ′2m2/g2,
where g = gcd(q, q ′). Then, after further simplifications, we obtain from (14) that

〈ϑχχd (ds2q2z), ϑχχd (ds2q ′2z)〉 = (q, q ′)χχd(q)

q

χχd(q ′)
q ′ α(d, s). (15)

The orthogonalization of the functions ϑχχd (ds2q2z), with q varying, is based on the
following lemma.

Lemma 2 Let U ∈ N. Let V be the finite dimensional C-vector subspace of a Hil-
bert space, with scalar product 〈·, ·〉. Assume that a basis of V is given by the set
E = { fu : u | U }. Assume that there exists a function g such that g(d) > 0 and

1 The proof of [4, Theorem 2.2] contains two errors that luckily neutralize each other. First, in the 5th
display of [4, p. 16], there should be no factor 2 in front of the middle integral (cf. [2, p. 71] and [11,
p. 119]). Second, in the 4th display of [4, p. 17], the right hand side should be multiplied by 2 (cf. [2, p. 66]
and [11, (3.26)]).
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The first moment of Salié sums 531

〈 fu, fv〉 =
∑

d|(u,v)
g(d), ∀u, v | U. (16)

For u | U, let f ′
u = ∑

j |u μ(u/j) f j . Then the set E ′ = { f ′
u : u | U } is an orthogonal

basis of V . Moreover,

〈 f ′
u, f ′

v〉 =
{

g(u) if u = v

0 if u �= v.
(17)

Proof It is clear that E ′ ⊆ V . Also, it follows from the definition of f ′
u that

〈 f ′
u, f ′

v〉 =
∑

j |u

∑

k|v
μ

(
u

j

)
μ

(v
k

)
〈 f j , fk〉, ∀u, v | U. (18)

We shall make use of the following Möbius inversion formula in two variables:

F(u, v) =
∑

d|u

∑

e|v
G(d, e) ⇐⇒ G(u, v) =

∑

j |u

∑

k|v
μ

(
u

j

)
μ

(v
k

)
F( j, k), (19)

for any two functions F,G : N × N → R. Define F(u, v) = 〈 fu, fv〉 and G(u, v) =
g(u) if u = v and G(u, v) = 0 if u �= v. Then, by (16), the first equality of (19) is
verified. Thus the second one also holds, which means, by (18), that the vectors f ′

u
are non-zero orthogonal vectors whose scalar product is given by (17). ��

After suitable normalization, and noticing that (u, v) = ∑
d|(u,v) ϕ(d), one is led to

apply Lemma 2 with fu(z) = α(d, s)−1/2uχχd(u)ϑχχd (ds2u2z) and g( j) = ϕ( j).
Using formula (11), one sees that the resulting functions f ′

u are given by f ′
u =

α(d, s)−1/2ϑd,s,u(z). This concludes the proof of Theorem 2. ��
Recall that the symbol εc is defined, for odd integers c, by εc = 1 if c ≡ 1 (mod 4),

and εc = i if c ≡ 3 (mod 4). If d is an odd square-free integer, then χd is a char-
acter of conductor d or 4d, according to if d ≡ 1 (mod 4) or d ≡ 3 (mod 4); more
precisely,

χd(n) =
(n

d

)
,

if d ≡ 1 (mod 4), and

χd(n) =
{

0 if (4d, n) �= 1

ε2
n

( n
d

)
if (4d, n) = 1,

if d ≡ 3 (mod 4).

Corollary 2 Let D, f be odd positive integers coprime to each other. Let χ be an
even primitive character of conductor f .
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532 B. Louvel

(i) The space M(D f, χ) is non-trivial only if f is square-free, f ≡ 1 (mod 4)
and χ = χ f .

(ii) If the space M(D f, χ) is non-trivial, an orthonormal basis of M(D f, χ) is given
by the set {ϑt f,s,q}, where t3s2q2|D, t is square-free, (t, f ) = 1, t ≡ 1 ( mod 4),
s is supported by t and (q, t) = 1.

Proof Assume that M(D f, χ) �= {0}. By Theorem 2, there exists some element
ϑd,s,q ∈ M(D f, χ), with (d, s, q) satisfying condition (C); in particular, d is an
odd square-free integer such that

f 2
d d | D f. (20)

For (i). Let p be a prime divisor of f and let ψ be the p-component of χ , say of
order pe, where ordp( f ) = e. Since χ is primitive, e � 1. Then fd , the conductor
of χχd , is divisible by the conductor of ψχd . Assume that p � d or that ψ �= (·/p).
Then the conductor of ψχd is divisible by pe. Thus pe| fd and, by (20), one obtains
p2e|D f , which contradicts the fact that ordp(D f ) = ordp( f ) = e. Thus p|d and
ψ = (·/p). This shows that f has to be a square-free integer dividing d. Moreover,
since χ is even, we conclude that χ = χ f , with f ≡ 1 (mod 4). This proves (i).

For (ii) Let t be the square-free integer (necessarily coprime to f ) such that d = f t .
Then χχd is the primitive character associated to χ f χ f t . From (20), one sees that fd

has to be odd. This implies f t ≡ 1 (mod 4), and therefore t ≡ 1 (mod 4). It follows
that χχd = χt and that fd = t . The condition (C) then translates into the condition
given in (ii). ��

3 The Kloosterman–Selberg zeta function

In this section, we shortly describe the geometric Kloosterman sums, their associated
Zeta function, and we obtain Theorem 3, as a special case of the Kuznetsov formula.
Some more notations have to be introduced: for a matrix γ = (

a b
c d

)
, let a(γ ) = a,

b(γ ) = b, c(γ ) = c and d(γ ) = d.

Definition 1 Let σ−1(∞) and τ−1(∞) be two cusps of 	0(4N ). Let m, n ∈ Z − {0}.
Then, for any c ∈ Z, the geometric Kloosterman sum is defined for positive integers
c by

Kσ,τ (m, n; c) =
∑

γ∈	σ \	/	τ
|c(σγ τ−1)|=c

χκ(γ )α(σ, γ )α(σγ, τ−1)

×e

(
(m − �σ )

qσ

a(σγ τ−1)

c(σγ τ−1)

)
e

(
(n − �τ )

qτ

d(σγ τ−1)

c(σγ τ−1)

)
.

One verifies by using Lemma 1 that the geometric Kloosterman sums are well
defined. We associate to the sums Kσ,τ (m, n; c) the Kloosterman–Selberg Zeta func-
tion Zσ,τ,m,n(s) defined by
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Zσ,τ,m,n(s) =
∑

c>0

Kσ,τ (m, n; c)

cs
. (21)

Although an individual upper bound similar to (2) holds for Kσ,τ (m, n; c), we shall
not go into details here, but only remark (see the first display in the proof of Lemma 3)
that |Kσ,τ (m, n; c)| ≤ qτqσ |c|2. This shows that Zσ,τ,m,n(s) is well defined, for
�(s) > 3.

Theorem 3 Let χ, σ, τ , m, n be as in Definition1. Let u > −1/2 and let X > 1.
Then for any ε > 0,

∑

0<c<X

Kσ,τ (m, n; c)

c1−u
= 1

1 + 2u
c(N , χ; σ, τ,m, n)X1/2+u + O

(
X1/4+u+ε) ,

with c(N , χ; σ, τ,m, n) = 0 if m − �σ < 0 or n − �σ < 0, and otherwise

c(N , χ; σ, τ,m, n) = 2(1 + i)

π
qσqτ

∑

f ∈B(N ,χ)

a f (σ,m) a f (τ, n),

where B(N , χ) is any orthonormal basis of the space M(N , χ), defined in Sect. 2.

Proof The argument is taken from [8]: the theory of Poincaré series allows us to con-
tinue meromorphically Zσ,τ,m,m(s) to �(s) > 1 and shows that its poles are located at
s = 2si , where the si (1 − si ) are the exceptional eigenvalues of the hyperbolic Lapla-
cian of weight 1/2. We write the spectral parameters si as s1 = 3/4 > s2 > · · · > 1/2.
The Laplacian operator is

−y2
(
∂2

∂x2 + ∂2

∂y2

)
+ iy

2

∂

∂x
.

The space L2 (	0(4N )\H, 1/2, χκ, λi ) is the space of Maaß forms, i.e. of eigenfunc-
tions of the Laplacian, having polynomial growth at the cusps, and satisfying

jγ (z) f (γ (z)) = κχ(γ ) f (z) ∀z ∈ H, γ ∈ 	0(4N ).

The eigenvalues can be written λ = s(1 − s) with �(s) � 1/2. We denote by
L2(N , χ, s) the corresponding space of L2 (	0(4N )\H, 1/2, χκ, λi ). The Fourier
expansion of f ∈ L2(N , χ, s) at a cusp σ−1(∞) is given by

jσ−1(z) f (σ−1(z)) = δs>1/2δ�σ=0ρ f (σ, 0)y1−s

+ δ�σ �=0ρ f (σ, 0)W −1
4 ,s− 1

2

(
4π
�σ

qσ
y

)
e

(−�σ
qσ

x

)

+
∑

n∈Z
n �=0

ρ f (σ, n)W sgn(n)
4 ,s−1/2

(
4π

|n − �σ |
qσ

y

)
e

(
n − �σ

qσ
x

)
.
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One can derive an asymptotic formula for the Kσ,τ (m, n; c) from the analytic proper-
ties of its Zeta function Zσ,τ,m,n(s). Let χ, σ, τ , m, n as above. Let X > 1. Then for
any ε > 0,

∑

0<c<X

Kσ,τ (m, n; c)

c
= 2Ress=3/2

(
Zσ,τ,m,n(s)

)
X1/2 + O

(
X1/4+ε) .

The residues of Zσ,τ,m,n(s) can be expressed as follows:

Ress=2si

(
Zσ,τ,m,n(s)

) = eiπ/4 41−si

π2si −1/2 qσqτ

(∣∣∣∣n − �τ

qτ

∣∣∣∣

∣∣∣∣m − �σ

qσ

∣∣∣∣

)1−si

×	(2si − 1)
	(si + sgn(n)/4)

	(si − sgn(m)/4)

∑

u∈B(si )

ρu(σ,m)ρu(τ, n),

where B(si ) is an orthonormal basis of L2(N , χ, si ). There exists an isomorphism
M(N , χ) → L2(N , χ, 3/4), given by f (z) �→ u(z) = f (z)�(z)1/4; the injectivity of
the homomorphism is clear since modular forms of weight 1/2 are square-integrable,
and the surjectivity comes from [16, Satz 9.1]. Under this isomorphism, the Fourier
coefficients satisfy, for n > 0, the relation ρu(σ, n) = a f (σ, n) (4π(n − �σ )/qσ )−1/4.
This concludes the proof of Theorem 3. ��

We conclude this section with a lemma, giving the connection between the geo-
metric and the arithmetic Salié sums.

Lemma 3 Let 	 = 	0(4D f ) with D and f mutually coprime odd integers. Let
σ−1(∞) and τ−1(∞) be the two cusps of 	 defined by τ−1 = I d and

σ−1 =
(
α β

D 4 f

)
∈ SL2(Z).

Then,

Kσ,τ (4 f m, n; c) =
{

0 if c �≡ 0 (mod D) or if c is even

εDεcχ(c)χ(D)
(

f
D

)
K2(m, n; c) if c ≡ 0 (mod D) and if c is odd.

Proof With our assumptions, the definition of Kσ,τ (m, n; c) can be written as

Kσ,τ (m, n; c) =
∑

a (mod qσ c)
d (mod qτ c)

σ−1
(

a ∗
c d

)
τ∈	

κχ

(
σ−1

(
a ∗
c d

)
τ

)
α

(
σ, σ−1

(
a ∗
c d

)
τ

)

× e

(
(m − �σ )a

cqσ

)
e

(
(n − �τ )d

cqτ

)
.
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The condition appearing in the sum means that ad ≡ 1 (mod c) and that
c(σ−1

( a ∗
c d

)
τ) ≡ 0 (mod 4 f D). With our choice of σ and τ , we obtain the con-

ditions c ≡ 0 (mod D) and a ≡ 0 (mod 4 f ). Then,

κχ

(
σ−1

(
a b
c d

))
α

(
σ, σ−1

(
a b
c d

))

= κχ

(
σ−1S(−S)

(
a b
c d

))
α

(
σ, σ−1S(−S)

(
a b
c d

))

= κχ
(
σ−1S

)
κχ

(
−S

(
a b
c d

))
α

(
σ, σ−1S

)
α

(
S,−S

(
a b
c d

))
.

Let us assume, as we may, that a > 0 et d > 0. Then

α
(
σ, σ−1S

)
α

(
S,−S

(
a b
c d

)) = 1.

Since b > 0, we obtain from the definition of κ that

κ

(
−S

(
a b
c d

))
= κ

((
c d

−a −b

))
= κ

((−c −d
a b

))

=
(−d

b

)
εbi =

(−1

b

) (
d

b

)
εbi.

Since bc ≡ −1 (mod 4), we have εb(−1/b)i = εc. It remains

κ

(
−S

(
a b
c d

))
=

(
d

b

)
εc =

(a

b

)
εc =

(a

c

)
εc.

One computes also

κ(σ−1S) = κ

((
β −α

4 f −D

))
= κ

(( −β α

−4 f D

))
=

( α
D

)
εD,

as well as

χ(σ−1S) = χ(−D), and χ

(
−S

(
a b
c d

))
= χ(−b).

Finally, we showed that, if c ≡ 0 (mod D),

Kσ,τ (m, n; c) =
∑

a (mod qσ c)
d (mod qτ c)

ad≡1 (mod c)
a≡0 (mod 4 f )

( α
D

)
εD

(a

c

)
εcχ(−D)χ(−b)e

(
ma

qσ c

)
e

(
nd

qτ c

)
.

123



536 B. Louvel

In our case, qσ = 4 f and qτ = 1. This leads, after some further simplifications, to
the assertion of Lemma 3. ��

4 Asymptotic behavior of Salié sums

In this section we prove Theorem 1. For it, we use the formula of Theorem 3, with
N = D f and σ, τ chosen as in Lemma 3. The left hand side of the formula of
Theorem 3 is then determined by Lemma 3. For the right hand side, we use our deter-
mination of an orthogonal basis of M(D f, χ) given in Corollary 2, i.e. we use the
orthonormal basis formed by the ϑt f,s,u(z), where t3 | D, s2 | D/t3, s is supported
by t , u2 | D/t3, u is coprime to t . Recall that one such element ϑt f,s,u(z) is defined
in (10). Therefore, it remains to obtain the Fourier expansion of ϑt f,s,u(z) at the cusp
σ−1(∞) of 	0(4D f ); this is done in the following proposition.

Proposition 1 Let σ be as in Lemma 3. Let f be an odd square-free integer, f > 0,
f ≡ 1 (mod 4) and let χ = χ f . Let D be odd and coprime to f . Then,

σ ′(z)−
1
4ϑt f,s,u(σ

−1(z)) =
∑

m�0

at f,s,u(σ,m)e

(
mz

4 f

)
,

where, for m > 0,

at f,s,u(σ,m) =
{

0 if m �∈ ts2
Z

2,

(1+i)√
f
εD

(
2m′

t

)
cu(m′) if m = m′2ts2.

Proof The cusp σ−1(∞) is of width 4 f , and �σ = 0. From (12), we have

ϑt f,s,u(z) =
∑

j |u
μ

(
u

j

)
j

(
j

t

)
ϑχt (t f s2 j2z),

so that the first step is to study ϑχt (t f s2 j2z) at σ−1(∞). More generally, we have the

Lemma 4 Let ψ be an even character of conductor t . Let σ be as in Lemma 3, and
let T be such that t2T |D. Then, the Fourier expansion of θψ(T z) at σ−1(∞) is

(σ−1)′(z)1/4ϑψ
(

T f σ−1(z)
)

= (1 + i)

2
√

f

(
f α

DT

)
εDTψ(2)ϑψ

(
T z

4 f

)
.

We postpone the proof of Lemma 4 at the end of this section. As a consequence,
with ψ = χt and T = ts2 j2, we have

(σ−1)′(z)
1
4ϑt f,s,u(σ

−1(z))

= (1 + i)

2
√

f

(
f α

Dt

)
εDt

(
2

t

) ∑

j |u
μ

(
u

j

)
jχt ( j)ϑχt

(
ts2 j2z

4 f

)
.
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From 4α f ≡ 1 (mod D) follows that ( f α/Dt) = 1. Then,

∑

j |u
μ

(
u

j

)
j

(
j

t

)
ϑχt

(
ts2 j2z

4 f

)

=
∑

j |u
μ

(
u

j

)
j

(
j

t

) ∑

m∈Z

(m

t

)
e

(
ts2 j2m2z

4 f

)

=
∑

m′>0

∑

j |(u,m′)
μ

(
u

j

)
j

(
j

t

) ((
m′/j

t

)
+

(−m′/j

t

))
e

(
ts2m′2z

4 f

)

=
∑

m′>0

(
1 +

(−1

t

)) (
m′

t

)
cu(m

′)e
(

ts2m′2z

4 f

)
,

since (u, t) = 1. We conclude by using the fact that t ≡ 1 (mod 4). ��
Proof of Theorem 1 Let m, n ∈ Z, m, n positive. Let χ = χ f with f square-free and
f ≡ 1 (mod 4). Let

c(D, f ; t, s, q) =
⎛

⎝2πD
√

f

s
√

t
ϕ(q)

∏

p|t
(1 − p−1)

∏

p|D f

(1 + p−1)

⎞

⎠
−1/2

.

By Corollary 2, an orthonormal basis B(D f, χ) of M(D f, χ) is given by

B(D f, χ) = {ϑ ′
t,s,q}

where ϑ ′
t,s,q(z) = c(D, f ; t, s, q)ϑt f,s,q(z), and where the parameters satisfy t ≡

1 (mod 4), t is square-free and coprime to f , s | t∞, (q, t) = 1 and t3s2q2 | D. Let
τ and σ be as in Lemma 3. The n-th Fourier coefficient of ϑ ′

t,s,q(z) at τ−1(∞) is

at,s,q(τ, n) =
{

0 if n �∈ t f s2
Z

2,

2c(D, f ; t, s, q)
(

n′
t

)
cq(n′) if n = t f s2n′2.

(22)

By Proposition 1, the mth Fourier coefficient of ϑ ′
t,s,q(z) at σ−1(∞) is

at,s,q(σ,m) =
{

0 if m �∈ ts2
Z

2,

(1+i)√
f
εD

(
2m′

t

)
c(D, f ; t, s, q)cq(m′) if m = ts2m′2.

(23)

Let us fix some ϑ ′
t,s,q ∈ B(D f, χ) and look at the expression

at f,s,q(σ, 4 f m)at f,s,q(τ, n).

From (22) and (23), we see that this expression is non-zero only if n ∈ t f s2
Z

2 and
4 f m ∈ ts2

Z
2. Since (2 f, t) = 1 and since f is square-free, the second condition
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means m ∈ t f s2
Z

2; this shows that condition (i) of Theorem 1 is necessary. More-
over, writing m = t f s2m′2 and n = t f s2n′2, since the factor (m′n′/t) appears in
at f,s,q(σ, 4 f m)at f,s,q(τ, n), we also obtain condition (ii).

Thus the couple (t, s) is completely determined by m and n, and, writing m =
t f s2m′2 and n = t f s2n′2, we get

at f,s,q(σ, 4 f m)at f,s,q(τ, n) = 2(1 − i)√
f

εD

(
f m′n′

t

)
c(D, f ; t, s, q)2cq(n

′)cq(m
′).

Therefore, if we decompose D = Dt D′, with Dt supported by t , and D′ coprime to t ,

∑

ϑ ′
t,s,q∈B(D f,χ)

at,s,q(σ, 4 f m)at,s,q(τ, n)

= 2(1 − i)√
f

εD

(
f m1n1

t

) ∑

q2|D′
c(D, f ; t, s, q)2cq(n

′)cq(m
′)

= (1 − i)

π

s
√

t

D f
εD

(
f m1n1

t

) ∏

p|t
(1 − p−1)−1

∏

p|D f

(1 + p−1)−1

×
∑

q2|D′
ϕ(q)−1cq(n

′)cq(m
′). (24)

Let us define

T (m, n; c) =
∑

u|c
ϕ(u)−1cu(n)cu(m). (25)

Lemma 5 If (m, c) �= (n, c), then T (m, n; c) = 0. If (m, c) = (n, c), then

T (m, n; c) = T (n,m; c) = (m, c)
∏

p| c
(m,c)

p

p − 1
.

Proof Let us first note that T (m, n; c) is, as a function of c, multiplicative. Let us fix
some p|c. For a ∈ N, let us denote by ep(a) the order of the prime p in a. We may
assume that ep(m) � ep(n). Then, from the determination of Ramanujan’s sums at
prime power, we obtain

T (m, n; pep(c)) =
min(ep(c),ep(m)+1)∑

i=0

ϕ(pi )−1cpi (m)cpi (n)

=
min(ep(c),ep(m))∑

i=0

ϕ(pi )+ δep(c)>ep(m)
pep(m)

p − 1

{
1 if ep(n) = ep(m)

1 − p if ep(n) > ep(m)
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= pmin(ep(c),ep(m)) + δep(c)>ep(m)
pep(m)

p − 1

{
1 if ep(n) = ep(m)

1 − p if ep(n) > ep(m)

=

⎧
⎪⎨

⎪⎩

pep(c) if ep(c) � ep(m) � ep(n)

pep(m) p
p−1 if ep(n) = ep(m) < ep(c)

0 if ep(m) < ep(c) and ep(m) �= ep(n).

Thus for every p|c, a non-zero contribution occurs only if, either ep(m) � ep(c) and
ep(n) � ep(c), or ep(m) = ep(n) < ep(c); these two conditions can be rewritten as
(m, c) = (n, c). ��

We conclude the proof of Theorem 1 by combining (24), Lemma 5, Theorem 3 and
Lemma 3. ��

Proof of Lemma 4 We shall use a more general theta function. Let η, η′ ∈ R. Define

θ
(
η, η′, z

) =
∑

n∈Z

e

(
1

2

(
n + η

2

)2
z

)
e

((
n + η

2

) η′

2

)
. (26)

Then if γ = (
a b
c d

) ∈ SL2(Z), z ∈ H et η, η′ ∈ R we have (see [7], Theorem 1.11 p.
81):

θ(η, η′, γ (z)) = c(η, η′, γ )(cz + d)1/2θ(aη + cη′ − ac, bη + dη′ + bd, z),

with a constant c(η, η′, γ ) satisfying

c(η, η′, γ ) = e

(
− (aη + cη′)bd

4
− (abη2 + cdη′2 + 2bcηη′)

8

)
c(0, 0, γ ).

The particular case η′ = 0 gives

θ(η, 0, γ (z)) = c(η, 0, γ )(cz + d)1/2θ(aη − ac, bη + bd, z), (27)

with

c(η, 0, γ ) = e

(
−ηabd

4
− abη2

8

)
c(0, 0, γ ). (28)

Assume that γ ∈ �; Then ac and bd are even, and we have

θ(aη − ac, bη + bd, z)

=
∑

n∈Z

e

(
1

2

(
n + aη − ac

2

)2

z

)
e

(
1

2

(
n + aη − ac

2

)
(bη + bd)

)

=
∑

n∈Z

e

(
1

2

(
n + aη

2

)2
z

)
e

(
1

2

(
n + aη

2

)
(bη + bd)

)

= e
(aη

4
(bη + bd)

) ∑

n∈Z

e

(
1

2

(
n + aη

2

)2
z

)
e

(
1

2
nbη

)
,
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and introducing this in (27) gives, with (28),

θ(η, 0, γ (z)) = e

(
abη2

8

)
c(0, 0, γ )(cz + d)1/2

×
∑

n∈Z

e

(
1

2

(
n + aη

2

)2
z

)
e

(
1

2
nbη

)
. (29)

Remark that θ(0, 0, z) is the function θ(z) = ∑
n∈Z

eiπn2z , which is modular for the
group � generated by

(
1 2
0 1

)
and

(
0 −1
1 0

)
. In particular, there exists a function κθ on �

such that

γ ′(z)1/4θ (γ (z)) = κθ (γ )θ(z) ∀z ∈ H, ∀γ ∈ �.

Because of κθ (−I d) = 1, κθ is determined by its values on the elements γ = (
a b
c d

) ∈
�, with d > 0; for such an element γ , and with our choice of the branch of z1/2, we
have

κθ (γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
iπ
4

( 2a
c

)
εc for c odd and a �= 0

e
iπ
4 for c odd and a = 0

( 2b
d

)
εd

{
i if c > 0

1 if c ≤ 0
for c even and b �= 0

{
i if c > 0

1 if c ≤ 0
for c even and b = 0.

Thus the constant c(0, 0, γ ) is defined, in the case γ ∈ �, as

θ(0, 0, γ (z)) = c(0, 0, γ )(cz + d)1/2θ(0, 0, z).

Since θ(0, 0, z) = θ(z), we have

c(0, 0, γ )(cz + d)1/2 = κθ (γ )γ
′(z)−1/4.

Therefore, we conclude that

θ(η, 0, γ (z))=e

(
abη2

8

)
κθ (γ )γ

′(z)−1/4
∑

n∈Z

e

(
1

2

(
n+ aη

2

)2
z

)
e

(
1

2
nbη

)
. (30)

Before starting with the computation of the Fourier expansion of ϑψ(T f z) at
σ−1(∞), we merely remark that

σ̃ =
(

2 f α t2Tβ
D/t2T 2

)
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is an element of � and satisfies

2t2T f σ−1(z) = σ̃ (z′), with z′ = t2T

2 f
z.

Now,

ϑψ

(
T f σ−1(z)

)

=
∑

n∈Z

ψ(n)e
(

n2T f σ−1(z)
)

=
∑

h(t)

ψ(h)
∑

n∈Z

e

((
n + h

t

)2

t2T f σ−1(z)

)

=
∑

h(t)

ψ(h)
∑

n∈Z

e

(
1

2

(
n + h

t

)2

σ̃ (z′)
)

=
∑

h(t)

ψ(h)θ

(
2h

t
, 0, σ̃ (z′)

)

and by the formula (30), since (2α f, t) = 1,

ϑψ

(
T f σ−1(z)

)

= (σ̃ )′(z′)−1/4κθ (σ̃ )
∑

h(t)

ψ(h)
∑

n∈Z

e

((
n + 2αh f

t

)2 z′

2

)

= (σ̃ )′(z′)−1/4κθ (σ̃ )ψ(2α f )
∑

h(t)

ψ(2α f h)
∑

n∈Z

e

(
(nt + 2αh f )2

z′

2t2

)

= (σ̃ )′(z′)−1/4κθ (σ̃ )ψ(2)ϑψ

(
z′

2t2

)
,

since 4α f ≡ 1 (mod t). We finally verify that

(σ̃ )′(z′)−1/4 = (σ−1)′(z)−1/4

√
2 f

and that

κθ (σ̃ ) = eiπ/4
(

f α

DT

)
εDT .

This finishes the proof of Lemma 4. ��

5 Numerical examples

For fixed D, χ , m and n, let

C(X) = 1

X

∑

0<c�X
c≡0 (mod D)

K2(m, n; c)√
c

εcχ(c).
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Fig. 1 Left m = n = 1, D = 27, f = 1. Right m = n = 1, D = 45, f = 1

Fig. 2 Left m = n = 1, D = 1, f = 1. Right m = n = 5, D = 3, f = 5

Fig. 3 Left m = n = 5, D = 7, f = 5. Right m = n = 5, D = 125, f = 1

The following examples (see Figs. 1, 2 and 3) illustrate the convergence of C(X) to
the value C = C(D, f,m, n), given by Theorem 1, and shown in dotted line. Let us
give more details about the exact value C corresponding to each example and about
the ranges for which C(X) has been computed:

– Example 1: m = n = 1, D = 27, f = 1. Then C = (3π2)−1 = 0.03377 . . ..
The function C(X) is computed for X � 2.7 · 105.

– Example 2: m = n = 1, D = 45, f = 1. Then C = (6π2)−1 = 0.01688 . . ..
The function C(X) is computed for X � 2.7 · 105.

– Example 3: m = n = 1, D = 1, f = 1. Then C = 8/π2 = 0.81057 . . ..
The function C(X) is computed for X � 1.5 · 105.
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– Example 4: m = n = 5, D = 3, f = 5. Then C = 5/(3π2) = 0.16886 . . ..
The function C(X) is computed for X � 1.5 · 105.

– Example 5: m = n = 5, D = 7, f = 5. Then C = 5/(6π2) = 0.08443 . . ..
The function C(X) is computed for X � 3.5 · 105.

– Example 6: m = n = 5, D = 125, f = 1. Then C = √
5/(15π2) = 0.01510 . . ..

The function C(X) is computed for X � 3.75 · 105.
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