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Abstract The spin correlation coefficients in the neutron-deuteron elastic scattering process at incoming
neutron laboratory energies E = 10, 135, 190, and 250 MeV are determined by solving the momentum space
three-nucleon (3N) Faddeev equations. The chiral two-nucleon (2N) interaction with momentum-space semi-
local (SMS) regularization up to the fifth order of chiral expansion (N4LO), supplemented by the F-waves
terms from the sixth order (N5LO), is used. Additionally, the consistent 3N force (3NF) at the third order of
chiral expansion, supplemented by the short-range contributions from N4LO is applied. As a results, we give
predictions for the complete set of spin correlation coefficients Cα,β . We find that the effect of the investigated
three-nucleon N4LO components amounts up to several dozen percent, depending on reaction energy, scattering
angle and type of spin correlation coefficient itself. Our results can serve as a guide for future measurements
of the spin correlation coefficients.

1 Introduction

The last thirty years have been a period of many discoveries in the study of nuclear potentials and several-body
processes. First, the new generation of semi-phenomenological potentials, such as the Argonne V18 [1] force
or the CD Bonn [2] interaction, led to a significant improvement in the description of experimental data. This
situation was further improved thanks to nuclear potential models derived from the Chiral Effective Field
Theory. The most important advantages of the latter include (a) direct connection to QCD and other processes,
like pion-nucleon scattering, (b) the possibility of deriving nuclear forces in a perturbative expansion, which
allows assigning a physical sub-process to a specific order of expansion, (c) the possibility of deriving consistent
two-nucleon, three-nucleon forces, etc. and (d) the hierarchy of nuclear forces naturally resulting from the
model, justifying the treatment of many-body forces as corrections to the dominant two-nucleon interaction.
Theoretical work has resulted in several chiral models of nuclear forces [3–16]. Among them, the results
obtained by E. Epelbaum’s group occupy a special place. This group has, over the years, provided several
chiral force models, the most recent of which is the SMS model that uses the semi-local regularization. Within
this model, complete two-body forces up to the fifth order of chiral expansion (N4LO) have been derived to
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date. Further, some F-wave contributions from the next order are also known, and combined with the N4LO
SMS potential create the N4LO+ version of the model. That version of the interaction gives remarkably high
quality of the two-nucleon data description, what can be quantified by χ2/data ≈ 1.06 for neutron-proton data
in the energy range 0–300 MeV [10].

On the other hand, the work of experimenters provides increasingly more accurate experimental results,
facilitating verification of theoretical models. In the three-nucleon sector, very precise data are currently
available for the cross-sections in elastic nucleon-deuteron scattering and in the deuteron breakup reaction
induced by a nucleon [17–20]. The latter has been measured practically over the entire range of angles defining
the momenta of free nucleons in the final state. These cross section data are accompanied by results for a number
of polarization observables, with dominating measurements of the analyzing powers, i.e. for reactions with
one polarized particle in the initial channel, see e.g. [21,22]. Some efforts were also made to measure more
complex polarization observables, which resulted in, among others, experiments performed at the IUCF at
energies of 135 and 200 MeV [23]. Due to the fact that the correct description of polarization observables is
a more demanding task than the description of cross sections, further experiments in this field are currently
planned. One of them is the spin correlation coefficients experiment planned at RIKEN [24,25].

With this in mind, in the present work we focus on theoretical predictions describing the impact of the
short-range N4LO three-nucleon force on a complete set of spin correlation coefficients. To present a systematic
picture, we show results for five reaction energies, that is for five neutron kinetic energies in the laboratory
frame. In following we stick to the nonrelativistic formalism, described in Sect. 2. Our results are given in
Sect. 3 and we conclude in Sect. 4.

2 Formalism

In order to obtain the spin correlation coefficients a two-step procedure has been applied. First, the 13 free
parameters of the 3NF have been found. They are cD and cE which occur at N2LO and ci , i = 1, . . . , 11,
present in the N4LO short-range 3NF. To this end the emulator [26–28] was used to effectively perform the
χ2/data minimization fit, which in turn allowed us to prepare combined 3NF at N2LO and N4LO. In the second
step, the obtained forces were used to solve the Faddeev equation, which enabled the determination of the
transition amplitudes and observables [29]. Both the emulator and the solution of the full Faddeev equation
were performed in momentum space and, in fact, were done within the same formalism.

The above-mentioned emulator is dedicated to the problem of adjusting the free parameters of the three-
body force. It bases on several observations that allow us to introduce approximations to the Faddev’s equations.
Namely, we take advantage of the fact that the 3NF components associated with free parameters act only in
the few lowest partial waves. Additionally, as described below, the second-order terms in the iterative equation
can be neglected.

The starting point for the emulator used is the observation that the V (1) part of a 3NF, that is the part of
3NF symmetric under the exchange of particles 2 and 3, can be written as

V (1) = V (θ0) +
N∑

i=1

ci�Vi ≡ V (θ0) + �V (θ) , (1)

with a parameter-free term V (θ0) and a sum of N parameter-dependent terms �Vi multiplied by strengths
parameters ci , collected in the �V (θ) term.

If all the ci parameters are known and full 3N Hamiltonian H = H0 + V 2N + V 3N does not contain any
unknown parameters, one can proceed to the exact solution of the Faddeev equation

T |φ〉 = t P|φ〉 + (1 + tG0)V
(1)(1 + P)|φ〉 + t PG0T |φ〉

+(1 + tG0)V
(1)(1 + P)G0T |φ〉 , (2)

where G0 is the free three-nucleon propagator, t is a solution of the Lippmann-Schwinger equation with the
2N potential V 2N , and P is a permutation operator. The initial state |φ〉 ≡ |q0〉|φd〉 describes the free motion
of the nucleon (neutron) with the relative momentum q0 and the internal deuteron wave function |φd〉. The
elastic scattering transition amplitude leading to the final neutron-deuteron state |φ′〉 is then given by [29,30]

〈φ′|U |φ〉 = 〈φ′|PG−1
0 |φ〉 + 〈φ′|V (1)(1 + P)|φ〉
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+〈φ′|V (1)(1 + P)G0T |φ〉 + 〈φ′|PT |φ〉 . (3)

However, if the ci parameters are unknown, one must first determine their values. We used the emulator [26–
28] for this purpose. The splitting in (1) entails a similar splitting for the T operator T = T (θ0)+∑N

i=1 ci�Ti ≡
T (θ0) + �T (θ). Inserting both sums in the Faddeev equation (2) and neglecting, due to the smallness of the
�V (θ), the second-order terms, i.e. terms proportional to �V (θ)(1 + P)G0�T (θ) allows us to end with a
sequence of equations to be solved: one standard Faddeev equation for T (θ0) dependent on V (θ0) only, and
N equations for �Ti , each of which depends only on one term �Vi and the parameter-free V (θ0) part of 3NF.
A few further steps, discussed in [27,28] lead to the elastic scattering amplitude. Its dependence on the ci
parameters is following:

〈φ′|U |φ〉 = 〈φ′|U0|φ〉 +
∑

i

ci 〈φ′|Ui |φ〉 +
∑

i,k

ci ck〈φ′|Uik |φ〉 , (4)

and is a convenient relation for practical use in χ2/data minimization. In Eq. 4, the U0, Ui , and Uik are parts
of the transition amplitude which depend neither on �Vi nor on �Ti , depend on �Vi or �Ti , or depend on
�Vi and �Ti , respectively. The quality of this approximation was tested in [27], where it was shown that it is
sufficient to realistically estimate the ci values.

The fitting procedure was performed using a set of 786 data points, see Tab.2 of [28] at energies E = 10,
70 and 135 MeV. The resulting values of ci parameters are given in Tab.3 of [28] and are also used to obtain
the results presented in the next section. Note, that the two free parameters, of the N2LO 3NF, cD and cE , have
been fixed separately for calculations which take or do not take the short-range N4LO 3NF into account.

We solve Eqs. (2) and (3) in the momentum-space partial-wave basis |pqα〉, defined by the magnitudes of
the relative Jacobi momenta p and q and a set of discrete quantum numbers α comprising angular momenta,
spins and isospins in the j-I coupling. We take into account all the 3N partial wave states up to the 2N angular
momentum jmax = 5 and the 3N angular momentum Jmax = 25

2 . We restrict the 3NF to act in the partial
waves with the total 3N angular momentum J ≤ 7/2. For details of our numerical performance see [29].

3 Results

There are 13 non-zero spin correlation coefficients [29], with the deuteron being in vector or tensor polarization
state. In the following we stick to the standard convention on defining polarization axes [29,31]. The complete

Fig. 1 The spin correlation coefficient Cx,x for neutron-deuteron (nd) scattering at four laboratory energies of the incoming
nucleon: a) E = 10 MeV, b) E = 135 MeV, c) E = 190 MeV, and d) E = 250 MeV. The predictions based on the 2N SMS
N4LO+ interaction are represented by the black dotted curve. The red dashed curve shows predictions of the SMS model with
2N N4LO+ supplemented by the N2LO 3NF and the black solid curve represents the N4LO+ + N2LO 3NF + short-range N4LO
3NF results
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Fig. 2 The same as in Fig. 1 but for the Cy,y coefficient

Fig. 3 The same as in Fig. 1 but for the Cz,z coefficient

set of spin correlation coefficients is shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 as a function
of the centre-of-mass scattering angle θ . In each figure we show predictions at four neutron beam laboratory
energies: E = 10 MeV (left top), E = 135 MeV (right top), E = 190 MeV (left bottom) and E = 250 MeV
(right bottom). Note that the two first energies are the ones used for fixing the N2LO+N4LO 3NF parameters,
thus strictly speaking among results based on N4LO 3NF only the ones given in the bottom row are explicit
predictions. All panels show calculations based on the 2N SMS N4LO+ only (black dotted curve), on the 2N
SMS N4LO+ force combined with the complete N2LO 3NF (red dashed curve), and on the later interaction
supplemented by the N4LO short-range 3NF (black solid curve). Finally, in some of the plots available data at
E = 135 MeV from the IUCF experiment [23] are shown.

Even a quick look at the figures reveals that inclusion of the N4LO short-range 3NF in most cases changes
the predictions significantly. This is observed already at the lowest energy E = 10 MeV, where introducing
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Fig. 4 The same as in Fig. 1 but for the Cx,z coefficient

Fig. 5 The same as in Fig. 1 but for the Cz,x coefficient

the N4LO shifts the prediction by a few percent. To be more quantitative let us define the relative difference

�(Cα,β, θ) ≡ C f ull
α,β − Cα,β

0.5(C f ull
α,β + Cα,β)

, (5)

with C f ull
α,β being the spin correlation coefficient with neutron and deuteron spin polarizations denoted by α

and β obtained with inclusion of the 3NF N4LO terms. The Cα,β values are calculated only with the N2LO
3NF. Obviously both spin correlation coefficients entering formula (5) have to be taken at the same scattering
angle θ .

Exemplary values of �(Cα,β) at E = 10 MeV are: �(Cy,y, 60◦) = 6.05% and �(Cy,y, 115◦) ≈ 220%
with the latter angle chosen at the minimum of the Cy,y where its value is close to zero, what explains big value
of �(Cy,y, 115◦). Strong influence of the N4LO 3NF is also seen for Cxy,x in Fig. 7 (�(Cxy,x , 80◦) = 116%)
or Czz,y in Fig. 13 (�(Czz,y, 115◦) = −36%). It is also worth noting that the spin correlation coefficient at
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Fig. 6 The same as in Fig. 1 but for the Cxx,y coefficient

Fig. 7 The same as in Fig. 1 but for the Cxy,x coefficient

E = 10 MeV, in the case of the deuteron tensor polarization, takes on small values, what makes it currently
useless in experimental tests.

At E = 135 MeV the role of the N4LO short-range 3NF remains significant for Cy,y (Fig. 2) at the central
scattering angles, Cx,z (Cz,x ) at the maximum (minimum) at backward scattering angles (Figs. 4 and 5), and
for Cyz,z (Fig. 12) above θ > 90◦. For these observables the relative difference reaches �(Cy,y, 90◦) = 41%,
�(Cz,x , 150◦) = 30%, and �(Cyz,z, 130◦) = 167%. As for the E = 10 MeV, at E = 135 MeV the chiral
N2LO is practically meaningless, and only slightly modifies predictions based on pure 2N force. Comparison
with the data reveals clear discrepancies for many of the spin correlation coefficients. These discrepancies are
already seen for predictions based on the 2N foce only or on the 2N force combined with N2LO 3N interaction.
Inclusion of the short-range N4LO components of the 3NF either does not change the picture, as e.g. for Cx,x
(Fig. 1), Cz,z (Fig. 3), or Cxy,x (Fig. 7), or makes the discrepancy even worse, see e.g. Cy,y (Fig 2) and Czz,y
(Fig. 13).

The situation at E = 190 MeV resembles that at E = 135 MeV. The N4LO terms are important for most
of the coefficients and scattering angle’s ranges. For Cy,y (Fig. 2) �(Cy,y, 80◦) = 65%, for Cyz,x (Fig. 11)



Impact of the N4LO Short-Range Three-Nucleon Force Components… Page 7 of 11    44 

Fig. 8 The same as in Fig. 1 but for the Cxy,z coefficient

Fig. 9 The same as in Fig. 1 but for the Cxz,y coefficient

�(Cyz,x , 125◦) = −92%, and for Cyz,z (Fig. 12) �(Cyz,z, 130◦) = 182%. Only for Cx,x (Fig. 1), Cxx,y

(Fig. 6), and Cx,zy (Fig. 9) the N4LO components of the 3NF have little impact on the results.
Also at the highest considered energy, E = 250 MeV, we do not observe many changes. In most cases the

angular dependence of Cα,β is similar to that for E = 190 MeV. The N4LO 3NF yields more or less similar
�’s leading to �(Cy,y, 80◦) = 66%, �(Cyz,x , 125◦) = −79%, and �(Cyz,z, 130◦) = 113% for the same
cases as shown above for E = 190 MeV.

4 Conclusions

We have presented a complete set of the spin correlation coefficients for the neutron-deuteron elastic scattering
in the energy range 10–250 MeV. That choice was partly dictated by the planned future experiments. Specifi-
cally, we investigated the significance of the whole set of short-range components of the N4LO three-nucleon
interaction [12–14]. That force has been combined with the SMS N4LO+ two-nucleon [10] and the N2LO [7]
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Fig. 10 The same as in Fig. 1 but for the Cyy,y coefficient

Fig. 11 The same as in Fig. 1 but for the Cyz,x coefficient

three-nucleon potentials. The 13 strength parameters of the 3NF were found by performing a χ2-minimization
to three-nucleon data. It was possible thanks to the use of the emulator of Faddeev equations proposed in our
earlier works [26–28].

We found that the included N4LO 3NF has a significant impact on the predicted spin correlation coefficients
for most of them. Depending on the reaction energy, the scattering angle and specific choice of the polarization
observable, the N4LO 3NF changes the magnitude of some spin correlation coefficients even by several dozen
percent. In general, the Cyz,z and Cyz,x at higher energies seem to be the most sensitive to that new 3NF
components and thus the most interesting coefficients to be compared with future experimental data. On
the other hand, the N4LO 3NF contributions have only tiny effect on the Cxz,y and Cxx,y spin correlation
coefficients.

A comparison with the available data [23] at E = 135 MeV reveals two cases. For some observables, like
Cx,x or Cz,z , there is no improvement in data description. However, we found also coefficients, e.g. Cy,y and
Czz,y for which the N4LO short-range 3NF moves theoretical predictions away from the data.
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Fig. 12 The same as in Fig. 1 but for the Cyz,z coefficient

Fig. 13 The same as in Fig. 1 but for the Czz,y coefficient

Due to the missing N3LO 3NF components our study should be regarded as preliminary. Results with such
an unexpectedly big role of N4LO 3NF indicate that it is necessary to include first the three-body force at
N3LO in the analysis. Note that this will require re-adjusting the values of the free parameters cD, cE in the
N2LO and ci in the N4LO 3NF. There are no new free parameters of 3NF at N3LO [32,33]. The magnitude of
the observed discrepancies between the data and the current predictions is one more argument for an important
role of the N3LO 3NF contributions. The work on derivation and partial wave decomposition of the N3LO
3NF is ongoing.
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