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Abstract We study the question at which relative distances four squares of rational
numbers can occur as terms in an arithmetic progression. This number-theoretical
problem is seen to be equivalent to finding rational points on certain elliptic curves.
Both number-theoretical results and results concerning the associated elliptic curves
are derived; i.e., the correspondence between rational squares in arithmetic progres-
sions and elliptic curves is exploited both ways.
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1 Introduction

In 1640, Fermat found that there are no four equidistantly spaced squares of rational
numbers. One can ask a more general question: Given a triplet .k; `; m/ of natural
numbers, are there rational numbers ˛; ˇ; �; ı 2 Q and a step size s > 0 such that
ˇ2 � ˛2 D ks, �2 � ˇ2 D `s and ı2 � �2 D ms? It turns out that this question
is equivalent to finding rational points on the elliptic curve Ek;`;m given by the
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affine equation y2 D x.x C km/.x C .k C `/.` C m//. Consequently, one can use
the theory of elliptic curves to draw various conclusions on the original number-
theoretical problem.

Remarkably, this approach also works the other way: Rather trivial number-
theoretical facts can be used to derive nontrivial results on the associated elliptic
curves. Specifically, a rather large class of elliptic curves is shown to have positive
rank, and this is done in an elementary way which, in addition, gives an explicit
construction of an element of infinite order on the elliptic curve in question. As the
problem discussed here is strongly linked with other number-theoretical problems
such as the concordant form problem and the problem of �-congruent numbers, we
start out by providing some historical context and perspective for the topic at hand.

2 Historical overview

2.1 The congruent number problem

A number n 2 N is called congruent if there are rational numbers ˛; ˇ; � 2 Q

such that ˛2 < ˇ2 < �2 is an arithmetic progression with step size n, i.e., if
�2 � ˇ2 D ˇ2 � ˛2 D n. (In other words, n is congruent if and only if there is
a rational square �2 such that �2˙n are also rational squares.) The problem is then to
decide whether or not a given number n 2 N is congruent. This problem, which can
be traced back to an Arab manuscript written before 972 (see [7], Chapter XVI, p.
459), is more than a thousand years old. It was solved in 1983 by Tunnell (see [44])
modulo a weak version of the Birch-Swinnerton-Dyer conjecture.

Before giving some examples, we note that the congruent number problem can
be clothed in geometric language. Namely, a number n is congruent if and only if
there is a right triangle with rational sides a; b; c which has n as its area. To wit: If
0 � ˛ < ˇ < � are rational numbers such that

ˇ2 � ˛2 D n and �2 � ˇ2 D n; (1)

then the rational numbers a WD � �˛, b WD � C˛ and c WD 2ˇ satisfy the conditions

0 < a � b < c; a2 C b2 D c2 and n D ab=2 (2)

and hence yield a triangle with the properties mentioned. Conversely, given such
a triangle and hence given rational numbers a; b; c satisfying (2), then the numbers
˛ WD .b � a/=2, ˇ WD c=2 and � WD .b C a/=2 provide a solution of (1). Now let
us look at some examples, noticing by the way that a number n is congruent if and
only if its square-free part is congruent, so that it is enough to consider square-free
numbers.

The number 6 is congruent, as can be seen from the progression .1=2/2 <

.5=2/2 < .7=2/2 or from the triangle with sides a D 3, b D 4 and c D 5. The
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number 5 is congruent, as can be seen from the progression .31=12/2 < .41=12/2 <

.49=12/2 or from the triangle with sides a D 3=2, b D 20=3 and c D 41=6. This
last example has some historical interest; it dates back to Leonardo of Pisa, known
as Fibonacci, to whom the problem was presented by John of Palermo at the court of
Frederick II around 1220. The problem and its solution are mentioned in Leonardo’s
memoir Flos; the derivation of the solution is explained in the Liber quadratorum.
(See [4], pp. 1430/1431.) The number 2 is not congruent, as can be derived from
the fact that the equation u4 C v4 D w2 has no solution in natural numbers (a fact
which, in turn, can be deduced from the theory of Pythagorean triplets). More on the
older history of the congruent number problem can be found in [7], chapter XVI. In
a well-known article (see [51]), Zagier showed that 157 is a congruent number by
establishing the fact that the triangle with sides

a D 411340519227716149383203

21666555693714761309610
;

b D 6803298487826435051217540

411340519227716149383203
;

c D 224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830

(3)

is a right triangle whose area is 157. It is clear that one does not find such so-
lutions by trial and error. In fact, gaining any deeper insights into the congruent
number problem involves a connection to the theory of elliptic curves, which will
be explained later.

2.2 Variants of the congruent number problem

The congruent number problem in its geometric formulation can be easily general-
ized by asking which natural numbers n can occur as the area of an arbitrary (not
necessarily right) triangle with rational sides. Denoting the sides of such a triangle by
a; b; c and the angle opposite c by � , this amounts to finding rational numbers a; b; c

and a number 0 < � < � such that c2 D a2 C b2 � 2abcos.�/ and n D absin.�/=2.
Then .cos.�/; sin.�// is automatically a rational point on the unit circle other than
.˙1,0/ and hence must have the form ..t2 �1/=.t2 C1/; 2t=.1C t2// with a rational
number t > 0. Thus an integer n is called t-congruent for a given rational number
t > 0 if there are rational numbers a; b; c > 0 such that

c2 D a2 C b2 � 2ab � t2 � 1

t2 C 1
and n D abt

1 C t2
: (4)

(Clearly, a number n is 1-congruent if and only if it is congruent in the sense
defined before. The concept of t-congruence, albeit without using the name, is
introduced in [25], pp. 8/9, Problem 3.) More generally, if a triangle has rational
sides a; b; c and if � is the angle opposite c then cos.�/ is necessarily rational,
say cos.�/ D r=s in reduced form, and the area of this triangle is given by F D
absin.�/=2 D ab

p
s2 � r2=.2s/. Given a number n 2 N we can then ask whether or
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not there is such a triangle with F D n
p

s2 � r2. Thus given an angle � 2 .0; �/

for which cos.�/ D r=s is rational, a natural number n is called �-congruent if
there is a triangle with rational sides which has � as an angle and n

p
s2 � r2 as its

area, i.e., if there are rational numbers a; b; c > 0 such that c2 D a2 C b2 � 2abr=s

and n D ab=.2s/. The problem is then to decide whether or not a given number
n 2 N is �-congruent for some suitable angle � ; see [10, 11, 17, 22, 43, 48–50] and
also [5] and [27] for related work. Clearly, a .�=2/-congruent number is the same
as a congruent number in the above sense. The only other angles � for which �-
congruence has been studied somewhat systematically are � D �=3 and � D 2�=3;
see [29, 43] and [20] as references.

2.3 Euler’s concordant form problem

Let m; n 2 Z n f0g be integers with m ¤ n. Following Euler (see [8]), the quadratic
forms X2 C mY 2 and X2 C nY 2 (or the numbers m and n themselves) are called
concordant if there are integers .X; Y; Z; W / with Y ¤ 0 such that

X2 C mY 2 D Z2; X2 C nY 2 D W 2: (5)

On the other hand, if this system of quadratic equations admits only the trivial
solutions .X; 0; ˙X; ˙X/ then the quadratic forms X2CmY 2 and X2CnY 2 (or the
numbers m and n themselves) are called discordant. The concordant form problem
is then to decide whether or not two given nonzero integers m ¤ n are concordant;
cf. [2, 7, 32, 33]. Letting ˛ WD X=Y in the above equations, this amounts to asking
whether or not there is a rational square ˛2 such that ˛2 C m and ˛2 C n are also
rational squares. Clearly, a number n is congruent if and only if n and �n are
concordant; hence Euler’s problem generalizes the congruent number problem. One
can readily check (see [37]) that there is a 1-1 correspondence between the solutions
of the �-congruent number problem and Euler’s concordant form problem, but since
the geometric formulation of the problem is somewhat contrived we do not go into
any details in this direction, but rather point out how Euler’s problem gives rise to
a more general problem in a rather natural way.

2.4 Squares in arithmetic progression

The congruent number problem amounts to identifying all triplets of rational squares
in arithmetic succession. Euler’s concordant form problem amounts to identifying
all triplets of rational squares which occur in an arithmetic progression, but not
necessarily in immediate succession. The same questions can be asked for four rather
than three squares. The first question has a negative answer: As was already known
to Fermat (who formulated the fact in a letter to Frenicle in 1640 without proving
it), there are no rational numbers ˛; ˇ; �; ı such that ˇ2 � ˛2 D �2 � ˇ2 D ı2 � �2.
(A proof of this fact can be given by using the method of infinite descent; see
for example [18], pp. 112/113. Note that Fermat’s old problem still gave rise to
priority disputes at the beginning of the 21st century; cf. [1, 6] and [45].) On
the other hand, the analogue of Euler’s problem for four squares turns out to be
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a meaningful and rather interesting problem: Given a triplet .k; `; m/ of natural
numbers, decide whether or not there is a rational square ˛2 for which ˛2 C k,
˛2 C` and ˛2 Cm are also rational squares. (Clearing denominators, this means that
we are looking for four integer squares which are separated by the k-fold, the `-
fold and the m-fold of a common step size.) Note that this generalization of Euler’s
problem has overlaps with the problem of identifying arithmetic progressions of
squares in quadratic number fields such as 72 < 132 < 172 < .

p
409/2 < 232 in

Q.
p
409/, which has recently been investigated (cf. [13, 14, 47]). See also [3, 15]

and [35] for generalizations in a different direction.

2.5 The role of elliptic curves

It is difficult to say who first made the connection between the number-theoretical
problems described above and the theory of elliptic curves, but inklings of such
a connection date back to Euler 1780 (see [8]), Jacobi 1835 (see [19]), Kummer 1848
(see [26]) and Lucas 1877 (see [30]). However, the fundamental role of elliptic curves
could not have become clear before the discovery of the group structure on such
a curve, which seems to be due to Juel in 1896 (see [21]), and the first mathematician
who exploited the theory of elliptic curves in a nontrivial way to make progress on
the congruent number problem seems to be Heegner in 1952 (see [16]), who proved,
amongst other things, that if p is a prime such that p � 5 or p � 7 modulo 8 then
p is congruent. The first explicit mentioning of the fundamental role of elliptic
curves to approach the congruent number problem we are aware of dates from as
late as 1975 (see [28]), and since then all substantial progress which has been made
towards solving the congruent number problem and the concordant form problem
rests on reformulating these problems as problems of finding rational points on
certain elliptic curves; cf. [34, 39, 41, 42, 44]. The textbook [25] actually bases an
introduction to elliptic curves and modular forms on the congruent number problem.
It is therefore instructive to see how the connection is made in this textbook.

Given a right triangle with rational sides a; b; c (where c is the hypotenuse) and
area n D ab=2, we can form the numbers x WD c2=4 and y WD .a2 � b2/c=8, which
are obviously rational and satisfy the equation

x.x � n/.x C n/ D x.x2 � n2/ D c2

4

�
c4

16
� a2b2

4

�
D c2.c4 � 4a2b2/

64

D c2..a2 C b2/2 � 4a2b2/

64
D c2.a2 � b2/2

64
D y2;

(6)
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which shows that .x; y/ is a rational point on the elliptic curve given by the equation
y2 D x.x�n/.xCn/. Thus the approach taken in [25] consists in using the mapping
.a; b; c/ 7! .c2=4; .a2 �b2/c=8/ to assign to each (rational) point in the solution set
of the equations a2 C b2 D c2 and n D ab=2 (which, geometrically speaking, is the
intersection of a double cone with a hyperbolic cylinder in three-space) a (rational)
point on the elliptic curve given by the equation y2 D x.x � n/.x C n/. Similarly,
in [32], the problem of finding nontrivial solutions of the equations X2CmY 2 D Z2

and X2 C nY 2 D W 2 is transformed to the problem of finding rational points on
some elliptic curve as follows: Letting x WD X2=Y 2, the two equations become
x C m D Z2=Y 2 and x C n D W 2=Y 2; hence letting y WD XZW=Y 3 we have

x.x C m/.x C n/ D X2

Y 2
� Z2

Y 2
� W 2

Y 2
D

�
XZW

Y 3

�2

D y2; (7)

which shows that .x; y/ is a rational point on the elliptic curve given by the equation
y2 D x.x C m/.x C n/. As was pointed out (and remedied) in [37], in both cases
the mappings chosen are not isomorphisms between algebraic varieties, but only
mappings of degree 4, which causes a loss of information on effects corresponding
to torsion points on the elliptic curve in question. In [23], we gave an explicit
(and lavishly illustrated) general construction of a rationally defined isomorphism
between a rationally defined smooth intersection of two quadrics in projective three-
space and an elliptic curve in Weierstraß form which maps a distinguished rational
point in the intersection of the two quadrics to the point at infinity of the elliptic
curve. This construction works not only for the congruent number problem and the
concordant form problem, but also for the problem of four squares in an arithmetic
progression, which we are going to study now.

3 Rational squares in arithmetic progressions and elliptic curves

We now turn to the question of finding four rational squares which form part of
an arithmetic progression. To have a succinct terminology available, let us give the
following definition.

Definition 1 Given natural numbers k, `, m 2 N, we say that four squares
˛2 � ˇ2 � �2 � ı2 of rational numbers ˛, ˇ, � , ı 2 Q form a progression of type
(k; `; m) if there is a number s � 0 (necessarily rational) such that

ˇ2 � ˛2 D ks; �2 � ˇ2 D `s; ı2 � �2 D ms: (8)

Such a progression is called trivial if s D 0.
We note that if ˇ2 � ˛2 D ks, �2 � ˇ2 D `s and ı2 � �2 D ms with a negative

step size s < 0 then the squares ı2 < �2 < ˇ2 < ˛2 form a progression of type
.m; `; k/ with the positive step size �s. If (8) holds for a fixed triplet .k; `; m/, then
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`.ˇ2�˛2/ D `ks D k`s D k.�2�ˇ2/ and m.�2�ˇ2/ D m`s D `ms D `.ı2��2/

so that

.kC`/ˇ2 � k�2 � `˛2 D 0 and � mˇ2 C .mC`/�2 � `ı2 D 0. (9)

Conversely, if ˛; ˇ; �; ı are such that (9) holds for a given triplet .k; `; m/ 2 N3,
we can define

s WD ˇ2 � ˛2

k
D �2 � ˇ2

`
D ı2 � �2

m
(10)

to get a solution of the original problem (8). Thus given a triplet .k; `; m/, we
ask whether or not the system (9) admits a nontrivial solution .˛; ˇ; �; ı/ ¤
� � .˙1; ˙1; ˙1; ˙1/ in rational numbers. Since the equations in (9) are homo-
geneous, we can interpret ˛; ˇ; �; ı as projective coordinates of a point in P3.Q/,
and condition (9) can be reformulated by stating that the point .X0; X1; X2; X3/ WD
.ˇ; �; ˛; ı/ 2 P3.C/ is a rational point in the intersection of the two quadrics given
by the equations .k C `/X2

0 �kX2
1 �`X2

2 D 0 and �mX2
0 C .m C `/X2

1 �`X2
3 D 0.

This is a key observation for the approach to be presented in this paper and gives
rise to the following definition.

Definition 2 Given natural numbers k, `, m 2 N, we let

Qk;`;m WD Q
.1/
k;`;m

\ Q
.2/
k;`;m

(11)

where

Q
.1/
k;`;m

WD ˚
.X0; X1; X2; X3/ 2 P3.C/ j .k C `/X2

0 D kX2
1 C `X2

2

�
;

Q
.2/
k;`;m

WD ˚
.X0; X1; X2; X3/ 2 P3.C/ j .m C `/X2

1 D mX2
0 C `X2

3

�
:

(12)

We note that Qk;`;m always (independently of the values of k, ` and m) con-
tains the eight trivial rational points .1; ˙1; ˙1; ˙1/, each of which represents
a trivial progression; hence the task at hand is to find nontrivial rational points on
Qk;`;m. Now it will turn out (see Theorem 1 below) that there is a rationally de-
fined isomorphism which maps Qk;`;m to the elliptic curve with the affine equation
y2 D x.x C km/.x C .k C `/.` C m//, for which we also introduce some notation.

Definition 3 Given natural numbers k, `, m 2 N, we let

Ek;`;m WD ˚
.X; Y; T / 2P2.C/ j Y 2T D X.X C kmT /.X C .kC`/.`Cm/T /

�
(13)

and denote by Tk;`;m the torsion group of the Mordell-Weil group of Ek;`;m, which
consists of all rational points on Ek;`;m. The rank of this Mordell-Weil group will
be simply called the rank of Ek;`;m.
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The Mordell-Weil group of Ek;`;m obviously possesses three points of order 2,
namely .0; 0; 1/, .�km; 0; 1/ and .�.kC`/.`Cm/; 0; 1/, and hence contains Z2�Z2

in its torsion group. In [23], the following result was derived. (Cf. also Appendix
A.3 in [12].)

Theorem 1 There is an isomorphism Φ W Qk;`;m ! Ek;`;m which maps the
eight trivial points .1; ˙1; ˙1; ˙1/ to rational points on the elliptic curve Ek;`;m as
follows:

P0 WD Φ.1; 1; 1; 1/ D .0; 1; 0/;

P1 WD Φ.1; 1; �1; �1/ D .0; 0; 1/;

P2 WD Φ.1; �1; 1; �1/ D .�.kC`/.`Cm/; 0; 1/;

P3 WD Φ.1; �1; �1, 1/ D .�km; 0; 1/;

P4 WD Φ.1; 1; 1; �1/ D .m.`Cm/; m.`Cm/.k C`Cm/; 1/;

P5 WD Φ.1; 1; �1, 1/ D .k.k C `/; �k.kC`/.k C`Cm/; 1/;

P6 WD Φ.1; �1; 1; 1/ D .�m.kC`/; �m`.k C`/; 1/;

P7 WD Φ.1; �1; �1; �1/ D .�k.`Cm/; k`.`Cm/; 1/:

(14)

Note that P0 is the point at infinity and P1; P2; P3 are the points of order 2. The
numbering of the points is chosen such that PiC4 D Pi CP4 for i D 1; 2; 3 in terms
of the canonical addition on Ek;`;m.

Proof See [23], p. 51. �

The above result was derived in [23] as a special case of a general construc-
tion which yields a rationally defined isomorphism from a given rationally defined
smooth intersection Q of two quadrics in projective three-space to an elliptic curve
in Weierstraß form which maps a distinguished rational point on Q to the point
at infinity. As was pointed out to us by Joseph Lipman (personal communication,
July 1, 2019), such an isomorphism can also be constructed by a method described
in [46], Chapter II, Appendix III which differs from the one used in [23]. We em-
phasize that for the purposes of this paper we need not just the abstract existence
of such an isomorphism, but a concrete formula which allows us to calculate the
images of any rational points which can be identified on Q, and the isomorphism
Φ constructed in [23] yields the values given in Theorem 1. In particular, the four
points P4; P5; P6; P7 must have either finite order greater than two or infinite order.
As observed before, if one of these four points is fixed, the three other ones are
obtained by adding to this point the points of order two, which implies that the
subgroup of the Mordell-Weil group of Ek;`;m generated by the eight points (14) is
at most of rank one.

Now a deep theorem of Mazur (see [31]) states that the torsion subgroup of an
arbitrary elliptic curve over Q can only be Zm where 1 � m � 12 and m ¤ 11 or
else Z2 � Z2n where 1 � n � 4. Thus in our situation only the four latter groups
can occur as the torsion subgroup Tk;`;m of the Mordell-Weil group of Ek;`;m. This
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puts us into a win-win situation: In almost any possible scenario, we can obtain
a nontrivial result.

� If T D Z2 � Z2, the four points Pi where 4 � i � 7 must necessarily have
infinite order, so that Ek;`;m has positive rank. This establishes the positivity of
the Mordell-Weil rank for a wide class of elliptic curves by a trivial counting ar-
gument. (This argument requires only the mere existence of a rationally defined
isomorphism Φ W Qk;`;m ! Ek;`;m and not the special form of such an isomor-
phism.)

� If T D Z2 � Z2n where 2 � n � 4 and if at least one of the points Pi where
4 � i � 7 (or a negative of such a point or a sum of such points) happens to be
not one of the torsion points (which can be explicitly listed), then we can again
conclude that the rank of Ek;`;m is positive, this time using the explicit form of
the isomorphism Φ W Qk;`;m ! Ek;`;m (and not merely the existence of such an
isomorphism).

� If T D Z2 � Z2n where n D 3 or n D 4, there are more than the eight torsion
points identified in (14). The extraneous torsion points correspond to points on
Qk;`;m other than the trivial points .1; ˙1; ˙1; ˙1/ and hence are associated with
nontrivial progressions of type .k; `; m/ or .m; `; k/. This argument establishes
the existence of such progressions.

To carry out this line of reasoning, we need to identify the torsion points of an
elliptic curve of the type considered, which can be easily done.

Theorem 2 Consider the Mordell-Weil group of the elliptic curve given by the
affine equation y2 D x.x C r/.x C s/ where 0 < r < s are integers. Then the
following statements hold.

(1) There are points of order 4 if and only if r and s are squares, say r D u2 and
s D v2.

(2) There are points of order 8 if and only if there are numbers a; b 2 N for which
a2 C b2 is a square, say a2 C b2 D c2, such that r D a4 and s D b4.

(3) There are points of order 3 (or, equivalently, points of order 6) if and only if there
are coprime integers 0 < ˛ < ˇ such that r D ˛3.˛ C 2ˇ/ and s D ˇ3.ˇ C 2˛/.

(4) In all other cases, the only torsion points are the points of order 2, namely .0,0/,
.�r; 0/ and .�s; 0/.

Proof See [32] and also [37] where, however, a different sign convention was
used. �

As an immediate consequence, we can exhibit a rather large class of elliptic
curves with positive Mordell-Weil rank (and explicitly identify elements of infinite
order on these curves).

Theorem 3 Assume that .k; `; m/ is a triplet such that Tk;`;m D Z2 � Z2. Then
necessarily k ¤ m, and Ek;`;m has positive rank. As a consequence, there are
nontrivial progressions of type .k; `; m/ or .m; `; k/.
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Proof We must have k ¤ m because otherwise we would be in case (1) of Theo-
rem 2. Since the Mordell-Weil group of Ek;`;m contains only four torsion points, the
points P4; P5; P6; P7 must have infinite order, which already yields the statement
concerning the rank. Moreover, since k ¤ m, no two of these points P4; P5; P6; P7

have the same x-coordinates, which implies that if P is any of these four points, its
negative �P is not again one of them and hence corresponds to a nontrivial point of
Qk;`;m under the isomorphism used in Theorem 1 and consequently to a nontrivial
progression of type .k; `; m/ or .m; `; k/. �

Example 1 The case considered in the above theorem is the generic one, as
a torsion group Z2�Z2n with n � 2 only occurs if k; `; m satisfy special conditions.
For example, let .k; `; m/ D .2; 3; 5/. The isomorphism Φ used in Theorem 1 maps
the trivial points .1; ˙1; ˙1; ˙1/ on Q2;3;5 to the 2-torsion points and additionally
to the points P4 D .40, 400/, P5 D .10; �100/, P6 D .�25; �75/ and P7 D
.�16, 48/ in E2;3;5, and these latter points have infinite order. The negative of each
of these points gives rise to a nontrivial arithmetic progression. Let us take the point
P D .10, 100/. Then Φ�1 maps P to the point .73; 109; 31; �151/ on the quadric
intersection Q2;3;5, and this point corresponds to a sequence of four squares of type
.2; 3; 5/, namely

312 < 732 < 1092 < 1512:

The other points yield the same sequence of squares. The point 2P (i.e., P C P in
the sense of the group law of E2;3;5) is given by .9=4; �273=8/, which is mapped
to the point .808 345; 639 829; �903 391; 51 449/ on Q2;3;5. This point gives rise to
a sequence of squares of type .5; 3; 2/, namely

51 4492 < 639 8292 < 808 3452 < 903 3912:

3.1 The case k D m

To further exploit these results, we first dispose of the case k D m. (We note
that if k D m then the construction of the isomorphism Φ used in Theorem 1 is
considerably simpler than in the case k ¤ m; see [23].) If k D m, the equation
y2 D x.x Ckm/.x C .kC`/.`Cm// becomes y2 D x.x C r/.x C s/ where r WD k2

and s WD .k C`/2 both are squares, and one readily checks by explicitly listing the
torsion points of this curve that in this case the points Pi where 4 � i � 7 are
exactly the points of order four. This gives rise to the following result.

Theorem 4 Let k and ` be natural numbers. If there is a Pythagorean triplet
.a; b; c/ with a < b < c such that k D a2 and ` D b2 � a2, then Tk;`;k D Z2 � Z8,
and there is a nontrivial progression of type .k; `; k/, namely 02 < a2 < b2 < c2,
and if the rank of Ek;`;k is zero, there are no other nontrivial progressions. In all
other cases, we have Tk;`;k D Z2 � Z4, and then a nontrivial progression of type
.k; `; k/ exists if and only if Ek;`;k has positive rank.
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Proof Clearly, if k D m then we are in case (1) of Theorem 2, so that Tk;`;k

contains Z2 � Z4. We are in case (2) if and only if k, k C ` and 2k C ` are all
squares. If this is the case, say with k D a2, k C ` D b2 and 2k C ` D c2, then
b2 � a2 D ` D c2 � 2a2 and hence a2 C b2 D c2, so that .a; b; c/ is a Pythagorean
triplet with a < b < c. Conversely, given such a triplet, we let k WD m WD a2

and ` WD b2 � a2 to be in the situation of case (2) of Theorem 2. As observed
before, the four points Pi where 4 � i � 7 are exactly the points of order 4.
Hence if Tk;`;k D Z2 � Z4, the trivial points on Qk;`;k correspond exactly to the
torsion points of the Mordell-Weil group of Ek;`;k , so that in this case nontrivial
progressions of type .k; `; k/ exist exactly if the rank of Ek;`;k is positive. On
the other hand, if Tk;`;k D Z2 � Z8 each of the points of order 8 corresponds to
a nontrivial progression of type .k; `; k/. Applying the inverse of the isomorphism
Φ used in Theorem 1 (see [23], pp. 50/51), one readily checks that the eight points
of order 8 on Ek;`;k correspond exactly to the four points .a2; ˙b2; 0; ˙c2/ and
the four points .b2; ˙a2; ˙c2; 0/ on Qk;`;k which, in turn, all yield the progression
02 < a2 < b2 < c2. Clearly, if the rank of Ek;`;k is zero, there are no other rational
points on Ek;`;k , hence no other rational points on Qk;`;k , and hence no other
nontrivial progressions of type .k; `; k/. �

Remark 1 If k D m and Tk;`;m D Z2 � Z4, then both possibilities mentioned in
the above theorem can actually occur. For example, there is no nontrivial progression
of type .1; 1; 1/, this being Fermat’s classical result, which implies that the rank of
E1;1;1 is zero, so that the only rational points on E1;1;1 are the torsion points. On
the other hand, the Mordell-Weil group of E1;6;1 has positive rank; an element of
infinite order is given by .1,10/, and an associated progression of type .1; 6; 1/ is
12 < 112 < 292 < 312, i.e., 1 < 121 < 841 < 961. .The points of order 4 in this
example are .7; ˙56/ and .�7; ˙42/, and the rank of E1;6;1 is one.) It turns out that
curves of higher rank also occur in this way; for example, the rank of E1;40;1 equals
two.

3.2 The case k ¤ m

Interestingly, there are also triplets .k; `; m/ with Tk;`;m � Z2 � Z4 and k ¤ m,
because both km and .k C `/.` C m/ can be squares even if k ¤ m. This happens if
and only if we have k D ga2 and m D gb2, where g 2 N is square-free and where
a2 ¤ b2, and if, in addition, there is a number v such that v2 D .k C `/.` C m/ D
`2 C .k C m/` C km D `2 C g.a2 C b2/` C g2a2b2, which, using the solution
formula for quadratic equations, means that

`2 C g.a2 C b2/` C g2a2b2 � v2 D 0; i.e.,

2` D �g.a2 C b2/ C
p

g2.a2 � b2/2 C 4v2; i.e.;

.2` C g.a2 C b2//2 D .g.a2 � b2//2 C .2v/2; i.e.,

.gja2�b2j; 2v; 2` C g.a2 C b2/ / is a Pythagorean triplet.

(15)
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Note that this yields a way of constructing triplets .k; `; m/ with k ¤ m for
which the Mordell-Weil group of Ek;`;m contains points of order four, starting
with a square-free number g 2 N and then choosing two natural numbers a ¤
b appropriately. Choosing especially Pythagorean triplets of the form (r2 – s2, 2rs,
r2 + s2) (which comprise all primitive ones), we obtain the following result.

Theorem 5 Given a square-free number g 2 N and natural numbers a ¤ b,
assume that there are natural numbers r; s 2 N such that g.a2 � b2/ D r2 � s2 and
such that r2 C s2 � g.a2 C b2/ is positive and even. Then a triplet .k; `; m/ with
k ¤ m for which Tk;`;m � Z2 � Z4 is given by

k WD ga2; m WD gb2; ` WD .r2 C s2 � g.a2 C b2//=2. (16)

Proof The assumptions imply that km D .ga2/.gb2/ D .gab/2 and

.k C `/.` C m/ D r2 C s2 C g.a2 � b2/

2
� r2 C s2 � g.a2 � b2/

2

D .r2 C s2/2 � g2.a2 � b2/2

4
D .r2 C s2/2 � .r2 � s2/2

4
D .rs/2

(17)

are both squares, so that we are in case (1) of Theorem 2. �

Remark 2 The assumptions of the last theorem are satisfied in a variety of different
situations.

� Assume that g D 1 and that n 2 N is a natural number which has two different
factorizations into factors of equal parity. This amounts to having two different
representations n D .a � b/.a C b/ D .r � s/.r C s/, i.e., a2 � b2 D r2 � s2, and
if r2 C s2 > a2 C b2 then Theorem 5 is applicable. Specific examples are given
by n D 15 D 82 � 72 D 42 � 12 with .a; b/ D .4,1/ and .r; s/ D .8,7/ and by
n D 48 D 82 � 42 D 72 � 12 with .a; b/ D .7,1/ and .r; s/ D .8,4/.

� Assume that g D 2G C 1 is odd and that a > b are arbitrary. Then we have
.a2 � b2/g D .a2 � b2/..G C1/2 � G2/ D r2 � s2 where r WD a.G C1/ C bG

and s WD aG C b.G C1/, this being a special case of the identity .a2 � b2/.c2 �
d 2/ D .ac C bd/2 � .ad C bc/2. Now a straightforward calculation shows that
r2 C s2 � g.a2 C b2/ equals 2G.a2 C 4ab C b2/ and hence is both positive and
even, so that Theorem 5 is applicable.

� Assume that g D 2G where G is odd and that a > b are both even, say a D 2A

and b D 2B . Then .a2�b2/g D 8G.A2�B2/ D r2�s2 where r WD A.2G C 1/ C
B.2G �1/ and s WD B.2G C1/CA.2G �1/. A straightforward calculation shows
that r2Cs2 � g.a2Cb2/ equals .A2CB2/.8G2�8GC2/C 4AB.2GC1/.2G�1/

and hence is both positive and even, so that Theorem 5 is applicable.
� Assume that g D 2G where G is odd and that a > b are both odd, say a D 2AC1

and b D 2B C 1. Letting ˛ WD A.A C 1/=2 and ˇ WD B.B C 1/=2, we have
.a2�b2/g D 16G.˛�ˇ/ D r2�s2 where r WD .GC1/.˛�ˇC1/C .G�1/.˛�ˇ�1/

and s WD .G C1/.˛ �ˇ �1/ C .G �1/.˛ �ˇ C1/. A straightforward calculation
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shows that r2Cs2 � g.a2Cb2/ equals 8G2.˛�ˇ/2 � 4G.4˛C4ˇC1/ C 8, which
is even and is also positive provided that G; A; B are chosen such that either G >

4˛ C4ˇC1Cp
.8˛C1/.8ˇC1/ or else G < 4˛ C4ˇC1�p

.8˛C1/.8ˇC1/,
in which case Theorem 5 is applicable.

Let us note that if Tk;`;m D Z2 �Z4 where k ¤ m then the Mordell-Weil rank of
Ek;`;m is necessarily positive. The argument used in the proof is a slight variation
of the one used to prove Theorem 3, this time however using the specific form of
the isomorphism Φ and not just the mere existence of such an isomorphism.

Theorem 6 Assume that .k; `; m/ is a triplet with k ¤ m such that Tk;`;m D
Z2 � Z4. Then the four points Pi where 4 � i � 7 all have infinite order; in
particular, the rank of Ek;`;m is positive. As a consequence, there are nontrivial
progressions of type .k; `; m/ or .m; `; k/.

Proof The four points Pi where 4 � i � 7 are either all of order four or all
of infinite order. Let P D .x; y/ be one of these points. If P had order 4, then
its negative �P D .x; �y/ would also be of order 4 and hence would have to be
again one of these four points. But this is impossible because, since k ¤ m, no two
of these points have the same x-coordinates. This shows that P has infinite order.
Now let Φ be the isomorphism used in Theorem 1. Since �P is not one of the
points Pi where 4 � i � 7, the inverse image Φ�1.�P / is not one of the trivial
points in Qk;`;m and hence belongs to a nontrivial progression of type .k; `; m/ or
.m; `; k/. �

Example 2 If we choose g D 1, .a; b/ D .5,1/ and .r; s/ D .7,5/ in Remark 2, we
get the triplet .k; `; m/ D .25; 24; 1/ and find P4 D .25, 1250/, P5 D .1225, 61250/,
P6 D .�49; �1176/ and P7 D .�625, 15000/. Each of these points, say P , yields
a progression of type .1; 24; 25/, namely 1192 < 1932 < 7692 < 10812. Amongst
the points kP with k 2 N, the first one to yield a progression of inverse type
.25; 24; 1/ is 5P , with the progression

21974831897575192 < 31602982847788812

< 38651902945528332 < 38917911208447192:

Note that in this example (as in many others) nontrivial progressions of both
types .k; `; m/ and .m; `; k/ exist, but we do not see a general pattern which would
allow us to decide which rational points on the curve Ek;`;m D Em;`;k belong to
which of the two types.

Remark 3 In the situation of Theorem 5 we considered triplets .k; `; m/ with
k ¤ m for which km and .k C `/.` C m/ both are squares, say km D u2 and
.k C `/.` C m/ D v2. In this situation the underlying elliptic curve can also be
realized by a triplet .k0; `0; m0/ with k0 D m0, namely .k0; `0; m0/ D .u; v � u; u/.
For such a triplet, our methods do not allow us to directly find an associated nontrivial
progression. However, a rather bizarre method can be used to find such a progression,
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as follows: Find a nontrivial rational point on the underlying curve by realizing
this curve as Ek;`;m, and then apply the mapping Φ�1 to this point where Φ is
the isomorphism associated with the realization Ek0;`0;m0 . For example, we have
E25;24;1 D E5;30;5. The point P D .1; �10/ obtained from the realization E25;24;1

also yields a progression of type .5; 30; 5/, namely 12 < 112 < 292 < 312 with
step size s D 24. Thus if an elliptic curve can be realized by two different triplets
.k; `; m/ and .k0; `0; m0/, information obtained on progressions of type .k; `; m/

can be used to obtain information on progressions of type .k0; `0; m0/, and vice
versa.

Theorem 7 Assume that .k; `; m/ is a triplet with k ¤ m such that Tk;`;m D
Z2 � Z8. Then there is at least one nontrivial progression of type .k; `; m/ or
.m; `; k/. If the rank of Ek;`;m is zero, there is only one such progression.

Proof Each of the eight points of order 8 corresponds to a nontrivial point on
Qk;`;m and hence to a nontrivial progression of type .k; `; m/ or .m; `; k/. Since
any two points of order 8 differ only by a point of order 2 or 4, these eight points
all correspond to the same progression. (This can be verified by explicitly apply-
ing the inverse of the isomorphism Φ used in Theorem 1.) The last statement is
clear. �

Remark 4 We present here an infinite family of curves Ek;`;m with k ¤ m and
Tk;`;m D Z2 � Z8, as follows: Choose any (square-free) odd number g > 1 and let

k WD g; ` WD g2 C 1

2
�
�

g2 � 1

2
� g

�
; m WD g3: (18)

A straightforward calculation shows that km D g4 and .k C `/.` C m/ D
..g2 � 1/=2/4 are both fourth powers and that .g; .g2 � 1/=2; .g2 C 1/=2/ is
a Pythagorean triplet; hence case (2) of Theorem 2 implies that Tk;`;m D Z2 � Z8.
(Finding these examples is not as easy as the simple verification might suggest.)
The arithmetic progression associated with a point of order 8 is found to be

�
g � 1

2

�2

<

�
g C 1

2

�2

<

�
g.g � 1/

2

�2

<

�
g.g C 1/

2

�2

: (19)

For g D 3 we get .k; `; m/ D .3; 5; 27/, and E3;5;27 is a curve of rank zero. For
g D 15 we get .k; `; m/ D .15; 10961; 3375/, and in this case Ek;`;m has rank one.
For g D 17 we get .k; `; m/ D .17; 18415; 4913/, and in this case Ek;`;m has rank
two.

Remark 5 In Remark 4, the same curve y2 D x.x Ckm/.x C.k C`/.`Cm// can
be realized by two different triplets .k; `; m/, one with k D m and one with k ¤ m.
For example, E3;5;27 D E9;7;9 is given by the equation y2 D x.x C 81/.x C 256/,
and this curve has torsion subgroupZ2�Z8 and rank zero. According to Theorem 7,
there is a nontrivial progression of type .3; 5; 27/ (namely 12 < 22 < 32 < 62), but
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there is no nontrivial progression of type .27; 5; 3/. The realization E9;7;9 of this
curve is associated with the progression 02 < 32 < 42 < 52.

There is also one case in which the existence of nontrivial progressions of type
.k; `; m/ can be readily established by showing that Tk;`;m contains elements of
orders 3 and 6. Namely, the equations km D ˛3.˛ C 2ˇ/ and .k C `/.` C m/ D
ˇ3.ˇ C 2˛/ as given in part .3/ of Theorem 2 are satisfied if k D ˛2, ` D ˇ2 � ˛2

and m D ˛.˛ C 2ˇ/. This gives rise to the following result.

Theorem 8 Given natural numbers ˛ < ˇ, let

k WD ˛2; ` WD ˇ2 � ˛2; m WD ˛.˛ C 2ˇ/: (20)

Then Tk;`;m D Z2 � Z6, and there is a nontrivial progression of type .k; `; m/,
namely 02 < ˛2 < ˇ2 < .˛ C ˇ/2. If the rank of Ek;`;m is zero, this is the only
such progression, and there is no nontrivial progression of type .m; `; k/.

Proof From (20) we find that k C ` D ˇ2, ` C m D ˇ.ˇ C 2˛/ and k C ` C m D
.˛ C ˇ/2, which allows us to express the points P4; P5; P6; P7 in terms of ˛ and ˇ.
Since r WD km D ˛3.˛C2ˇ/ and s WD .kC`/.`Cm/ D ˇ3.ˇC2˛/, we are in case
(3) of Theorem 2. Explicitly writing down the torsion points in this case, we see that
the points P4; P5; P6; P7 are exactly the points of the form ACX where A is a point
of order 3 and where X runs through the points of order 2. This leaves four points
unaccounted for (namely the points B CX where B is the other point of order 3 and
where X runs through the point of order 2), and these points correspond to nontrivial
points of Qk;`;m and hence nontrivial progressions of type .k; `; m/ or .m; `; k/.
Applying the inverse of the isomorphism Φ used in Theorem 1 (see [23], pp. 50/51),
one readily checks that the corresponding points on the quadric intersection Qk;`;m

are the four points .X0; X1; X2; X3/ D .˙˛; ˙ˇ; 0; ˛ C ˇ/, which all belong to the
progression 02 < ˛2 < ˇ2 < .˛ C ˇ/2. If the rank of Ek;`;m is zero, there are no
rational points on Ek;`;m and hence no rational points on Qk;`;m other than the ones
discussed so far, which implies that there are no additional progressions of type
.k; `; m/ or .m; `; k/. �

Remark 6 Assume that 0 < r < s are such that there are integers 0 < ˛ < ˇ

with r D ˛3.˛ C 2ˇ/ and s D ˇ3.2˛ C ˇ/. Then Theorem 8 shows that there
is a “standard triplet” .k0; `0; m0/ such that the elliptic curve Er;s given by the
equation y2 D x.x C r/.x C s/ can be realized as one of the curves Ek;`;m,
namely (20). However, in some cases there is also a different triplet .k; `; m/

realizing the same curve, which means that km D k0m0 D ˛3.˛ C 2ˇ/ and
.k C `/.` C m/ D .k0 C `0/.`0 C m0/ D ˇ3.2˛ C ˇ/; this is, for example, the case
if .˛; ˇ/ is one of the pairs .3, 5/, .5, 13/, .5, 16/, .7, 8/, .8, 13/ and .9, 26/.

To illustrate this last remark, we discuss two cases in detail.
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Example 3 Let .˛; ˇ/ D .3, 5/ so that .r; s/ D .351, 1375/. A nonstandard triplet
is given by .k; `; m/ D .3; 8; 117/. For this triplet, we find P4 D .14625, 1872000/,
P5 D .33; �4224/, P6 D .�1287; �10296/ and P7 D .�375; 3000/. Let P WD
.33; �4224/; then the progression of type .3; 8; 117/ associated with �P is

1342 < 1512 < 1892 < 4742

with step size s D 1615. Amongst the points kP where k 2 N, the first one to yield
a progression of inverse type .117; 8; 3/ is obtained for k D 8, and the resulting
progression is

247670194284740854985990217163629507068436835145851382

< 337502873812983351524129883355595760626953281962220332

< 342786464242065484466453869061944376741634639048520132

< 344746934585225416458290073997853392952664938584384822

with step size

s D 44929627944428445874169209862012503741153243243286461094=

65640831918214025582809198006939241558649437385.

For the standard triplet .k0; `0; m0/ D .9; 16; 39/ we find the points P4 D
.2145; 137280/, P5 D .225; �14400/, P6 D .�975; �15600/ and P7 D
.�495; 7920/, and the progression of type .9; 16; 39/ associated with each of
these four points is 02 < 32 < 52 < 82 with step size s D 1. Since these points are
torsion points, they cannot be used to find a progression of inverse type .39; 16; 9/.
However, the point P D .33; �4224/ obtained above for the nonstandard triplet
yields the progression 22 < 112 < 132 < 142 which is of type .39; 16; 9/ with step
size s D 3. The point �P yields the progression 92 < 122 < 162 < 232 with step
size s D 7, which is of type .9; 16; 36/ and does not start with zero.

Example 4 Let .˛; ˇ/ D .9,26/ so that .r; s/ D .44469; 773344/. A non-
standard triplet is given by .k; `; m/ D .3; 49; 14823/. For this triplet, we
find that P4 D .220447656; 3279158883000/, P5 D .156; �2320500/, P6 D
.�770796; �37769004/ and P7 D .�44616; 2186184/. Let P WD P5; then the
progression of type .3; 49; 14823/ associated with �P is

502822 < 503232 < 509882 < 1515932

with step size s D 1374935. Amongst the points kP where k 2 N, the
first one to yield a progression of inverse type .14823; 49; 3/ is obtained for
k D 48, and each of the terms of this progression has more than 5000 deci-
mal places. For the standard triplet .k0; `0; m0/ D .81; 595; 549/ we find P4 D
.628056; 769368600/, P5 D .54756; �67076100/, P6 D .�371124; �220818780/

and P7 D .�92664; 55135080/, and the progression of type .81; 595; 549/ as-
sociated with each of these four points is 02 < 92 < 262 < 352 with step size
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s D 1. Since the points Pi where 4 � i � 7 are torsion points, they cannot be
used to find a progression of inverse type .549; 595; 81/. However, the point P D
.156; �2320500/ obtained above for the nonstandard triplet yields the progression
2632 < 2862 < 3092 < 3122 which is of type .549; 595; 81/ with step size s D 23.
The point �P yields the progression 1612 < 1632 < 1772 < 1892 with step size
s D 8, which is of type .81; 595; 549/ and does not start with zero.

Remark 7 For the examples discussed in the previous remark, we are in the same
situation as in Remark 3: We have two realizations of the same elliptic curve in
terms of two different triplets, namely the triplet .k; `; m/ as given in the previous
remark and the standard triplet .k0; `0; m0/ given by k0 D ˛2, `0 D ˇ2 � ˛2 and
m0 D ˛.˛ C 2ˇ/ as in Theorem 8. As in Remark 3, we can use points obtained for
one triplet to find progressions for the other triplet. As an example, let us consider
the case .˛; ˇ/ D .3,5/ with .r; s/ D .351,1375/. Using the point P WD .33; �4224/

(which generates the free part of E3;8;117), we find the progression

1342 < 1512 < 1892 < 4742

with step size s D 1615 of type .3; 8; 117/. On the other hand, the nontrivial
progression 02 < 32 < 52 < 82 of type .9; 16; 39/ is associated with the point
Q WD .2145; 137280/, and this point yields the progression

42 < 52 < 72 < 202

with step size s D 3 of type .3; 8; 117/. In this case the negative point �Q D
.2145; �137280/ yields the progression 22 < 52 < 92 < 302 with step size s D 7,
which is of the same type .3; 8; 117/.

4 The family of elliptic curves associated with the problem of four
rational squares in an arithmetic progression

Up to this point, the focus of this paper was on properties of a fixed elliptic curve
Ek;`;m for a given triplet .k; `; m/. We now want to say something about the family
of all such curves within the larger class of all curves Er;s for 0 < r < s, where
Er;s denotes the elliptic curve with the Weierstraß equation y2 D x.x C r/.x C s/,
and about the number of quadric intersections yielding the same elliptic curve. It
is clear that for most pairs .r; s/ there are no triplets .k; `; m/ with Ek;`;m D Er;s,
for many pairs .r; s/ there is exactly one triplet .k; `; m/ with k � m such that
Ek;`;m D Er;s and for some pairs .r; s/ there is more than one triplet .k; `; m/ with
k � m such that Ek;`;m D Er;s. We now show in general that a given curve Er;s

can only be realized in finitely many ways as a curve Ek;`;m and hence as a quadric
intersection.
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Theorem 9 For each pair .r; s/ with 0 < r < s, the number of triplets .k; `; m/ for
which Ek;`;m D Er;s is finite. At least one such triplet exists whenever the torsion
group of the Mordell-Weil group of Er;s is strictly larger than Z2 � Z2.

Proof If the equations r D km and s D .k C `/.` C m/ are to hold, then k must
be a divisor of r , and m is uniquely determined by k. Moreover, given k and m,
there can be at most one number ` satisfying s D .k C `/.` C m/, because the
mapping ` 7! .k C `/.` C m/ is strictly increasing. Hence the number N.r; s/ of
triplets .k; `; m/ satisfying r D km and s D .k C `/.` C m/ cannot exceed the
number D.r/ of divisors of r . Analogously, this number also cannot exceed D.s/.
Since the roles of k and m can be exchanged, we even get the estimate

N.r; s/ �
�
.1=2/ � M.r; s/; if neither r nor s is a square,
.1=2/ � .M.r; s/ C 1/; if r or s is a square,

(21)

where M.r; s/ WD min.D.r/; D.s//. This proves the first part of the claim. To prove
the second part, let T be the torsion group of the Mordell-Weil group of Er;s . If
T � Z2 � Z4, there are integers u and v such that r D u2 and s D v2 where
0 < u < v. Letting k WD m WD u and ` WD v � u, we find that km D u2 D r

and .k C `/.` C m/ D v2 D s and hence Er;s D Ek;`;m. If T Š Z2 � Z6, there
are integers 0 < ˛ < ˇ such that r D ˛3.˛ C 2ˇ/ and s D ˇ3.ˇ C 2˛/. Letting
k WD ˛2, ` WD ˇ2 � ˛2 and m WD ˛.˛ C 2ˇ/, we find that km D ˛3.˛ C 2ˇ/ D r

and .k C `/.` C m/ D ˇ3.ˇ C 2˛/ D s and hence Er;s D Ek;`;m. �

Remark 8 To prove that an elliptic curve Er;s allows only a finite number of
realizations Ek;`;m we used an elementary argument tailormade for the situation.
We want to point out that this fact also follows from a rather general argument.
Namely, assume that we have representations r D km and s D .k C `/.` C m/.
Then ks D .k C `/.k` C km/ D .k C `/.k` C r/ D k2` C k`2 C rk C r`, which
shows that .x; y/ WD .k; `/ is a point on the curve C given by the affine equation
sx D x2y C xy2 C rx C ry. Now it is readily checked that C is a smooth cubic;
hence by Siegel’s Theorem (cf. [38], Chap. 5, 5.1, Theorem 5.1) the number of
integral points on the curve C is finite, which shows that there are only finitely
many triplets .k; `; m/ with Ek;`;m D Er;s .

Remark 9 The proof of the above theorem shows that if T � Z2 � Z4 then Er;s

can be realized as a curve Ek;`;m with k D m. However, in some cases a realization
with k ¤ m is also possible; cf. Remark 2. As a variation of the first construction
in Remark 2, examples for this phenomenon can be obtained as follows: Choose
a natural number n which can be written in two different ways as a sum of two
squares, say n D t2 C u2 D v2 C w2 where we may assume 0 < t < v < w < u,
and then let k WD t2, m WD v2 and ` WD w2 � t2 D u2 � v2. Then km D .tv/2 DW r

and .kC`/.`Cm/ D .wu/2 DW s, so that .r; s/ yields an example of the desired type.
Similarly, if T D Z2�Z6 there are also examples of curves Er;s with r D ˛3.˛C2ˇ/

and s D ˇ3.ˇ C 2˛/ which can be realized as Ek;`;m where .k; `; m/ differs from
the triplet used in the proof of Theorem 1; see Remark 6 above.
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Remark 10 Assume that numbers 0 < r < s are given and that T is the torsion
subgroup of the Mordell-Weil group of Er;s . Assume that there is at least one triplet
.k; `; m/ such that r D km and s D .k C `/.` C m/ (so that Er;s can be realized as
one of the curves Ek;`;m). Then our results guarantee Er;s to be of positive rank in
each of the following cases:

� T Š Z2 � Z2 (this being the generic case);
� T Š Z2 � Z4, and there is more than one triplet .k; `; m/ such that r D km and

s D .k C `/.` C m/;
� T Š Z2 � Z6, and there is at least one triplet .k; `; m/ such that r D km and

s D .k C `/.` C m/ for which there is a torsion point on Ek;`;m for which the
corresponding point on Qk;`;m does not have zero as one of its entries (which
means that the associated nontrivial progression of type .k; `; m/ does not start
with zero).

5 Connections to other theories

Any rationally defined elliptic curve with torsion subgroup containing Z2 � Z2

is isomorphic to a curve of type Er;s given by an equation of the form y2 D
x.x C r/.x C s/ with integers 0 < r < s. The curves Ek;`;m form only a proper
subfamily of such curves. However, since the curves of type Er;s are strongly
connected to other number-theoretical problems, our results for the curves Ek;`;m

have consequences for these problems.

5.1 The problem of concordant forms

Any of the curves Er;s is isomorphic to the intersection of the two quadrics in
projective three-space given by X2

0 C rX2
1 D X2

2 and X2
0 C sX2

1 D X2
3 (see [37])

and hence is intimately related to Euler’s concordant form problem described before.
Our results give additional information for the special cases which correspond to the
curves Ek;`;m. For example, if the rank of Ek;`;m is zero and the torsion subgroup is
either Z2�Z6 or Z2�Z8, we explicitly find the singular solutions to the concordant
form problem defined by torsion points. On the other hand, if the rank of Ek;`;m

is positive (which, as we saw, is automatically the case if Tk;`;m D Z2 � Z2 or
if Tk;`;m D Z2 � Z4 and k ¤ m), then the numbers km and .k C `/.` C m/

(or the corresponding quadratic forms X2 C kmY 2 and X2 C .k C `/.` C m/Y 2)
are concordant in the sense of Euler. Apart from this abstract information, our
calculations yield explicit nontrivial solutions of the associated equations X2 C
kmY 2 D Z2 and X2 C .k C `/.` C m/Y 2 D W 2, in fact, even an arbitrarily large
number of essentially different such solutions.

Example 5 The curve E2;3;5 D E10,40 with the equation y2 D x.x C 10/.x C 40/

is isomorphic to the curve E�10,30 with the equation y2 D x.x � 10/.x C 30/ via
the translation x 7! x � 10, and this latter curve is isomorphic to the intersection
of the two quadrics given by X2

0 � 10X2
1 � X2

2 D 0 and X2
0 C 30X2

1 � X2
3 D 0

via the isomorphism presented in [37]. The 2-torsion points are mapped to the
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trivial solutions .1; 0; ˙1; ˙1/, the point P D .10; �100/ is mapped to the solution
.�7; �2; 3; �13/; the other points .40, 400/, .�16, 48/ and .�25; �75/ as well as
their negatives yield the same solution apart from sign variations. They all lead to
the sequence of squares

.3=2/2 < .7=2/2 < .13=2/2

with step sizes 1 �10 D 10 and 3 �10 D 30. The doubled point 2P D .9=4; �273=8/

is mapped to the point .�7201, �1092, 6319, �9361/, which defines the sequence
of squares

.6319=1092/2 < .7201=1092/2 < .9361=1092/2:

5.2 The problem of �-congruent numbers

Given any triplet .k; `; m/, the elliptic curve Ek;`;m is (by a trivial translation x 7!
x C km) isomorphic to the elliptic curve

y2 D x.x � km/.x C `.k C ` C m//: (22)

Now if at least one of the numbers k C ` and ` C m is even, then the numbers
`.k C ` C m/ ˙ km are both even, which means that there are a natural number
N 2 N and coprime integers r; s 2 Z with s > 0 such that

2Nr D `.k C ` C m/ � km;

2Ns D `.k C ` C m/ C km D .k C `/.` C m/
(23)

and hence km D N.s � r/ and `.k C ` C m/ D N.s C r/. Consequently, the curve
(22) becomes

y2 D x.x � .s � r/N /.x C .s C r/N /: (24)

Hence Ek;`;m has points of order greater than two if and only if this is true for the
curve (24), and this is the case if and only if N is �-congruent where

cos.�/ D r

s
D `.k C ` C m/ � km

`.k C ` C m/ C km
(25)

(see [10, 11]). Thus our results also have some bearing on the problem of �-congru-
ent numbers. In addition, there is a direct connection to the existence of three rational
squares in an arithmetic progression with prescribed step sizes pn and qn where
pn D km and qn D `.k C ` C m/. Again, we can not only abstractly show that
some number N is �-congruent, but can explicitly construct triangles corresponding
to the numbers in question.
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Example 6 Let .k; `; m/ D .2; 3; 5/. The curve E2;3;5 is isomorphic to E�10,30,
which is exactly the elliptic curve which determines whether or not 10 is a .�=3/-
congruent number. Since the rank of this curve is positive, we conclude that the num-
ber 10 is indeed .�=3/-congruent, and the solution P D .10, 100/ found before in
Example 1 corresponds to the triangle with sides 5, 8 and 7 which has �=3 as one of
its angles and F D 10

p
22 � 12 as its area. The doubled point 2P D .9=4; �273,8/

gives rise to the .�=3/-triangle with sides 39=14, 560=39 and 7201=546 with the
same area. (We note that in [48] (p. 396) the author shows numbers n with n � 10
modulo 24 to be .�=3/-congruent under the assumption of the Birch-Swinnerton-
Dyer conjecture. The example studied here is a special case of this situation.)

6 Concluding remarks and outlook

We set out to use the theory of elliptic curves to shed some light on the number-
theoretical question which progressions of four rational squares are possible. Iron-
ically, the most remarkable results were obtained in the other direction: The mere
existence of nontrivial progressions could be exploited to show a rather large class of
elliptic curves to be of positive rank. The argument used is completely elementary,
invoking no analytical machinery such as L-functions and the like, and yields an
explicit construction of elements of infinite order along the way.

6.1 Extensions of the work

It is quite conceivable that the methods described in this paper can also be applied in
similar contexts to construct elliptic curves with a preassigned minimum number of
rational points, as follows. Take two rationally defined diagonal quadrics in P3.C/,
depending on some parameters k, `, :::, whose intersection is an irreducible curve C

which always, i.e., independently of the parameters, contains a fixed rational point
.x0; x1; x2; x3/ with xi ¤ 0 for all i . Then C has eight a priori known rational
points .x0; ˙x1; ˙x2; ˙x3/. This intersection of quadrics is isomorphic to some
elliptic curve, which – by the same arguments as in our cases – has eight rational
points which are known a priori. Then an analysis analogous to ours can be used to
draw conclusions on this family of elliptic curves concerning ranks, torsion points
and so on.

We can also study the intersection of more than two quadrics, as follows. Take
any family of n > 1 rationally defined diagonal quadrics in PnC1.C/, depending on
some parameters k, `, :::, whose intersection is an irreducible curve C which always,
i.e., independently of the parameters, contains a fixed rational point .x0; x1; :::; xnC1/

with xi ¤ 0 for all i . Then C is isomorphic to some curve Ck;`;::: of genus g > 1.
By Faltings’ theorem (see [9]), the total number of rational points on any of these
curves is finite, but they all have a fixed number of a priori known rational points
.x0; ˙x1; :::; ˙xnC1/. This could be used as a way to construct curves with “many”
rational points. For recent work in this direction see [12] and [40].
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6.2 A conjecture

We would like to conclude this paper with a conjecture. Given a nontrivial pro-
gression of type .k; `; m/, one can ask whether or not there is also a nontrivial
progression of inverse type .m; `; k/. We conjecture that the answer to this purely
number-theoretical question is affirmative whenever the elliptic curve Ek;`;m has
positive Mordell-Weil rank, i.e., in all cases other than the ones identified in The-
orem 7 and Theorem 8. We verified the validity of this conjecture in all examples
we studied. However, finding progressions of inverse type turned out to be rather
difficult, and it is not clear to what extent the arithmetic of the elliptic curves in-
volved can be used to answer this question. Thus attacking the conjecture requires
new ideas which are beyond the scope of the present paper.
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