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Abstract On the three-body kinematics, we investigate the threshold behavior which appears not only at
the three-body break-up threshold (3BT), but also at the quasi two-body threshold (Q2T) for the reactions:
A + (BC) → A + B + C , and (ABC) → A + (BC), respectively. Recently, the author proposed a general
particle transfer (GPT) potential which appears, not only at the 3BT, but also at the Q2T between A and
(BC). The new potential indicates a Yukawa-type potential for short range, but a 1/rn-type potential for long
range. The long range part of the GPT potential for n = 1 indicates an attractive Coulomb-like or a gravitation-
like potential. While, n = 2 indicates the Efimov-like potential between A and (BC). The three-body binding
energy: En = ε+ζn with the two-body binding energy ε, and the separation energy ζn for (ABC) → A+(BC)
satisfies En/En+1 = ζn/ζn+1=const for ε = 0 or the two-body scattering length: a → ∞ (i.e. the two-body
unitary limit). At the Q2T, the condensation of the three-body binding energy is given by the GPT-potential
in the form of En/En+1 = (ζn + ε)/(ζn+1 + ε) → 1 (const) for n → ∞ (with ζn → 0) which implies the
existence of Efimov-like states at the Q2T in the hadron systems, thereby the possibility of “ultra low energy
nuclear transformation”, where the three-body binding energies degenerate at zero energy. Finally, the origin
of such a long range potential will be clarified.

1 Introduction

In 1970, Efimov proposed a theory that the three-body bound states accumulate on the zero energy level for
the infinite value of the two-body scattering length where the energy ratio: En/En+1 = (ζn + ε)/(ζn+1 + ε)
becomes a constant with respect to the quantum number n → ∞, and a → ∞ (or ε = 0) [1,2]. Such a
phenomenon is understood by the quasi-two-body potential between A and (BC) which is a 1/r2-type. More
than three decades after his prediction, the phenomenon was finally found in the cold atomic system [3].

Recently, we proposed the GPT-potential which is generated by a particle transfer between parent-particles
[4–7] on the basis of the three-body Faddeev Equation [8] or the Alt–Grassberger–Sandhas (AGS) Equation
[9].

In order to obtain the GPT-potential, Fourier–Laplace transformations are performed for “one particle
transfer Feynman diagram” (PTFD) in the AGS Born-term at the 3BT (E = 0, q = 0, p = 0), and for
the PTFD-type Born-term of the quasi two-body equation at the Q2T (E = −εB, q = 0, p = 0), with the
three-body energy E , a relative momentum q for the quasi two-body system, and the relative momentum p in
the two-body subsystem, respectively.
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Fig. 1 a The 3BT and the Q2T (black ellipse) where white small ellipse represents the two-body interactions. b The quasi-two-
body and the three-body right hand cuts (shade parts). c The kernel is illustrated by the PTFD (part of dashed square) and the
propagator τ (small circle), and the three-body or the quasi two-body amplitude (large ellipse), where the bloken lines indicate
the three-body Green’s function and the propagator

The GPT-potential is given by V (r) = V0(a0)
2γ+2/[r(r+a0)

2γ+2] with a range a0(≡ 2a) and a parameter
γ . The potential represents a Yukawa-type potential in the short range: r � a0, but 1/rn-type for the long
range: a0 � r . The Efimov’s potential: 1/r2(γ = −1/2) is included in our potential.

If the nuclear potential by the meson transfer is interpreted as a three-body problem in the NNπ system, then
the GPT-potential can represent the Yukawa potential. However, a proper long range interaction is accompanied
for the Yukawa-potential. The GPT potential is independent for the two-body unitary limit, because a → ∞ for
“Nπ” system is not satisfied. However, the relation: limn→∞ En/En+1 = limn→∞(ζn +ε)/(ζn+1 +ε) → 1 is
given for ε �= 0. Therefore, it should be stressed that the GPT potential can represent the rich hadron systems,
although it is not very clear whether the cold atomic system could be applied to some practical problems or
not.

In Sect. 2, some comments about the GPT potential, and the possibility of the “ultra low energy nuclear
reaction” are given. We show how to obtain the GPT potential at the 3BT, and also at the Q2T in Sect. 3. In
Sect. 4, we clarify the origin of the long range force. Some applications for the GPT-potential will be discussed
in Sect. 5.

2 A Status of the GPT-Potential

A coincidence of two singularities which appears in the Born-term of AGS equations and in the propagator of
the two-body sub-system brings a serious problem in the three-body scattering. This situation is very similar
to the Lippmann–Schwinger equation in the two-body Coulomb scattering where the potential gives rise to a
singularity at the forward scattering, and also the Green’s function diverges at the on-shell threshold [10–13].
In the Coulomb problem, such as the electron–proton system, the potential is given by

V (r) = −e2/r. (1)

While for the coincident singularities at the 3BT, Efimov ponted out a different attractive long range potential,

V (r) = −α/r2, (2)

with a proper constant α > 0.
On the other hand, we have introduced a GPT [6] which is more fundamental than the Efimov’s potential

at the 3BT. Furthermore, the GPT potential is also satisfied below the quasi two-body threshold (Q2T) for
(ABC) → A + (BC) by means of the PTFD, and given by

V (r) = V0
a2γ+2

r(r/2 + a)2γ+2 = V0
(2a)2γ+2

r(r + 2a)2γ +2 (3)
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Table 1 The GPT potential VGPT (r) ≡ V0a2γ+2/[r(r/2 + a)2γ+2] is illustrated, which is given by an energy average below
the 3BT (E = 0, εB = 0) and below the Q2T (E = −εB , εB �= 0) with two-parameters a and γ

γ Short range potential r � a Potential Long range potential a � r

–1 V0/r V0/r V0/r
–1/2 V0e−r/2a/r V0(2a)/[r(r + 2a)] V0(2a)/r2

0 V0e−2r/2a/r V0(2a)2/[r(r + 2a)2] V0(2a)2/r3

1/2 V0e−3r/2a/r V0(2a)3/[r(r + 2a)3] V0(2a)3/r4

1 V0e−4r/2a/r V0(2a)4/[r(r + 2a)4] V0(2a)4/r5

3/2 V0e−5r/2a/r V0(2a)5/[r(r + 2a)5] V0(2a)5/r6

2 V0e−6r/2a/r V0(2a)6/[r(r + 2a)6] V0(2a)6/r7

· · · · · · · · · ·
· · · · · · · · · ·
The potential properties for the long and short ranges are shown with respect to the parameter γ . V0(< 0), a potential depth which
is analytically given by Eq. (13)

→ V0
(2a)2γ+2

r2γ+3 for a � r, (4)

→ V0
e−(γ+1)r/a

r
for r � a, (5)

where a and γ are parameters, and V0(< 0) is a proper depth parameter. Therefore, Eq. (4) indicates 1/rn-type
attractive potential for longer range, while Eq. (5) means a Yukawa-type attractive potential for short range.

The case γ = −1 indicates an attractive Coulomb-like or the gravitation-like potential without parameter
a. γ = −1/2 represents the Efimov-type potential. γ = 3/2 is the van der Waals potential of the London-type,
and γ = 2 gives the Casimir-type van der Waals potential.

The interference between the attractive GPT and the repulsive Coulomb potential: V (r) = VGPT (r) +
VC (r) has a Coulomb barrier at short range, but a very small value at long range. If we can confine two nuclear
fuels in a special material, the potential is given by V (r) = V (r) for 0 ≤ r ≤ bB , and V (r) = V (2bB − r) for
bB ≤ r ≤ 2bB which illustrate a kitchen-tray-like concavity shape. If we obtain some shallow bound states
for the case bB � aB (aB : the Bohr radius). Such bound states could contribute a “ultra low energy nuclear
reaction or a nuclear transformation”.

3 Theory of the GPT-Potential

3.1 A New Method to Obtain GPT Potential at 3BT

Let us introduce our potential by a new aspect. At the 3BT, the two-body propagator is given by using the
on-shell property: E = q2/2μ + z with the three-body energy E , a two-body energy z, the kinetic energy
of the spectator particle and the reduced mass between the two-body center of mass and the spectator. The
propagator τ is written with a regular numerator function f (z) and the energy denominator with the two-body
binding energy εB ,

τ(z) = f (z)

εB + z
. (6)

Efimov required the unitary limit: a → ∞ which means the binding energy: εB = 0. At the 3BT : (E =
0, q = 0), Eq. (6) becomes,

τ(z) = f (z)

z
= f (E − q2/μ)

E − q2/2μ
→ ∞, (7)

f (0) = constant �= 0 (8)

or, by the effective range formula with k = √
2νz,

τ(z) ∝ 1

−1/a − ik
→ i

1
√
E − q2/2μ

→ i∞. (9)
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In addition to that, the Born term of the AGS equation is given by using two-body form factors with different
channels gα(p), gβ(p′) and with two-body momenta p, p′, and ν the reduced mass between two particles,

Zαβ(q, q ′; E) = gα(p)gβ(p′)(1 − δαβ)

E − q2/2μ − p2/2ν
. (10)

For the 3BT, E = 0, q = 0, p = 0

Zαβ(q, q ′; E) → ∞. (11)

Just below the 3BT (E ≤ 0), it gives p = p′ = 0, the AGS-Born term becomes,

Zαβ(q, q ′; E) = gα(0)gβ(0)(1 − δαβ)

−|E | − q2/2μ
= − Cαβ

q2 + σ 2 , (12)

where Cαβ = 2μπgα(0)gβ(0)(1 − δαβ), and σ = √
2μ|E |. Therefore, the Fourier transformation of this

energy dependent potential becomes,

F[Zαβ(q, q ′; E)] = −F
[

Cαβ

q2 + σ 2

]
= V0

e−σr

r
, (13)

with V0 < 0. The r -space potential is a kind of Yukawa potential, but energy dependent. For σ = 0 or
E = 0, it becomes the Coulomb-like potential (or the gravitation-like potential), therefore, our AGS equation
is essentially the same equation as the Coulomb’s Lippmann-Schwinger equation such as the electron-proton
scattering except for the coupling constant.

In order to solve the eigenvalue equation with the energy dependent potential of Eq. (13), we have to solve
it consistently with the two energies which are seen in the potential and in the eigenvalue. However, the method
is very complicated and hard to obtain with good accuracy. Therefore, we introduced in Ref [6], an energy
average by using a probability density function with respect to the possible energy range, which also represents
effects of the structure or the form factors of the composite particles,

Pσ = σ 2γ+1e−aσ

ρ
(14)

with

ρ =
∞∫

0

σ 2γ+1e−aσdσ = Γ (2γ + 2)

a2γ+2 , (15)

where e−aσ is a damping factor with a range parameter a. By using the probability density function, the
expectation value of the energy-dependent potential becomes energy independent. It means that the Laplace
transformation or the Euler integral of the second kind with respect to Eq. (13).

At just below the 3BT, by using Eq. (14) and Eqs. (15), (13) becomes,

L {F[Zα,β(q, q ′; E)]} = L
{
V0e−σr

r

}
= V0

ρ

∞∫

0

σ 2γ+1e−aσ e
−σr

r
dσ

= V0
a2γ+2

r(r/2 + a)2γ+2 . (16)

Therefore the predicted GPT potential is obtained.
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3.2 A New Method to Obtain GPT Potential at Q2T

On the other hand, at the Q2T, the two-body bound state becomes εB �= 0, therefore, the Efimov criterion :
a → ∞ is not satisfied anymore.

For the propagator at the Q2T: (Ecm = E + εB = 0, q = 0), by using on-shell relation z = E −q2/2μ (≤
0),

τB(z) = f (z)

εB + z
= f (z)

(εB + E) − q2/2μ
→ ∞. (17)

On the other hand, in the AGS Born term, the target two-body bound state cannot be broken up below the
3BT where the virtual three-body Green’s function should be given by G0(E) = [E − q2/2μ + εB]−1 which
is the criterion we use for judgement. If and only if, one takes G0(E) = [E − q2/2μ − p2/2ν]−1, some parts
of the three-body kinetic energy should be virtual and negative. If we choose a negative energy E < 0, and
positive three-body kinetic energies q2/2μ > 0 and p2/2ν > 0, such a criterion includes a contradiction, or
off-the-energy-shell for E ≤ 0. It brings only a virtual particle transfer. Consequently, the Born term or the
energy dependent two-body quasi (E2Q) potential with the two-body bound state (εB �= 0, or a �= ∞) should
become,

Zα,β(q, q ′; E) = gα(p)gβ(p′)(1 − δαβ)

E − q2/2μ + εB
(18)

→ gα(0)gβ(0)(1 − δαβ)

Ecm − q2/2μ
→ ∞, (19)

with Ecm = E + εB = 0, q = 0 and p = p′ = 0, where we have no kinetic freedom for the two-body
subsystem. For the case Ecm ≤ 0, Eq. (18) becomes

Zα,β(q, q ′; E) → −2μ
gα(0)gβ(0)(1 − δαβ)

2μ|Ecm | + q2 = − Cαβ

q2 + σ 2 (20)

with σ 2 = 2μ|Ecm |, 0 < Cαβ. (21)

The Fourier transformation of Eq. (18) at just below the Q2T is given by

F[Zα,β(q, q ′; E)] = V0
e−σr

r
, (22)

and the energy average below the Q2T becomes

L {F[Zα,β(q, q ′; E)]} = L
{
V0e−σr

r

}
= V0

a2γ+2

r(r/2 + a)2γ+2 . (23)

The result has the same form as Eq. (16). This is a proof to show that the GPT potential for the case below
Q2T has the same form as that for 3BT.

In the NNπ system, Eq. (5) becomes

V (r) = V0 exp
[

−
(γ + 1

a

)
r
]
/r = V0μπ

e−μπ r

μπr
, (24)

with γ = aμπ − 1. For γ = −1/2 taking h̄ = c = 1 unit, it gives a = 0.5/μπ where the GPT-potential
becomes 1/r2-type potential with the Efimov-like energy levels. We estimated the deuteron’s first excited state
which will appear at 13 keV [6]. If not, take γ = 0, it gives a = 1/μπ which means 1/r3-potential. Such a
potential could still have an excited state.

We have used the quasi two-body Green’s function of Eq. (18) instead of the three-body free Green’s
function Eq. (10) which is seen in the usual three-body Faddeev equation. Here, it should be remembered at
“below the 3BT”, that the Green’s function could be constructed not by the two-body free but by a bound or
loosely bound pair plus the spectator kinetic energies. Therefore, if we insist on the free three-particle Green’s
function as in the Faddeev’s form, we have to adopt an energy-momentum “scale-translation” [13] to preserve
the on-shell condition in the quasi two-body Green’s function apart from the original Faddeev equation.
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4 One Pion Transfer NN Interaction and Recoil Effect

One may feel a curiosity about the existence of the long range NN interaction in NNπ system, because the
hadron problems have been investigated by using some short range nuclear potential where the r ∼ 1/μπ is a
longest range. This kind of annexed long range effect could not be found in the static-NN interpretation where
the initial and the intermediate nucleon kinetic energies are not considered in the meson theory . However,
modern relativistic three-body calculations are intensively investigated by some authors [14,15].

Let us imagine that two nucleons rest at r1 and r2 where no meson exists which is written by |0 >. By
using the second order perturbation formula with a Hamiltonian H ′

Nπ , we can calculate the energy difference
between the |0 > state with the kinetic energy E0 = 0 and the intermediate state |m > which is given by
two nucleons and one meson with the energy: Em = E ′(q1, q2) + ωk. Therefore, the perturbation formula
indicates that a nucleon “1” produces a meson by an interaction H ′

N1·π which is absorbed by another nucleon
“2” by H ′

N2·π . The Hamiltonian H ′
Nn ·π is defined for the pseudo-scalar meson by using the meson creation a∗

k,
annihilation ak operators, and h̄ = c = 1 units,

H ′
Nn ·π = i f0

μπ

∑

k

(
2π

Vωk

)1/2

× (σ n · k){ak exp(ik · rn) − a∗
k exp(−ik · rn)} (25)

where σ n is the spin vector for the n-th nucleon, k the meson momentum and ωk = √
k2 + μ2

π is the meson
energy. Therefore, the second order perturbation formula becomes

W2 =
∑

q1,q2

∑

k

{
< 0|H ′

N2·π |m >< m|H ′
N1·π |0 >

E0 − (E ′(q1, q2) + ωk)
+ (1 ↔ 2)

}

. (26)

If we assume a static approximation 0 = E0 ≈ E ′(q1, q2) by the reason that the nucleon mass is much larger
than the meson mass, then the nucleon-recoils by the meson creation and annihilation are neglected, although
� = μπ/MN = 0.14703 is not very small.

Therefore, by using Eqs. (25), (26) becomes

W2 ≈ −4π f 2
0

μ2
πV

∑

k

(σ 1 · k)(σ 2 · k) cos{k · (r1 − r2)}
ω2
k

. (27)

The nuclear potential is obtained by putting r = r1 − r2, in Eq. (27), and using well-known relation:
∑

k =∫
Vdk/(2π)3,

U0 = − 4π f 2
0

(2π)3μ2
π

∫
(σ 1 · k)(σ 2 · k) cos(k · r)

k2 + μ2
π

dk (28)

= 1

3
μπ f 2

0

{
(σ 1 · σ 2) +

(
1 + 3

μπr
+ 3

μ2
πr

2

)
S1,2

}
e−μπ r

μπr
, (29)

S1,2 = 3
(σ 1 · r)(σ 2 · r)

r2 − (σ 1 · σ 2), (30)

where S1,2 is the tensor operator. This is the well-known Yukawa-potential for π-meson transfer where the
recoil effect is neglected.

However, in the three-body scattering problem, Eq. (26) can be rewritten by taking the initial and the
intermediate energies as,

E0 = ω01 + ω02 =
√
q2

01 + m2
1 +

√
q2

02 + m2
2, (31)

E ′(q1, q2) = ω1 + ω2 =
√
q2

1 + m2
1 +

√
q2

2 + m2
2, (32)

ω3 =
√
q2

3 + m2
3 ≡

√
k2 + μ2

π = ωk, (33)
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where nucleon masses m1, m2, and pion mass m3 = μπ . q01, q02, and q1, q2, k are the initial nucleon momenta
and the intermediate nucleons and pion momenta, respectively. That is, we have

W2 =
∑

q1,q2

∑

k

< 0|H ′
N2·π |m >< m|H ′

N1·π |0 >

E0 − ω1 − ω2 − ω3
+ (1 ↔ 2). (34)

If we adopt the non-relativistic approximation ω j ≈ q2
j /2m j + m j , then we can reduce Eq. (34), by putting

E ≡ E0 −m1 −m2 −m3 ≈ q2
01/2m1 +q2

02/2m2 −m3, which leads on Ecm ≡ E +m3 = q2
01/2m1 +q2

02/2m2
in Eq. (19).

Finally, we obtain,

W2 ≈
∑

q1,q2

∑

k(q3)

< 0|H ′
N2·π |m >< m|H ′

N1·π |0 >

E − q2
1/2m1 − q2

2/2m2 − q2
3/2m3

+ (1 ↔ 2) (35)

⇒ gα(p)[δαβ ]gβ(p′)
E − q2/2μ − p2/2ν

+ (α ↔ β), with δαβ ≡ (1 − δαβ), (36)

where p is the relative momentum of any two-body couple, and q is the relative momentum between the center
of mass and the spectator particle with respect to α, β and γ channels. In Eq. (36), the first and the second
terms are separately calculated in the AGS equation by removing

∑
q1,q2

∑
k from Eq. (35). The first term of

Eqs. (36) or (10) is the Born terms of AGS equations where the recoil effect is completely taken into account.
Only if, we integrate Eq. (35) by k(≡ q3), the Yukawa range [μπ ]−1 becomes a function of q1 and q2 by
�(q1, q2) ≡ E0 − E ′(q1, q2) �= 0. A special case: E0 − E ′(q1, q2) − m3 = 0 gives a potential of W2 ∝ 1/r.
Therefore, one could conclude that the NN interaction “accompanied with the long range effect” is rather
natural in the few-body formulation which is seen in the Efimov-like potential.

5 Conclusion and Discussion

We investigated the quasi-two-body potential below the 3BT. As a result, we obtained the GPT-potential:
1/rn for long range in which the n = 1 indicates an attractive Coulomb-like potential or the gravitation-like
potential where the transfer-particle should be massless. The second is the Efimov’s potential with n = 2. This
fact seems to suggest that the transfer-particle must be very small compared to the parent-particle’s masses.
By this speculation, one could imagine what kind of three-body system causes the Efimov’s phenomena?

We imagine that the next Efimov-like potential could be given by the mass ratio between a transfer particle
m3 and the remaining masses: ξ = m3/(M1 + M2) � 1. Two-heavy and one-light particles system is one
of the promising system, if our GPT potential is used. However, such a system is historically investigated by
the Born-Oppenheimer approximation, therefore the method includes a static approximation where the recoil
effect is partly neglected and the potential becomes a Yukawa-type at long range potential tail [16]. Pioneering
work in 1961 indicated that the size parameter between α-α in 9Be nucleus with α − n − α cluster system is
larger than that in 8Be nucleus [17]. However, both articles do not represent the long range tail with 1/rn .

The Efimov-like phenomena in the hadron systems are only obtained by introducing “the quasi-two-body
Green’s (Q2G) function” in Eq. (18) at the Q2T. However, the Q2G-function can not be represented by the
original three-body Faddeev equation where the “on-shell condition of the Q2G-function” is not satisfied for
the three-body free Green’s function below the 3BT.

Finally, we raise an important question: “Where the long range potential comes from?” [6]. One of the
reasons which we point out, is that the short range Yukawa potential was introduced by a static approximation
neglecting the recoil effect in the meson transfer. However, the “exact” three-body treatment for the NNπ-
system can overcome the recoilless-shortage, and brings the long range potential.

It should be stressed that the “static” approximation in the “field theory” is generally used for the many-
body system. However, we have to look at the validity of the static approximation in the few-body system. The
recoil effect seems to be usually minor for the light-particle transfer, but massless photon transfer could be
sometimes very important as shown in the Mössbauer effect.

In the end, the most interesting and plausible application of this work is the ultra low energy nuclear
transformation which seems to be hopeful rather than the Efimov effect for the cold atomic science.
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