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Abstract The Dirac method for constrained systems is incomplete for the light-front (LF) quantization of the
Yukawa model in D = 1 + 1 dimensions. A novel quantization procedure is proposed, where one obtains
the LF commutator and anti-commutators directly from the Heisenberg equations generated by P+, which is
a kinematical operator. By adding the general assumptions on the quantum field theory, one evalutes 2-point
Wightman functions for a free field case. The Lorentz symmetry is manifest at every step of this novel LF
procedure. The Gaussian effective potential is defined with the point-splitting regularization with a space-like
separation. The optimum values of the mass parameters are regularization independent.

1 Novel LF Quantization

The standard LF quantization [1–3] is the canonical quantization procedure for constrained systems. However,
as it is shown in “Appendix B”, the Dirac procedure [4–6] is incomplete at the LF hypersurface for fermion
fields. Therefore we propose a novel procedure, which incorporates special advantages of the LF formulation.
We may omit the classical canonical structure and start at the quantum level with the Heisenberg equations
with P+ operator. This will allow us to read out the commutation relations for these fields, which are canonical
at the LF hypersurface. Then by implementing some general properties of the quantum field theory we may
evaluate theWightman functions for the canonical fields and then also for those fields, which are not canonical.

We illustrate this procedure by considering the Yukawamodel in D = 1+1 dimensions, where the Lorentz
invariant Lagrangian density is

L = ∂+φ∂−φ − m2

2
φ2 + iΨ γ μ∂μΨ − (M + gφ)Ψ Ψ

= ∂+φ∂−φ − m2

2
φ2 + i

√
2ψ†

+∂+ψ+ + i
√
2ψ†

−∂−ψ− − (M + gφ)(ψ
†
+ψ− + ψ

†
−ψ+). (1)

From this Lagrangian we find two components of the canonical energy-momentum tensor

T++ = i
√
2ψ†

+∂−ψ+ + (∂−φ)2, T+− = −i
√
2ψ†

−∂−ψ− + (M + gφ)
(
ψ

†
+ψ− + ψ

†
−ψ+

)
+ m2

2
φ2.

(2)
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The P+ = P− is a kinematical operator,whichwedefine as the integral P− = ∫
R
dx−T++, thus theHeisenberg

equations at fixed x+ LF time are

i∂−ψ
†
+(x) =

[
ψ

†
+(x), P−

]
= i

√
2

∫

R

dy− [
ψ

†
+(x+, x−), ψ

†
+(x+, y−)∂−ψ+(x+, y−)

]
, (3a)

i∂−ψ+(x) = [
ψ+(x), P−

] = i
√
2

∫

R

dy− [
ψ+(x+, x−), ψ

†
+(x+, y−)∂−ψ+(x+, y−)

]
, (3b)

i∂−φ(x) = [
φ(x), P−

] = 2
∫

R

dy− [
φ(x+, x−), ∂−φ(x+, y−)

]
∂−φ(x+, y−). (3c)

From these relations we directly read out the non-vanishing LF canonical (anti)-commutators
{
ψ+(x+, x−), ψ

†
+(x+, y−)

}
= 1√

2
δ(x− − y−), 2

[
φ(x+, x−), ∂−φ(x+, y−)

] = iδ(x− − y−). (4)

Therefore in this model φ, ψ+, ψ
†
+ are the LF canonical quantum fields. We assume that there exists one

vacuum state, which is both the Lorentz and PCT invariant state and its energy-momentum eigenvalues vanish

U (ω)|0〉 = |0〉, θPCT |0〉 = |0〉, P±|0〉 = 0. (5)

Next the translational invariance leads to the relations for the 2-point Wightman functions

〈0|φ(x)φ(y)|0〉 = 〈0|φ(0)e−i P·(x−y)φ(0)|0〉, 〈0|Ψ (x)Ψ̄ (y)|0〉 = 〈0|Ψ (0)e−i P·(x−y)Ψ̄ (0)|0〉. (6)

Since P± operators have non-negative spectra, then (6) leads to the analyticity of 2-point Wightman functions
as x± − y± → x± − y± − i0. The Lorentz transformation for scalar and fermion fields leads to

〈0|φ(x+, x−)φ(0)|0〉 = 〈0|φ(x+eω, x−e−ω)φ(0)|0〉, (7a)

〈0|Ψ (x+, x−) Ψ̄ (0)|0〉 = S−1(ω)〈0|Ψ (x+eω, x−e−ω) Ψ̄ (0)|0〉S(ω). (7b)

These general properties allow us to evaluate the Wightman functions for the LF canonical fields. First for the
scalar fields we find

〈0|φ(x)∂−φ(y)|0〉 = −i〈0|φ(x)
[
φ(y), P−

] |0〉 = i〈0|φ(0)e−i P·(x−y)P−φ(0)|0〉 = −〈0|∂−φ(x)φ(y)|0〉.
(8)

Then for the fermions fields we need to implement the PCT transformation

〈0|ψ†
+(x)ψ+(y)|0〉 PCT= 〈0|ψ+(−y)ψ†

+(−x)|0〉 = 〈0|ψ+(0)ei P·(y−x)ψ
†
+(0)|0〉 = 〈0|ψ+(x)ψ†

+(y)|0〉.
(9)

Thus the LF canonical (anti)-commutators (4) lead to the relations between the Wightman functions

−〈0|∂−φ(x+, x−)φ(x+, y−)|0〉 − 〈0|∂−φ(x+, y−)φ(x+, x−)|0〉 = i

2
δ(x− − y−), (10a)

〈0|ψ+(x+, x−)ψ
†
+(x+, y−)|0〉 + 〈0|ψ+(x+, y−)ψ

†
+(x+, x−)|0〉 = 1√

2
δ(x− − y−), (10b)

while the analyticity leads directly to the Wightman functions for canonical fields at equal LF time x+

∂x−〈0|φ(x+, x−)φ(x+, 0)|0〉 = − 1

4π

1

x− − i0
, 〈0|ψ+(x+, x−)ψ

†
+(x+, 0)|0〉 = 1√

2

1

2π i

1

x− − i0
, (11)

where the Heisenberg distribution is denoted as

1

x − i0
= P

1

x
+ iπδ(x). (12)

For the later convenience we introduce notation for the Wightman functions for scalar and fermion fields

〈0|φ(x+, x−)φ(0)|0〉 = Sφφ(x+, x−), 〈0|ψa(x)ψ
†
b (y)|0〉 = Sab(x − y), a, b ∈ {+,−} (13)
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2 Volterra Equations for Wightman Functions

In the next step of our analysis we use the equations of motions for fields, which follow from the Lagrangian
(1) as the Euler–Lagrange equations. These equations for fields directly generate equations for the Wightman
functions. For simplicity we will restrict here our analysis the case of free fields, so we put g = 0. Thus for
the scalar field we have the Klein–Gordon equation (2∂+∂− +m2)Sφφ(x+, x−) = 0, which can be integrated
over x+ variable into the integro-(partial) differential (IPD) equation for Sφφ(x+, x−)

∂−Sφφ(x+, x−) = − 1

4π

1

x− − i0
− m2

2

∫ x+

0
dτ Sφφ(τ, x−). (14)

The Lorentz transformation (7a) in the infinitesimal case leads to the condition (x+∂+−x−∂−)Sφφ(x+, x−) =
0, which can be usedwith the analyticity condition to transform (14) into another IPD equation for Sφφ(x+, x−)

∂+Sφφ(x+, x−) = − 1

4π

1

x+ − i0
− m2

2

∫ x−

0
dξ Sφφ(x+, ξ). (15)

These IPD equations can be solved in terms of the Fourier integral as

Sφφ(x+, x−) =
∫ ∞

0

dk+

4πk+ exp (−ik+x−) exp

(
−i

m2

2k+ x+
)

, (16)

which is awell-known expression [7], but herewe have obtained itwithout introducingFourier representation of
φ in terms of creation and annihilation operators. Further we find theVolterra integral equation for Sφφ(x+, x−)
[8]

Sφφ(x+, x−) = − 1

4π
ln

(
m2|x+x−|) − i

8

[
sgn(x+) + sgn(x−)

] − m2

2

∫ x+

0
dτ

∫ x−

0
dξ Sφφ(τ, ξ), (17)

which explicitly shows, that the Wightman function Sφφ(x+, x−) is logarithmically divergent at x+ → 0 or
x− → 0. Also we find the mass dependence relation

m2 ∂

∂m2 Sφφ(x+, x−) = x+∂+Sφφ(x+, x−) = − 1

4π
− m2

2
x+

∫ x−

0
dξ Sφφ(x+, ξ), (18)

which indicates that the mass dependent part of Sφφ is regular and non-vanishing at x± = 0. This agrees with
the observation [9], that at the LF hypersurface there is no scaling symmetry for massive scalar fields.

Analogous analysis can be carried out for the fermion field, and starting from theDirac equation (dynamical
equation) for a free field case i

√
2∂+S++(x) = MS−+(x), one finds the integral equation

i
√
2S++(x+, x−) = 1

2π

1

x− − i0
+ M

∫ x+

0
dτ S−+(τ, x−). (19)

But another Dirac equation (non-dynamical equation) i
√
2∂−S−+(x) = MS++(x) leads to the IPD equation

for S−+(x)

∂−S−+(x+, x−) = − M

4π

1

x− − i0
− M2

2

∫ x+

0
dτ S−+(τ, x−), (20)

while the Lorentz symmetry condition (x+∂+ − x−∂−)S−+(x+, x−) = 0 leads to another IPD equation for
S−+(x)

∂+S−+(x+, x−) = − M

4π

1

x+ − i0
− M2

2

∫ x−

0
dξ S−+(x+, ξ). (21)

Similarly we find the integral equation

i
√
2S−−(x+, x−) = 1

2π

1

x+ − i0
+ M

∫ x−

0
dξ S−+(x+, ξ). (22)
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and the equality of theWightman functions S+−(x) = S−+(x). These equations can be solved for theWightman
functions Sab in terms of the Fourier integral representation

S++(x+, x−) = √
2

∫ ∞

0

dk+

4π
exp (−ik+x−) exp

(
−i

M2

2k+ x+
)

, (23a)

S−+(x+, x−) = M√
2

∫ ∞

0

dk+

4πk+ exp (−ik+x−) exp

(
−i

M2

2k+ x+
)

, (23b)

S−−(x+, x−) = √
2

(
M√
2

)2 ∫ ∞

0

dk+

4π(k+)2
exp (−ik+x−) exp

(
−i

M2

2k+ x+
)

, (23c)

which agree with [7]. For completeness we find the Volterra equation for S−+(x)

S−+(x+, x−) = − M

4π
ln

(
M2|x+x−|) − i

M

8

[
sgn(x+) + sgn(x−)

] − M2

2

∫ x+

0
dτ

∫ x−

0
dξ S−+(τ, ξ).

(24)

These integral equations explain why setting x+ = 0 for S−+ and S−− inevitably leads to singular integrals
over k+. Moreover they allow for a finite limit for the massless fermions M → 0

i
√
2S++(x−) = 1

2π

1

x− − i0
, i

√
2S−−(x+) = 1

2π

1

x+ − i0
, S−+(x) = S+−(x) = 0 (25)

The anti-commutator functions can be expressed as the linear combination of Wightman functions, thus we
have 〈0|{ψ−(x), ψ†

−(0)}|0〉 = S−−(x) + S−−(−x), which satisfies the integral equation

i
√
2〈0|{ψ−(x), ψ†

−(0)}|0〉 = iδ(x+) + M2

√
2

∫ x−

0
dξΔ(x+, ξ ; M), (26)

with the Lorentz invariant Jordan–Pauli function

Δ(x+, x−; M) = −i
∫ ∞

0

dk+

2πk+ sin

(
k+x− + M2

2k+ x+
)

. (27)

This shows that the anti-commutator {ψ−(x), ψ†
−(0)} is divergent at x+ = 0 and the corresponding Dirac

anti-bracket does not exists.

3 Gaussian Effective Potential

Usually for the LF variational calculations one introduces momentum cut-off in the Fourier representation of
fields [10,11]. However we notice that the vacuum expectation value of the LF Hamiltonian density operator
(2), due to the translation symmetry, is

〈0|HLF (x)|0〉 = −i
√
2〈0|ψ†

−(0)∂−ψ−(0)|0〉 + m2

2
〈0|φ(0)φ(0)|0〉 + M〈0|ψ†

+(0)ψ−(0)|0〉 +
+ M〈0|ψ†

−(x)ψ+(0)|0〉 + g
[
〈0|ψ†

+(0)φ(0)ψ−(0)|0〉 + 〈0|ψ†
−(0)φ(0)ψ+(0)|0〉

]
. (28)

Since this is a linear combination of the Wightman functions for fields at the coinciding points, thus it is
a singular expression. For a regularization we take the point-splitting procedure e.g. 〈0|ψ†

+(0)ψ−(0)|0〉 →
〈0|ψ†

+(0)ψ−(x)|0〉. The Hartree approximation, which leads to the Gaussian effective potential, uses free
quantumfield operatorswithmasses,which are the variational parameters:μb for bosons,μ f for fermions.Also
the scalar fieldmay have a non-vanishing vacuumexpectation value 〈0|φ(x)|0〉 = φ0 and the 3-pointWightman
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functions factorize 〈0|ψ†
±(0)φ(0)ψ∓(x)|0〉 = φ0〈0|ψ†

±(0)ψ∓(x)|0〉. Thus the Hartree approximation with the
point splitting regularization gives

〈0|HLF |0〉Har
reg = −i

√
2∂x−S−−(−x;μ f )+m2

2
Sφφ(−x;μb) + (M + gφ0)

[
S+−(−x;μ f ) + S−+(−x;μ f )

]

= [
2(M + gφ0) − μ f

]
S+−(−x;μ f ) + m2

2
Sφφ(−x;μb) (29)

and similarly we define 〈0|T++|0〉Har
reg = i

√
2∂x−S++(−x, μ f ) − ∂2−Sφφ(−x;μb). The Hartree effective po-

tential is the linear combination of these expressions with an arbitrary parameter α as Vef f [μb, μ f , x+, x−] =
〈0| (HLF + αT++) |0〉Har

reg . The optimum values of μb, μ f , which are regularization independent μb = m
and μ f = M + gφ0, imply two conditions αx+ + x− = 0 and sgn(x+) + sgn(x−) = 0. Thus α > 0 and
the interval x2 = 2x+x− = −α(x+)2 < 0. Accordingly only a space-like point-splitting regularization is
consistent.

4 Conclusions and Prospects

There is no classical theory underlying theLorentz covariant LFYukawamodel in D = 1+1. TheLFWightman
functions for free scalar and fermion fields can be obtained without introducing the Fourier representation for
fields. Generalization to the LF Yukawa model in D = 3 + 1 seems to be straightforward. The LF variational
calculations for the Lorentz covariant models are possible with a space-like point-splitting regularization. It is
interesting to check how the novel LF formulation works in the exactly solvable models.
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Appendix A: Definitions and Basic Assumptions About the Light Front

The LF coordinates are defined as x± = (x0 ± x3)/
√
2 and the partial derivatives are denoted as ∂± = ∂/∂x±.

The metric components are g+− = g−+ = 1, g++ = g−− = 0. The Dirac matrices γ ± are taken in the
representation, which leads to the simplest projection operators Λ±

γ + = √
2

[
0 1
0 0

]
, γ − = √

2

[
0 0
1 0

]
, Λ+ = γ −γ +

2
=

[
0 0
0 1

]
, Λ− = γ +γ −

2
=

[
1 0
0 0

]
. (30)

The fermion fields Ψ is projected into two components ψ± as

Λ+Ψ =
[

0
ψ+

]
, Λ−Ψ =

[
ψ−
0

]
, Ψ † = [

ψ
†
− ψ

†
+

]
(31)

TheLorentz boost transformation x ′μ = Λ
μ
νxν is generated by the parameterω−+ = ωwithΛ++ = eω, Λ−− =

e−ω, Λ+− = Λ−+ = 0. The Lorentz invariance of the Minkowski metric follows immediately gμνΛ
μ
αΛν

β =
gαβ and the coordinates transform uniformly x ′+ = eωx+, x ′− = e−ωx−. x ′± = e±ωx± The (spin) matrix
S(Λ) is defined by the relation S(Λ) γ μ S−1(Λ) = γ νΛ

μ
ν , which in D = 1 + 1 dimensions looks as

S−1(ω) γ + S(ω) = Λ++γ + = eωγ +, S−1(ω) γ − S(ω) = Λ−−γ − = e−ωγ −, (32)

and leads to

S(ω) = eω/2Λ+ + e−ω/2Λ− =
[
e−ω/2 0
0 eω/2

]
. (33)
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The Lorentz transformation for the fermion Ψ (x), Ψ̄ (x) and scalar φ(x) quantum fields is generated by the
unitary operator U (ω):

U (ω)Ψ (x)U−1(ω) = S−1(ω) Ψ (x ′), U (ω) Ψ̄ (x)U−1(ω) = Ψ̄ (x ′) S(ω),

U (ω) φ(x)U−1(ω) = φ(x ′), (34a)

thus explicitly we have

U (ω)ψ+(x)U−1(ω) = e−ω/2ψ+(eωx+, e−ωx−), U (ω)ψ−(x)U−1(ω) = eω/2ψ−(eωx+, e−ωx−),
(34b)

U (ω)ψ
†
+(x)U−1(ω) = eω/2ψ

†
+(eωx+, e−ωx−), U (ω)ψ

†
−(x)U−1(ω) = e−ω/2ψ

†
−(eωx+, e−ωx−),

(34c)

U (ω) φ(x)U−1(ω) = φ(eωx+, e−ωx−). (34d)

Appendix B: Light-Front Dirac–Bergmann Procedure

The Lorentz invariant Lagrangian density for the Yukawa model given by (1) leads to the canonical momenta

π
†
+ = ∂L

∂∂+ψ+
= −i

√
2ψ†

+, π
†
− = ∂L

∂∂+ψ−
= 0, π− = ∂L

∂∂+ψ
†
−

= 0, πφ = ∂L

∂∂+φ
= ∂−φ, (35)

where for the anti-commuting variables the left-hand differentiation convention is applied. There are three
primary constraints Φ1 = π

†
− ≈ 0, Φ2 = π− ≈ 0, Φ3 = πφ − ∂−φ ≈ 0. The canonical Hamiltonian density,

which follows from the generalized Legendre transformation

Hcan = πφ∂+φ − π
†
+(∂+ψ+) − L = m2

2
φ2 − i

√
2ψ†

−∂−ψ− + (M + gφ)(ψ
†
+ψ− + ψ

†
−ψ+), (36)

leads by the stationarity conditions to the secondary constraintsΦ4 = i
√
2∂−ψ

†
− + (M+gφ)ψ

†
+ ≈ 0, Φ5 =

i
√
2∂−ψ− − (M + gφ)ψ+ ≈ 0. These constraints are usually interpreted as non-dynamical Dirac equations,

which allow to express the non-dynamical componentsψ−, ψ
†
− in terms of the dynamical fields. One calculates

the matrix of Poisson brackets for constraints Mab(x−, y−) = {
Φa(x+, y−), Φb(x+, x−}

P

Mab(x
−, y−) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 i
√
2∂x−

0 0 0 i
√
2∂x− 0

0 0 −2∂x− −gψ†
+(y−) gψ+(y−)

0 −i
√
2∂x− gψ†

+(y−) 0 A (x−, y−)

−i
√
2∂x− 0 −gψ+(y−) −A (x−, y−) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

δ(x− − y−), (37)

where A (x−, y−) = i/
√
2[M + gφ(x−)][M + gφ(y−)]. This matrix contains fields variables thus finding

its inverse is highly a non-trivial task. Therefore we consider here only a free field case, g = 0 which leads to
the inverse matrix

M−1
ab (x−, y−) =

⎡
⎢⎢⎢⎢⎢⎣

0 c(x− − y−) 0 0 −a(x− − y−)

−c(x− − y−) 0 0 −a(x− − y−) 0

0 0 b(x− − y−) 0 0

0 a(x− − y−) 0 0 0

a(x− − y−) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (38)

where functions a, c, b are not determined uniquely, but they have to satisfy the differential equations

i
√
2∂−a(x−) = δ(x−), 2∂−c(x−) = −M2a(x−), 2∂−b(x−) = −δ(x−). (39)
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Accordingly here the Dirac procedure is not a complete algorithm for finding Dirac brackets thus one needs
to add some additional assumptions for them. We may evaluate two Dirac brackets

{
ψ

†
+(x+, x−), ψ+(x+, y−)

}
D

= − i√
2
δ(x− − y−),

{
φ(x+, x−), φ(x+, y−)

}
D = b(x− − y−) = −1

4
sgn(x− − y−), (40)

where from the the antisymmetry of Dirac bracket we can impose the condition b(x− − y−) = −b(y− − x−).
Other Dirac brackets remain undefined

{
ψ−(x+, x−), ψ

†
+(x+, y−)

}
D

=
{
ψ+(x+, x−), ψ

†
−(x+, y−)

}
D

= −i
M√
2
a(x− − y−), (41a)

{
ψ−(x+, x−), ψ

†
−(x+, y−)

}
D

= −c(x− − y−), (41b)

Usually one argues that some boundary conditions are needed for fixing these Dirac brackets. However such
boundary conditions are not physically self-evident and they may spoil the Lorentz symmetry of the model.
Moreover any additional condition, which allows to fix a and c uniquely, leads to well-defined Dirac brackets
for all fields taken at equal LF time x+.
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