Skip to main content
Log in

Preparation of carbon nanotubes decorated with manganese dioxide nanoparticles for electrochemical determination of ferulic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an electrochemical sensor for the detection of ferulic acid (FA) that is based on a glassy carbon electrode modified with functional multiwalled carbon nanotubes that are decorated with MnO2 nanoparticles. The new electrode shows excellent electrochemical catalytic activity towards the oxidation of ferulic acid at pH 7. Cyclic voltammetry reveals a 23 mV decrease in the peak-to-peak separation of the oxidation and reduction waves. Under optimized conditions, the anodic peak current at a voltage of 150 mV (vs. Ag/AgCl) is linearly related to the peak current in the 0.082–220 μM concentration range, and the limit of detection (at an SNR of 3) is 10 nM. The sensor was applied to the determination of FA in spiked human serum samples and gave satisfactory results, with recoveries ranging from 97 to 99.2 %.

The schematic illustration of the electrochemical sensor for determination ferulic acid based on f-MWCNT-MnO2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Haddon RC (2002) Carbon nanotubes. Acc Chem Res 35:997

    Article  CAS  Google Scholar 

  3. Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    Article  CAS  Google Scholar 

  4. Gao Y, Li S, Zhao B, Zhai Q, Lita A, Dalal NS, Kroto HW, Acquah SFA (2014) A synergistic approach to light-free catalysis using zinc oxide embedded multi-walled carbon nanotube paper. Carbon 77:705–709

    Article  CAS  Google Scholar 

  5. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52:7377–7385

    Article  CAS  Google Scholar 

  6. López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  7. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  8. Zhu JJ, Yu LL, Zhao JT (2014) 3D network mesoporous beta-manganese dioxide: template- free synthesis and supercapacitive performance. J Power Sources 270:411–417

    Article  CAS  Google Scholar 

  9. Mahmoudian MR, AliasY BWJ, Woi PM, Sookhakian M (2014) Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sensors Actuators B 201:526–534

    Article  CAS  Google Scholar 

  10. Zhang L, Yuan S, Yang L, Fang Z, Zhao G (2013) An enzymatic glucose biosensor based on a glassy carbon electrode modified with manganese dioxide nanowires. Microchim Acta 180:627–633

    Article  CAS  Google Scholar 

  11. Zhao S, Yao S, Ou S, Lin J, Wang Y, Peng X, Li A, Yu B (2014) Preparation of ferulic acid from corn bran: its improved extraction and purification by membrane separation. Food Bioprod Process 92:309–313

    Article  CAS  Google Scholar 

  12. Liu L, Gou Y, Gao X, Zhang P, Chen W, Feng S, Hu F, Li Y (2014) Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples. Mater Sci Eng C 42:227–233

    Article  CAS  Google Scholar 

  13. Maurya DK, Salvi VP, Nair CKK (2005) Radiation protection of DNA by ferulic acid under in vitro and in vivo conditions. Mol Cell Biochem 280:209–217

    Article  CAS  Google Scholar 

  14. Li Y, Bi K (2003) HPLC determination of ferulic acid in rat plasma after oral administration of Rhizoma Chuanxiong and its compound preparation. Biomed Chromatogr 17:543–546

    Article  CAS  Google Scholar 

  15. Guo T, Sun Y, Sui Y, Li F (2003) Determination of ferulic acid and adenosine in Angelicae radix by micellar electrokinetic chromatography. Anal Bioanal Chem 375:840–843

    CAS  Google Scholar 

  16. Sharma OP, Bhat TK, Singh B (1998) Thin-layer chromatography of gallic acid, methyl gallate, pyrogallol, phloroglucinol, catechol, resorcinol, hydroquinone, catechin, epicatechin, innamic acid, p-coumaric acid, ferulic acid and tannic acid. J Chromatogr A 822:167–171

    Article  CAS  Google Scholar 

  17. Trabelsi SK, Tahar NB, Trabelsi B, Abdelhedi R (2005) Electrochemical oxidation of ferulic acid in aqueous solutions at gold oxide and lead dioxide electrodes. J Appl Electrochem 35:967–973

    Article  CAS  Google Scholar 

  18. Yu YY, Wu QS, Wang XG, Ding YP (2009) Electrochemical determination of ferulic acid in Chinese traditional medicine Xiao Yao pills at electrode modified with carbon nanotube. Russ J Electrochem 45:170–174

    Article  CAS  Google Scholar 

  19. Luo L, Wang X, Li Q, Ding Y, Jia J, Deng D (2010) Voltammetric determination of ferulic acid by didodecyldimethylammonium bromide/nafion composite film-modified carbon paste electrode. Anal Sci 26:907–911

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu Y, Yang Z, Yang Y, Pang P, Gao Y, Hu Q (2013) Rapid electrochemical detection of ferulic acid based on a graphene modified glass carbon electrode. Anal Methods 5:3834–3839

    Article  CAS  Google Scholar 

  21. Liu LJ, Gao X, Zhang P, Feng SL, Hu FD, Li YD, Wang CM (2014) Ultrasensitive detection of ferulic acid using Poly(diallyldimethylammonium chloride) functionalized graphene- based electrochemical sensor. J Anal Methods Chem 424790:1–9

    Google Scholar 

  22. Vilian ATE, Chen SM, Lou BS (2014) A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (l-lysine) biocomposite for the detection of H2O2 and iodate. Biosens Bioelectron 61:639–647

    Article  Google Scholar 

  23. Prakash GKS, Suresh P, Viva F, Olah GA (2008) Novel single step electrochemical route for gama-MnO2 nanoparticle coated polyaniline nanofibers: thermal stability and formic acid oxidation on the resulting nanocomposite. J Power Sources 181:79–84

    Article  CAS  Google Scholar 

  24. Xiao C, Chen J, Liu B, Chu X, Wu L, Yao S (2011) Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide-carbon nanocomposite. Phys Chem Chem Phys 13:1568–1574

    Article  CAS  Google Scholar 

  25. Li LJ, Yu LB, Chen QF, Cheng H, Wu FM, Wu JL, Kong HX (2007) Determination of FA Based on L-Cysteine self-assembled modified gold electrode coupling irreversible biamperometry. Chin J Anal Chem 35:933–937

    Article  CAS  Google Scholar 

  26. Wilkołazka AJ, Ruzgas T, Gorton L (2005) Amperometric detection of mono and diphenol at Cerrena unicolor laccase-modified graphite electrode: correlation between sensitivity and substrate structure. Talanta 66:1219–1224

    Article  Google Scholar 

  27. Wang JP, Li NB, Luo HQ (2008) Chemiluminescence determination of FA by flow- injection analysis using cerium (IV) sensitized by rhodamine 6G. Spectrochim Acta A 71:204–208

    Article  Google Scholar 

  28. Arribas AS, Martınez-Fernandez M, Moreno M, Bermejo E, Zapardiel A, Chicharro M (2013) Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes. Food Chem 136:1183–1192

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Science and Technology, Taiwan (Republic of China) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilian, A.T.E., Chen, SM. Preparation of carbon nanotubes decorated with manganese dioxide nanoparticles for electrochemical determination of ferulic acid. Microchim Acta 182, 1103–1111 (2015). https://doi.org/10.1007/s00604-014-1431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1431-2

Keywords

Navigation