Skip to main content
Log in

Assessment of paraspinal neurogenic tumors with diffusion-weighted MR imaging

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To assess paraspinal neurogenic tumors with diffusion-weighted MR imaging.

Methods

Retrospective analysis was done upon 34 patients with paraspinal neurogenic tumors that underwent diffusion-weighted MR imaging. The ADC values of the mediastinal neurogenic tumors were calculated and correlated with biopsy results.

Results

The ADC of benign paraspinal neurogenic tumors (1.5 ± 0.28 × 10−3 mm2/s) was significantly higher (P = 0.001) than that of malignant peripheral nerve sheath tumors (0.995 ± 0.198 × 10−3 mm2/s). Selection of 1.15 × 10−3 mm2/s as a cut-off point for differentiating malignant from benign neurogenic tumors revealed an area under the curve of 0.885, an accuracy of 91.1%, a sensitivity of 90.9%, and specificity of 91.3%. There was significant difference (P = 0.04) in the ADC of schwannomas (1.55 ± 0.29 × 10−3 mm2/s) from neurofibromas (1.33 ± 0.08 × 10−3 mm2/s). The cut-off ADC value of 1.44 × 10−3 mm2/s was used to differentiate schwannomas and neurofibromas with an area under the curve of 0.86, an accuracy of 82.6%, a sensitivity of 100%, and a specificity of 76.5%.

Conclusion

Diffusion-weighted MR imaging is imaging parameter that can be used for differentiation of benign from malignant paraspinal neurogenic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boland JM, Colby TV, Folpe AL (2015) Intrathoracic peripheral nerve sheath tumors—a clinicopathological study of 75 cases. Hum Pathol 46:419–425

    Article  PubMed  Google Scholar 

  2. Bicakcioglu P, Demirag F, Yazicioglu A et al (2014) Intrathoracic neurogenic tumors. Thorac Cardiovasc Surg 62:147–152

    PubMed  Google Scholar 

  3. Azizad S, Sannananja B, Restrepo CS (2016) Solid tumors of the mediastinum in adults. Semin Ultrasound CT MR 37:196–211

    Article  PubMed  Google Scholar 

  4. Thacker PG, Mahani MG, Heider A et al (2015) Imaging evaluation of mediastinal masses in children and adults: practical diagnostic approach based on a new classification system. J Thorac Imaging 30:247–267

    Article  PubMed  Google Scholar 

  5. Occhipinti M, Heidinger BH, Franquet E et al (2015) Imaging the posterior mediastinum: a multimodality approach. Diagn Interv Radiol 21:293–306

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chee DW, Peh WC, Shek TW (2011) Pictorial essay: imaging of peripheral nerve sheath tumours. Can Assoc Radiol J 62:176–182

    Article  PubMed  Google Scholar 

  7. Pavlus JD, Carter BW, Tolley MD et al (2016) Imaging of thoracic neurogenic tumors. AJR Am J Roentgenol 207:552–561

    Article  PubMed  Google Scholar 

  8. Tatci E, Ozmen O, Dadali Y et al (2015) The role of FDG PET/CT in evaluation of mediastinal masses and neurogenic tumors of chest wall. Int J Clin Exp Med 8:11146–11152

    PubMed  PubMed Central  Google Scholar 

  9. Nakazono T, White CS, Yamasaki F et al (2011) MRI findings of mediastinal neurogenic tumors. AJR Am J Roentgenol 197:W643–W652

    Article  PubMed  Google Scholar 

  10. Razek AA (2012) Diffusion magnetic resonance imaging of chest tumors. Cancer Imaging 12:452–463

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abdel Razek AA, Gaballa G, Denewer A, Tawakol I (2010) Diffusion weighted MR imaging of the breast. Acad Radiol 17:382–386

    Article  PubMed  Google Scholar 

  12. Razek AA, Sieza S, Maha B (2009) Assessment of nasal and paranasal sinus masses by diffusion-weighted MR imaging. J Neuroradiol 36:206–211

    Article  CAS  PubMed  Google Scholar 

  13. Razek AA, Elmorsy A, Elshafey M et al (2009) Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI. J Magn Reson Imaging 30:535–540

    Article  PubMed  Google Scholar 

  14. Abdel Razek AA, Soliman N, Elashery R (2012) Apparent diffusion coefficient values of mediastinal masses in children. Eur J Radiol 81:1311–1314

    Article  PubMed  Google Scholar 

  15. Abdel Razek AA, Elkammary S, Elmorsy AS et al (2011) Characterization of mediastinal lymphadenopathy with diffusion-weighted imaging. Magn Reson Imaging 29:167–172

    Article  PubMed  Google Scholar 

  16. Abdel Razek AA, Gaballa G, Elashry R et al (2015) Diffusion-weighted MR imaging of mediastinal lymphadenopathy in children. Jpn J Radiol 33:449–454

    Article  PubMed  Google Scholar 

  17. Abdel Razek AA, Khairy M, Nada N (2014) Diffusion-weighted MR imaging in thymic epithelial tumors: correlation with World Health Organization classification and clinical staging. Radiology 273:268–275

    Article  PubMed  Google Scholar 

  18. Yuan M, Zhang YD, Zhu C et al (2016) Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions. J Magn Reson Imaging 43:669–679

    Article  PubMed  Google Scholar 

  19. Abdel Razek A, Fathy A, Abdel Gawad T (2011) Correlation of apparent diffusion coefficient value with prognostic parameters of lung cancer. J Comput Assist Tomogr 35:248–252

    Article  Google Scholar 

  20. Surov A, Nagata S, Razek AAA, Tirumani SH, Wienke A, Kahn T (2015) Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skelet Radiol 44:995–1000

    Article  Google Scholar 

  21. Razek A, Nada N, Ghaniem M et al (2012) Assessment of soft tissue tumours of the extremities with diffusion echoplanar MR imaging. Radiol Med 117:96–101

    Article  CAS  PubMed  Google Scholar 

  22. Chhabra A, Thakkar RS, Andreisek G et al (2013) Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 34:802–807

    Article  CAS  PubMed  Google Scholar 

  23. Soldatos T, Fisher S, Karri S et al (2015) Advanced MR imaging of peripheral nerve sheath tumors including diffusion imaging. Semin Musculoskelet Radiol 19:179–190

    Article  PubMed  Google Scholar 

  24. Ahlawat S, Chhabra A, Blakely J (2014) Magnetic resonance neurography of peripheral nerve tumors and tumorlike conditions. Neuroimaging Clin N Am 24:171–192

    Article  PubMed  Google Scholar 

  25. Li CS, Huang GS, Wu HD et al (2008) Differentiation of soft tissue benign and malignant peripheral nerve sheath tumors with magnetic resonance imaging. Clin Imaging 32:121–127

    Article  PubMed  Google Scholar 

  26. Abreu E, Aubert S, Wavreille G et al (2013) Peripheral tumor and tumor-like neurogenic lesions. Eur J Radiol 82:38–50

    Article  PubMed  Google Scholar 

  27. Sung JK, Jee WH, Jung JY et al (2014) Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology 271:488–498

    Article  PubMed  Google Scholar 

  28. Lang N, Su MY, Yu HJ et al (2015) Differentiation of tuberculosis and metastatic cancer in the spine using dynamic contrast-enhanced MRI. Eur Spine J 24:1729–1737

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gahr N, Darge K, Hahn G et al (2011) Diffusion-weighted MRI for differentiation of neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol 79:443–446

    Article  PubMed  Google Scholar 

  30. Pinter NK, Pfiffner TJ, Mechtler LL (2016) Neuroimaging of spine tumors. Handb Clin Neurol 136:689–706

    Article  PubMed  Google Scholar 

  31. Ozawa Y, Kobayashi S, Hara M et al (2014) Morphological differences between schwannomas and ganglioneuromas in the mediastinum: utility of the craniocaudal length to major axis ratio. Br J Radiol 87:20130777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pekmezci M, Reuss DE, Hirbe AC et al (2015) Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Mod Pathol 28:187–200

    Article  CAS  PubMed  Google Scholar 

  33. Razek AA, Shabana AA, El Saied TO et al (2016) Diffusion tensor imaging of mild-moderate carpal tunnel syndrome: correlation with nerve conduction study and clinical tests. Clin Rheumatol. doi:10.1007/s10067-016-3463-y

    Google Scholar 

  34. El-Serougy L, Abdel Razek AA, Ezzat A et al (2016) Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J 29:400–407

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abdel Razek AA, Samir S (2017) Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur J Radiol 89:221–225

    Article  PubMed  Google Scholar 

  36. Abdel Razek AA, Gaballa G (2011) Role of perfusion magnetic resonance imaging in cervical lymphadenopathy. J Comput Assist Tomogr 35:21–25

    Article  PubMed  Google Scholar 

  37. Razek AA, Elsorogy LG, Soliman NY et al (2011) Dynamic susceptibility contrast perfusion MR imaging in distinguishing malignant from benign head and neck tumors: a pilot study. Eur J Radiol 77:73–79

    Article  PubMed  Google Scholar 

  38. Abdel Razek AA, Poptani H (2013) MR spectroscopy of head and neck cancer. Eur J Radiol 82:982–989

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdel Khalek Abdel Razek.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razek, A.A.K.A., Ashmalla, G.A. Assessment of paraspinal neurogenic tumors with diffusion-weighted MR imaging. Eur Spine J 27, 841–846 (2018). https://doi.org/10.1007/s00586-017-5265-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5265-6

Keywords

Navigation