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Abstract We investigate the spin entanglement in few-nucleon scattering processes involving nucleons and
deuterons. For this purpose, we consider the entanglement power introduced by Beane et al. We analyze
different entanglement entropies as a basis to define the entanglement power of the strong interaction and
calculate the corresponding entanglement powers for proton–neutron, neutron–deuteron, proton–deuteron,
and deuteron–deuteron scattering. For the latter two processes, we also take into account the modification
from the Coulomb interaction. In contrast to proton–neutron scattering, no universal low-energy features are
evident in the spin entanglement in neutron–deuteron, proton–deuteron, and deuteron–deuteron scattering.

1 Introduction

Strongly interacting quantum systems can have universal properties that are independent of their interaction at
short distances [1]. A well-known example is the low-energy scattering of bosons with large s-wave scattering
length a and mass m. If a is positive and much larger than the range of the interaction R, there is a shallow
two-body bound state with binding energy B2 = 1/(ma2) + O(R/a), and mean-square separation a2/2. If
a third particle is added, a three-body parameter, κ∗, is required to fully characterize the universal properties.
For fixed a, this implies universal correlations between different three-body observables parameterized by κ∗,
such as the Phillips line [2]. Moreover, the Efimov effect [3] generates a universal spectrum of three-body
bound states characterized by a and κ∗.

Universality is also manifest in scattering observables. The scattering cross section of two particles at
energy k2/m, e.g., takes the universal form dσ/d� = 4a2/(1+k2a2)+O(R/a), and becomes scale invariant
in the unitary limit of infinite scattering length. Similar universality relations exist for more bodies and more
complicated systems of hadrons and nuclei with spin and isospin degrees of freedom (see Refs. [1,4–8] for
more details). In few-nucleon systems, there is also an approximate Wigner SU (4) symmetry that rotates the
spin and isospin degrees of freedom into each other [9–11].

Methods from quantum information theory provide an alternative window on the universal properties of
strongly interacting quantum systems. Beane et al. have shown that the suppression of spin entanglement in
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the S-matrix for nucleon–nucleon scattering is correlated with the Wigner SU (4) spin–isospin symmetry [12].
Based on this observation, they have conjectured that dynamical entanglement suppression is a property of
the strong interaction at low energies, giving rise to Wigner SU (4) as an emergent symmetry. This idea was
further elaborated in Ref. [13] and extended to systems of pions as well as pions and nucleons in Ref. [14].
Bai and Ren presented a formalism able to account for the Coulomb interaction using the screening method
and investigated the entanglement entropy of p-3He and n-3H scattering [15].

In this work, we investigate the spin entanglement in the scattering of spin-1/2 and spin-1 particles with
an application to proton–neutron, nucleon–deuteron, and deuteron–deuteron scattering processes in mind. We
consider different entanglement entropies as a basis to define the entanglement power and investigate their
universal low-energy properties. The entanglement of other degrees of freedom beyond spin is left for future
work. The case of spin-1/2–spin-1/2 scattering based on the leading Taylor expansion of the von Neumann
entropy was already investigated by Beane et al. [12]. The corresponding formalism for isospin-1/2–isospin-1
and isospin-1–isospin-1 scattering was discussed in [14]. We use our results to calculate the entanglement
powers for proton–neutron, nucleon–deuteron, and deuteron–deuteron scattering. For the proton–neutron and
deuteron–deuteron cases, the modification from the Coulomb interaction is also taken into account.

2 Formalism

We follow Ref. [12] and consider two particles that are initially uncorrelated. Thus, their spin state can be
written as a product of the separate one-particle spin states |ψin〉 = |ψ〉1 ⊗|ψ〉2. We start by deriving a general
initial state for spin-1/2 and spin-1 particles. Next, we analyze the correlation of the two spins induced by the
scattering process. For this purpose, we define the scattering operator Ŝ, i.e., the S-matrix, which transfers the
initial state to the final scattered state

|ψout〉 = Ŝ|ψin〉. (1)

The S-matrix is expressed in terms of the spin operators and the phase shifts in the corresponding spin channels.
The final state |ψout〉 defines a density matrix ρ̂ = |ψout〉〈ψout| that contains all quantum-mechanical

information about the state. To calculate correlations between the two final-state particles, we need the reduced
density matrix for particle 1

ρ̂1 = Tr2[ρ̂], (2)

where particle 2 has been traced out. Note that the labels 1 and 2 are arbitrary and our results do not depend
on this choice. For definiteness, however, we will always assume that particle 2 has been traced out in the
following. Using the reduced density matrix, we can calculate entanglement entropies. These entropies quantify
the degree of “entanglement” generated in the scattering process, which we will use as a measure of correlation
between the two particles. These entropies will be shown in Sect. 2.3.

2.1 Initial State

For our calculations, we consider a general product state of the pure one-particle spin states. This implies that
the two particles are initially uncorrelated. For the pure one-particle spin states, we take an arbitrary vector
on the corresponding state manifold [16]. This will give us every possible spin state that generates a suitable
density matrix that is Hermitian, positive semidefinite, normalized to trace one and is idempotent, i.e., ρ̂2 = ρ̂.
The spin states can be parameterized by a set of angles. In the following, we will discuss the general spin states
for spin-1/2 and spin-1, as these are the cases we consider in our calculation.

Spin-1/2 For a spin-1/2 particle, we have two orthogonal spin states: |1/2, 1/2〉 and |1/2, −1/2〉. Therefore, two
complex parameters (i.e., four real parameters) are required to specify a general pure state. By setting the
overall phase and requiring the pure state to be properly normalized, two real parameters can be eliminated.
The remaining two real parameters are angles that parameterize the corresponding complex manifold CP1 of
all pure states (projective Hilbert space of complex dimension 1). This space is also known as the 2-sphere S2

or Bloch sphere, which is the unit sphere in three dimensions. It can be parameterized as [16]

|ψS=1/2〉 = cos ϑ1|1/2, 1/2〉 + eiν1 sin ϑ1|1/2,−1/2〉, (3)
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where 0 < ϑ1 < π/2 and 0 ≤ ν1 < 2π . The notion of distance of two points on CP1 is described by the
Fubini-Study metric

ds2
FS(CP1) = dϑ2

1 + 1

4
sin2(2ϑ1)dν2

1 . (4)

Since we need to average over all possible initial states for the entanglement power defined in Ref. [12], we
have to divide by the total volume of the corresponding manifold. In order to calculate the total volume of
CP1, we require the differential Fubini-Study volume element

dVFS(CP1) = dϑ1dν1 cos ϑ1 sin ϑ1 . (5)

Hence, the total volume reads

VFS(CP1) =
∫

dVFS(CP1) = π . (6)

Since CP1 is isomorphic to S2, one could also use standard spherical coordinates in three dimensions and
parameterize all pure states on the Bloch sphere S2 as

|ψS=1/2〉 = cos

(
ϑ

2

)
|1/2, 1/2〉 + eiφ sin

(
ϑ

2

)
|1/2, −1/2〉 . (7)

Comparing the parameterizations in Eqs. (3) and (7), we find ϑ = 2ϑ1 and φ = ν1. The corresponding volume
is 4π instead of π . However, averaging over all pure states will lead to the same results in either coordinates.

Spin-1 For spin-1, there are three basis states given by the spin projections |1,−1〉, |1, 0〉 and |1, 1〉. An arbitrary
state can be parameterized by three complex parameters (i.e., six real parameters). Again, we eliminate two real
parameters due to normalization and the overall phase. Therefore, we are left with four angles parameterizing
the corresponding complex manifold CP2 of all pure states (projective Hilbert space of complex dimension
2). The resulting parameterization is given by [16]

|ψS=1〉 = cos ϑ1 sin ϑ2|1,−1〉 + eiν1 sin ϑ1 sin ϑ2|1, 0〉 + eiν2 cos ϑ2|1, 1〉, (8)

where 0 < ϑ1, ϑ2 < π/2 and 0 ≤ ν1, ν2 < 2π . The differential volume element of the manifold is

dVFS(CP2) = dϑ1 dϑ2 dν1 dν2 cos ϑ1 cos ϑ2 sin ϑ1 sin3 ϑ2, (9)

and integration gives us the total volume

VFS(CP2) =
∫

dVFS(CP2) = π2

2
. (10)

Note that the corresponding “generalized Bloch sphere” for spin-1 is much more intricate than for spin-1/2 and
does not simply correspond to a unit sphere in 5 dimensions [16,17].

2.2 S-Matrix

Next, we derive a general expression for the scattering operator. We expand Ŝ in the identity matrix and powers
of scalar products of the one-particle spin operators. We use this ansatz up to the square of the spin scalar
product, as this is sufficient for spin-1/2 and spin-1 degrees of freedom,

Ŝ = a 1 + b �S1 · �S2 + c (�S1 · �S2)
2, (11)

where 1 is defined as the tensor product of the identity operators for the first and the second particle, i.e.,
1 = 11 ⊗ 12. Similarly, the spin scalar product is defined by �S1 · �S2 = ∑

i S
i
1 ⊗ Si2, where the sum runs over

all Cartesian components of the spin matrices for particle 1 and 2. We determine the parameters in Eq. (11)
by demanding

〈S = α, M|Ŝ|S = α, M〉 = e2iδα , (12)
for each spin channel α and all spin projections M . The scalar product of the spin matrices for particles 1 and
2 is expressed through squares of spin matrices in the usual way,

�S1 · �S2 = 1

2

(
(�S1 + �S2)

2 − �S2
1 − �S2

2

)
, (13)

which can be evaluated straightforwardly using eigenvalue relations. A non-trivial check is given by the
unitarity of Ŝ. The condition Ŝ Ŝ† = Ŝ† Ŝ = 1 must hold true due to probability conservation.
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Spin-1/2−spin-1/2 As a test of our procedure, we rederive the expression for Ŝ from [12] for the s-wave
scattering of spin-1/2 nucleons. There are two spin channels, S = 0 and S = 1, with phase shifts δ0 and δ1,
respectively. The ansatz from above leads to the scattering operator

Ŝ 1
2

1
2

= 1

4

(
e2iδ0 + 3e2iδ1

)
1 − (

e2iδ0 − e2iδ1
) �S1 · �S2, (14)

in agreement with the expression given in [12].

Spin-1–spin-1/2 In the s-wave scattering of a spin-1 and spin-1/2 particle, we have the two spin channels S = 1/2

and S = 3/2 with phase shifts δ1/2 and δ3/2, respectively. Using the strategy described above, the scattering
operator is found to be

Ŝ1 1
2

= 1

3

(
e2iδ1/2 + 2e2iδ3/2

)
1 − 2

3

(
e2iδ1/2 − e2iδ3/2

) �S1 · �S2, (15)

which agrees with the results obtained in [14] for the πN system when spin and isospin are exchanged.

Spin-1–spin-1 For s-wave spin-1–spin-1 scattering, the total spins S = 0, S = 1, and S = 2 are possible. The
general form of the scattering operator for distinguishable particles is given by

Ŝ11 = −1

3

(
e2iδ0 − 3e2iδ1 − e2iδ2

)
1 − 1

2

(
e2iδ1 − e2iδ2

) �S1 · �S2

+
(

1

3
e2iδ0 − 1

2
e2iδ1 + 1

6
e2iδ2

)
(�S1 · �S2)

2, (16)

with the corresponding phase shifts δ0, δ1, and δ2. Here, all three operators appearing in Eq. (11) contribute.
The equivalent result for isospin degrees of freedom was given in [14] considering the case of ππ scattering.

For s-wave scattering of two identical bosons with spin-1, only wave functions symmetric under particle
exchange are allowed by Bose statistics. Thus, only the total spins S = 0 and S = 2 are allowed. The S = 1 state
is forbidden by symmetry, i.e., neither interaction nor free propagation is allowed in this channel. Therefore,
we construct an S-matrix that is unitary in the S = 0 and S = 2 channel but identically zero in the S = 1
channel. This S-matrix can be obtained from Eq. (16) by replacing e2iδ1 → 0, which leads to the scattering
operator

Ŝdd = −1

3

(
e2iδ0 − e2iδ2

)
1 + 1

2
e2iδ2 �S1 · �S2

+ 1

6

(
2e2iδ0 + e2iδ2

)
(�S1 · �S2)

2 . (17)

Formally, this corresponds to applying a projection operator P̂ to S11 which projects the S-matrix on the
subspace with S = 0, 2,

Ŝdd = P̂† Ŝ11 P̂ . (18)

Alternatively, the operator P̂ can also act on the initial product state |ψin〉 in Eq. (1), leading to the same result
for the entanglement entropy. We will come back to this viewpoint below when we discuss the entanglement
power for dd scattering.

2.3 Entropies

To quantify the correlation between the two spins after the scattering process, we use entropies as a measure
of the entanglement. We examine different entropy definitions as a basis for the entanglement power and
investigate whether they are equally suitable to describe the generated entanglement.

First, we consider the standard von Neumann entropy

EN (ρ̂1) = −Tr[ρ̂1 ln(ρ̂1)] = −
∑
i

λi ln(λi ), (19)
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where the λi with i = 1, 2, . . . denote the eigenvalues of the reduced density matrix ρ̂1. Since the calculation
of the von Neumann entropy requires the diagonalization of the density matrix, it is often convenient to study
the Taylor expansions of the von Neumann entropy of order n,

En(ρ̂1) = −Tr

⎡
⎣ρ̂1

n∑
j=1

(−1) j+1 (ρ̂1 − 1) j

j

⎤
⎦ . (20)

Finally, we also investigate the Rényi entropies

ER(ρ̂1, α) = 1

1 − α
ln

(
Tr[ρ̂α

1 ]
)
, α > 0, (21)

= 1

1 − α
ln

(∑
i

λα
i

)
, (22)

for α = 0.5 and α = 2. Note that in the limit α → 1, the Rényi entropy tends to the von Neumann entropy.

2.4 Averaging Over Initial States: Entanglement Power

Following [12], the “entanglement power” of the S-Matrix is defined by calculating the entropy E of particle 1
for a reduced density matrix ρ̂1 = Tr2[ρ̂], and averaging the entropy E over all possible initial states of the
scattering process, meaning

ε = 1

VFS(1)VFS(2)

∫
dVFS(1)dVFS(2) E, (23)

where dVFS(1) and dVFS(2) denote the Fubini-Study volume elements for particle 1 and 2, respectively. This
average cancels out the dependence on the initial state. For the leading Taylor expansion of the von Neumann
entropy and spin-1/2 particles, this reduces to the definition of Ref. [12],

ε = 1 − 1

16π2

∫
d�1d�2Tr1[ρ̂2

1 ] . (24)

Next, we revisit the case of nucleon–nucleon scattering and apply our results to experimental data for nucleon–
deuteron and deuteron–deuteron scattering.

3 Application to Nuclear Scattering Processes

3.1 Neutron–Proton Scattering

We start with the case of neutron–proton scattering, which was already discussed in [12] for the entanglement
power based on the leading Taylor expansion of the von Neumann entropy. Using the form of the S-matrix,
Eq. (14), and the expressions in Sect. 2.3, the entanglement powers can be calculated from the scattering phase
shifts. Since we are interested in scattering close to threshold, we focus on the s-wave contribution.

The Taylor expansions En of the Neumann entropy as function of the reduced density matrix ρ̂, Eq. (20),
up to order n = 7 are listed in Table 1. Their calculation does not require the diagonalization of the density
matrix. Analytic expressions for the s-wave contribution to the corresponding entanglement powers εn in terms
of the spin-singlet and spin-triplet phase shifts δ0 and δ1 are therefore straightforward to calculate. Inserting
the general form of the S-matrix, Eq. (14), we obtain the expressions for εn given in Table 2. The entanglement
powers based on the von Neumann entropy, εN , and Rényi entropies, εR , are calculated numerically.

The entanglement powers can be evaluated using the Nijmegen partial wave analysis PWA93 [18,19]. Other
potential models have been evaluated in [12] and lead to similar results. The evaluation of the entanglement
powers based on the Taylor-expanded von Neumann entropy, εn for n = 1, 3, 5, 7, with phase shift data from
the Nijmegen partial wave analysis PWA93 [18,19] are shown in the left plot of Fig. 1. In the right panel, we
show a comparison of ε1 with the entanglement power based on the full von Neumann entropy, εN , and the
Rényi entropies εR for α = 0.5 and α = 2. Evidently, the qualitative behavior of all entanglement powers is
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Table 1 Taylor expansions En of the von Neumann entropy EN as function of the reduced density matrix ρ̂ up to order n = 7

n En

1 1 − Tr[ρ̂2]
2 3

2 − 2Tr[ρ̂2] + 1
2 Tr[ρ̂3]

3 11
6 − 3Tr[ρ̂2] + 3

2 Tr[ρ̂3] − 1
3 Tr[ρ̂4]

4 25
12 − 4Tr[ρ̂2] + 3Tr[ρ̂3] − 4

3 Tr[ρ̂4] + 1
4 Tr[ρ̂5]

5 137
60 − 5Tr[ρ̂2] + 5Tr[ρ̂3] − 10

3 Tr[ρ̂4] + 5
4 Tr[ρ̂5] − 1

5 Tr[ρ̂6]
6 49

20 − 6Tr[ρ̂2] + 15
2 Tr[ρ̂3] − 20

3 Tr[ρ̂4] + 15
4 Tr[ρ̂5] − 6

5 Tr[ρ̂6] + 1
6 Tr[ρ̂7]

7 363
140 − 7Tr[ρ̂2] + 21

2 Tr[ρ̂3] − 35
3 Tr[ρ̂4] + 35

4 Tr[ρ̂5] − 21
5 Tr[ρ̂6] + 7

6 Tr[ρ̂7] − 1
7 Tr[ρ̂8]

Table 2 s-wave scattering contributions to the entanglement powers εn based on Taylor expansions En of the von Neumann
entropy EN for n = 1 . . . 7 expressed through the spin-singlet and spin-triplet phase shifts δ0 and δ1

n εn

1 1
6 sin[2(δ0 − δ1)]2

2 5
24 sin[2(δ0 − δ1)]2

3 1
720 (167 + 3 cos[4(δ0 − δ1)]) sin[2(δ0 − δ1)]2

4 1
5760 (1429 + 51 cos[4(δ0 − δ1)]) sin[2(δ0 − δ1)]2

5 1
403200 (104869 + 5406 cos[4(δ0 − δ1)] + 45 cos[8(δ0 − δ1)]) sin[2(δ0 − δ1)]2

6 1
537600 (144867 + 9508 cos[4(δ0 − δ1)] + 185 cos[8(δ0 − δ1)]) sin[2(δ0 − δ1)]2

7 1
45158400 (12511358 + 978417 cos[4(δ0 − δ1)] + 30690 cos[8(δ0 − δ1)]
+175 cos[12(δ0 − δ1)]) sin[2(δ0 − δ1)]2

Fig. 1 Comparison of the different entanglement powers as a function of the relative momentum k evaluated using phase shift
data from the Nijmegen partial wave analysis PWA93 [18,19] for pn scattering. Left panel: using different Taylor expansions of
the von Neumann entropy: εi , i = 1, 3, 5, 7. Right panel: using the von Neumann entropy εN and Rényi entropies εR for α = 0.5
and α = 2 compared to ε1

the same, they are just scaled differently. In particular, the position of minima and maxima stays the same.
Thus, all definitions carry the same physical information. We observe that the difference between neighboring
Taylor expansions εn decreases with n. This suggests that the expansion in Eq. (20) converges for pn scattering
and all entanglement powers are equally suited to describe the entanglement created in the scattering process.
Thus, our study confirms the results of Ref. [12] for the pn case, including the evidence for an emergent
Wigner SU (4) symmetry.
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3.2 Phenomenology

The qualitative behavior in the pn case can also be understood based on the effective range expansion of the
phase shifts,

k cot δ j (k) = − 1

a j
+ r j

2
k2 + . . . , j = 0, 1, (25)

where k is the relative momentum and the total energy in the center of mass frame is k2/m. Moreover, a j and
r j are the scattering length and effective range in the spin channel j , respectively.

Since, in our case, the scattering lengths are large, we can neglect effective range effects at low energies,
kr j 	 1, and the phase shifts can be approximated by δ j (k) = arccot(−1/(a j k)). Inserting this expression
for both channels in the entanglement power ε1 from Table 2 gives us [20]

ε1 = 2

3

(a1 − a0)
2k2

(
1 + a0a1k2

)2

(
1 + a2

0k
2
)2(1 + a2

1k
2
)2 , (26)

which allows us to determine the minima and maxima analytically. The minima of ε1 are at kmin,1 = 0 MeV
and kmin,2 = (−a1a0)

−1/2, while the maxima are given by

kmax,± =
±(a0 − a1) −

√
a2

0 − 6a0a1 + a2
1

2a0a1
. (27)

Using the explicit values a0 = 5 fm and a1 = −20 fm gives the minima at kmin,1 = 0 MeV and kmin,2 ≈
20 MeV and the maxima at kmax,+ ≈ 7 MeV and kmax,− ≈ 57 MeV. This agrees well with the full numerical
results shown in Fig. 1.

4 nd and pd Scattering

Restricting ourselves to s-wave scattering, the nucleon and the deuteron can scatter in the 2S1/2 and 4S3/2
channels. The general form of the scattering matrix for this case is given in Eq. (15).

4.1 Coulomb Interaction

In the pd case, we also need to take into account the Coulomb interaction between the proton and the deuteron.
The s-wave phase shifts in presence of a strong interaction and a Coulomb interaction split up into three pieces,

δtot(k) = −ηk log(2kr) + σ(k) + δN (k), (28)

a logarithmic part, a pure Coulomb part σ , and a Coulomb-modified nuclear part δN (also known as Coulomb-
subtracted phase shift), see, e.g., Refs. [21,22]. Here, δN is the additional strong phase shift relative to the
Coulomb wave function while the pure s-wave Coulomb phase shift σ is given by σ(k) = arg �(1 + iηk).
Moreover, ηk = αe Z1Z2μ/k is the Sommerfeld parameter, k is the relative momentum of the scattered
particles, αe = e2/(4π) is the electromagnetic fine structure constant in Heaviside-Lorentz units, μ is their
reduced mass, and the Zi are their charge numbers. Defining the Coulomb momentum scale kc = αe Z1Z2μ,
the Sommerfeld parameter can also be written as ηk = kc/k. The amplitude describing the effects of the strong
force relative to the Coulomb interaction takes the form

fSC (k) = e2iσ(k)

k cot δN (k) − ik
, (29)

where the pure Coulomb phase shift enters as a prefactor. We can set up our scattering matrix the same way
as before, but this time with the Coulomb-subtracted phase shift δN . We emphasize that δN is defined relative
to the outgoing Coulomb waves instead of plane waves as in the case without Coulomb.

We will see below that the entanglement entropies for pd scattering only depend on the difference of the
s-wave phase shifts δ1/2 and δ3/2. Thus, our procedure can be justified by considering screened Coulomb
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Table 3 s-wave scattering contributions to the entanglement powers εn based on Taylor expansions En of the von Neumann
entropy EN for n = 1, 2 expressed through the spin-doublet and spin-quartet phase shifts δ1/2 and δ3/2

n εn

1 8
243 (17 + 10 cos[2(δ1/2 − δ3/2)]) sin[δ1/2 − δ3/2]2

2 10
243 (17 + 10 cos[2(δ1/2 − δ3/2)]) sin[δ1/2 − δ3/2]2

Fig. 2 Comparison of the entanglement powers ε1 and ε2 for nd and pd scattering based on the Taylor expansions of the von
Neumann entropy. Left panel: nd scattering with phase shifts from the pionless effective field theory calculation of Vanasse [23].
Right panel: pd scattering based on phase shifts obtained from experimental data analyzed in Ref. [24]. In both plots the data are
represented by points while the curves are inserted to guide the eye

potentials as in Ref. [15]. The contribution from the first two terms in Eq. (28) will simply cancel out in the
entanglement entropy, such that the screening can safely be removed. As a consequence, the effect of Coulomb
interaction on the entanglement enters only via the Coulomb-modified nuclear part δN . It can only be observed
in the difference between nd and pd scattering data. This result is not unexpected since the Coulomb interaction
is spin-independent and thus cannot create any spin entanglement.

4.2 Results

We have calculated analytical expressions for the entanglement power based on the first two Taylor expansions
of the von Neumann entropy. They are given in Table 3. The result for the first Taylor expansion, ε1, agrees
with the entanglement entropy obtained in [14] for πN scattering. The entanglement powers based on the von
Neumann entropy, εN , and Rényi entropies, εR , for α = 0.5 and α = 2 will be calculated numerically as before.
One can already see that the two expansions only differ by a constant rescaling. Evaluating these expressions
for nd and pd scattering data gives us the left and right plot in Fig. 2, respectively. As discussed above, only
the Coulomb-modified nuclear phase shift δN contributes while the pure Coulomb contribution, which is the
same in both spin channels, cancels out. In the left panel, we compare ε1 and ε2 for nd scattering using phase
shifts from the pionless effective field theory calculation of Vanasse [23]. In the right panel, we show the
corresponding results for pd scattering based on phase shifts obtained from experimental data analyzed in
Ref. [24]. Both plots show similar qualitative behavior with a minimum at relatively high momenta of order
150 MeV. This minimum is not expected to be governed by universal low-energy physics.

Figure 3 shows the comparison of entanglement powers for nd scattering based on different entropies as
discussed in the caption. As in the nucleon-nucleon case, the qualitative features are very similar such that
the much easier to calculate entanglement powers ε1 and ε2 are sufficient for our purposes. Note also that no
characteristic signature of the triton virtual state below the scattering threshold [25–27] can be seen since the
entanglement power vanishes at k = 0.
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Fig. 3 Comparison of the entanglement powers for nd scattering based on the von Neumann entropy, εN , and Rényi entropies,
εR , for α = 0.5 and α = 2 with ε1. Phase shifts are taken from the pionless effective field theory calculation of Vanasse [23].
The data are represented by points. The lines are added to guide the eye

4.3 Phenomenology

Inserting the effective range expansion for s-waves given in Eq. (25) for the doublet and quartet nd channels
into the analytical expression for ε1 from Table 3 allows for a discussion of the qualitative features in the nd
case based on effective range parameters. Keeping only the scattering length contribution to the phase shifts,
we obtain

ε1 = 8

243

(
17 + 10

1 − (
a2

1/2 − 4a1/2a3/2 + a2
3/2

)
k2 + a2

1/2a
2
3/2k

4

(
1 + a2

1/2k
2
)(

1 + a2
3/2k

2
)

)

×
(
a1/2 − a3/2

)2
k2(

1 + a2
1/2k

2
)(

1 + a2
3/2k

2
) . (30)

There are no minima apart from kmin = 0 within the range of applicabilty of the scattering length approximation.
This is in agreement with the full numerical results shown in Fig. 2 despite the very limited range of applicability
of the scattering length approximation in nucleon–deuteron scattering.

The range of applicability can be extended by including the effective range term in the quartet channel and
using a modified effective range expansion for the doublet channel which includes a pole in k cot δ1/2(k) at
negative energies related to the triton virtual state (see, e.g., Refs. [27–29]). The corresponding expression for
ε1 can reproduce the entanglement power for nd scattering in Fig. 2 up to the maximum at k ≈ 75 MeV. We
refrain from showing the explicit formula for this case since it is cumbersome and does not offer any deeper
insights.

5 dd Scattering

The general form of the scattering matrix for s-wave dd scattering is given in Eq. (17). Due to the Bose
symmetry of the two-deuteron state, only the S = 0 and S = 2 channels are present.

5.1 Results

Because the (�S1 · �S2)
2 operator contributes, the dd S-matrix is more complicated than in the previous cases

and the evaluation of the entanglement entropy is computationally more expensive. Since our investigations
above demonstrate that all entanglement entropies are equally suitable for our purpose, we focus on the leading
Taylor expansion of the von Neumann entropy in the dd case. The analytical expression for ε1 is given in
Table 4. We give the result for s-wave dd scattering based on Eq. (17) and, for completeness, the general result
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Table 4 s-wave scattering contributions to the entanglement power ε1 for dd scattering expressed through the phase shifts δ0
and δ2 for S = 0 and S = 2 (first system). The general result including δ1 for the S = 1 channel applies to the second system of
distinguishable particles

system ε1

dd 1
576 (153 − 70 cos[2(δ0 − δ2)] − 20 cos[4(δ0 − δ2)])

distinguishable particles 1
648

(
156 − 6 cos[4(δ0 − δ1)] − 65 cos[2(δ0 − δ2)] − 10 cos[4(δ0 − δ2)]

−60 cos[4(δ1 − δ2)] − 15 cos(2[δ0 − 2δ1 + δ2])
)

Fig. 4 Entanglement power ε1 for dd scattering phase shifts obtained by Hofmann and Hale. The solid line is based on the
R-matrix analysis of Ref. [30]. The dashed and dotted lines are calculated using the resonating group model (RGM) calculations
for the AV18 + Urbana-IX and Bonn potentials from Refs. [30] and [31], respectively

including δ1 for s-wave scattering of distinguishable spin-1 particles based on Eq. (16). In the dd case, the
entanglement power starts with a non-zero value at k = 0. This can be understood from the structure of the
spin-projected initial state P̂|ψin〉. The initial product state |ψin〉 contains all spins. Applying P̂ from Eq. (18)
to project on the S = 0, 2 components, however, creates an entangled state. As a consequence, the initial
state has a non-vanishing entanglement entropy, which leads to an offset in the entanglement power. For the
discussion of universal features of the entanglement created in the scattering process, only the relative maxima
and minima of ε1 are relevant. In both cases, dd scattering and distinguishable particles, the entanglement
power depends only on the difference of phase shifts for different total spins S. For dd scattering, the pure
Coulomb contribution thus cancels out in the entanglement power.1 As a consequence, the entanglement power
for s-wave dd scattering is determined by the Coulomb-modified strong phase shift alone, similar to the pd
case.

Next, we evaluate the entanglement power using the Coulomb-modified dd phase shifts obtained by
Hofmann and Hale [30,31]. In Ref. [30], they presented a calculation of dd scattering in the resonating group
model (RGM) for the Bonn potential and compared to a charge-independent, Coulomb corrected R-matrix
analysis of reaction data in the four-nucleon system. This work was updated in Ref. [31] with an RGM
calculation using the AV18 two-nucleon potential and an Urbana-IX three-nucleon force and a new R-matrix
analysis. As in the previous section, we evaluate the entanglement power ε1 using the Coulomb-modified
nuclear phase shifts. In Fig. 4, we show the corresponding results for ε1.

While the entanglement powers shown in Fig. 4 agree at low momenta up to about 10 MeV, there are
significant differences at higher momenta. The RGM calculations for both potentials show a monotonic increase
of ε1, but differ in their absolute size at larger momenta. No universal features are evident. The R-matrix analysis
from Ref. [30], however, shows a minimum of the entanglement power around k = 60 MeV. The significance
of this feature and the reason for its absence in the RGM calculations deserve further study.

1 Note that this cancellation would not occur in dd scattering if Eq. (16) with δ1 = 0 was used for the S-Matrix instead of
Eq. (17). In this case, the corresponding entanglement power would depend on the screening radius for the Coulomb potential
and the screening could not be removed at the end of the calculation.



Entanglement in Few-Nucleon Scattering Page 11 of 12    29 

Moreover, it would be interesting to investigate the entanglement power in the threshold region more closely.
This will shed some light on the signature of the 4He excited state slightly above the scattering threshold in
the entanglement power [32,33]. The exact location of this resonance has received some recent interest in the
context of investigations of the monopole transition form factor of the 4He nucleus [34–36].

6 Summary

In this paper, we have investigated the spin entanglement in few-nucleon scattering processes involving nucle-
ons and deuterons using the entanglement power introduced by Beane et al. [12]. We have considered different
entanglement entropies as a basis for the calculation of the entanglement power for the cases of spin-1/2–spin-
1/2, spin-1/2–spin-1 and spin-1–spin-1 scattering. The entanglement powers were evaluated for neutron–proton,
neutron–deuteron, proton–deuteron, and deuteron–deuteron scattering, taking into account the Coulomb contri-
bution for the latter two processes. For all systems considered, the different entropies give the same information
about the entanglement and are therefore equally well suited for quantifying these properties. In practice, it is
preferable to use the original entanglement power defined in Ref. [12] based on the first order Taylor expansion
of the von Neumann entropy. While the linear approximation may in principle miss information if the reduced
density matrix is not close to the unit operator, this was not found to be the case for the considered processes.
In all considered cases, the entanglement power for s-wave scattering only depends on the difference of phase
shifts for different spin channels. For charged particles, the pure Coulomb contribution thus cancels out and
the entanglement power is determined by the Coulomb-modified strong phase shift alone.

Finally, no universal low-energy features in the entanglement powers for neutron–deuteron and proton–
deuteron scattering could be identified. The deuteron–deuteron case deserves further study both in the threshold
region where the 4He excited state resides and at intermediate momenta. In the future, it would be interesting
to go beyond pure spin entanglement and investigate the possible manifestation of large-scattering-length
universality in the spatial entanglement of light nuclear systems.
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