Skip to main content

Advertisement

Log in

Biomechanical testing of circumferential instrumentation after cervical multilevel corpectomy

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Study design

Biomechanical investigation.

Purpose

This study describes ex vivo evaluation of the range of motion (ROM) to characterize the stability and need for additional dorsal fixation after cervical single-level, two-level or multilevel corpectomy (CE) to elucidate biomechanical differences between anterior-only and supplemental dorsal instrumentation.

Methods

Twelve human cervical cadaveric spines were loaded in a spine tester with pure moments of 1.5 Nm in lateral bending (LB), flexion/extension (FE), and axial rotation (AR), followed by two cyclic loading periods for three-level corpectomies. After each cyclic loading session, flexibility tests were performed for anterior-only instrumentation (group_1, six specimens) and circumferential instrumentation (group_2, six specimens).

Results

The flexibility tests for all circumferential instrumentations showed a significant decrease in ROM in comparison with the intact state and anterior-only instrumentations. In comparison with the intact state, supplemental dorsal instrumentation after three-level CE reduced the ROM to 12 % (±10 %), 9 % (±12 %), and 22 % (±18 %) in LB, FE, and AR, respectively. The anterior-only construct outperformed the intact state only in FE, with a significant ROM reduction to 57 % (±35 %), 60 % (±27 %), and 62 % (±35 %) for one-, two- and three-level CE, respectively.

Conclusions

The supplemental dorsal instrumentation provided significantly more stability than the anterior-only instrumentation regardless of the number of levels resected and the direction of motion. After cyclic loading, the absolute differences in stability between the two instrumentations remained significant while both instrumentations showed a comparable increase of ROM after cyclic loading. The large difference in the absolute ROM of anterior-only compared to circumferential instrumentations supports a dorsal support in case of three-level approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozgen S, Naderi S, Ozek MM, Pamir MN (2004) A retrospective review of cervical corpectomy: indications, complications and outcome. Acta Neurochir (Wien) 146:1099–1105. doi:10.1007/s00701-004-0327-z (discussion 1105)

    Article  CAS  Google Scholar 

  2. Atanasiu JP, Badatcheff F, Pidhorz L (1993) Metastatic lesions of the cervical spine. A retrospective analysis of 20 cases. Spine (Phila Pa 1976) 18:1279–1284

    Article  CAS  Google Scholar 

  3. Barros Filho TE, Oliveira RP, Grave JM, Taricco MA (1993) Corpectomy and anterior plating in cervical spine fractures with tetraplegia. Rev Paul Med 111:375–377

    CAS  PubMed  Google Scholar 

  4. Wang JC, Hart RA, Emery SE, Bohlman HH (2003) Graft migration or displacement after multilevel cervical corpectomy and strut grafting. Spine (Phila Pa 1976) 28:1016–1021. doi:10.1097/01.BRS.0000061998.62204.D7 (discussion 1021–2)

    Google Scholar 

  5. Boakye M, Patil CG, Ho C, Lad SP (2008) Cervical corpectomy: complications and outcomes. Neurosurgery 63:295–301. doi:10.1227/01.NEU.0000327028.45886.2E (discussion 301–2)

    Article  PubMed  Google Scholar 

  6. Eleraky MA, Llanos C, Sonntag VK (1999) Cervical corpectomy: report of 185 cases and review of the literature. J Neurosurg 90:35–41

    Article  CAS  PubMed  Google Scholar 

  7. Daubs MD (2005) Early failures following cervical corpectomy reconstruction with titanium mesh cages and anterior plating. Spine (Phila Pa 1976) 30:1402–1406

    Article  Google Scholar 

  8. Sasso RC, Ruggiero RA, Reilly TM, Hall PV (2003) Early reconstruction failures after multilevel cervical corpectomy. Spine (Phila Pa 1976) 28:140–142. doi:10.1097/01.BRS.0000041590.90290.56

    Article  Google Scholar 

  9. Vaccaro AR, Falatyn SP, Scuderi GJ, Eismont FJ, McGuire RA, Singh K, Garfin SR (1998) Early failure of long segment anterior cervical plate fixation. J Spinal Disord 11:410–415

    CAS  PubMed  Google Scholar 

  10. Panjabi MM, Isomi T, Wang JL (1999) Loosening at the screw–vertebra junction in multilevel anterior cervical plate constructs. Spine (Phila Pa 1976) 24:2383–2388

    Article  CAS  Google Scholar 

  11. Sevki K, Mehmet T, Ufuk T, Azmi H, Mercan S, Erkal B (2004) Results of surgical treatment for degenerative cervical myelopathy: Anterior cervical corpectomy and stabilization. Spine (Phila Pa 1976) 29:2493–2500

    Article  Google Scholar 

  12. Aryan HE, Sanchez-Mejia RO, Ben-Haim S, Ames CP (2007) Successful treatment of cervical myelopathy with minimal morbidity by circumferential decompression and fusion. Eur Spine J 16:1401–1409. doi:10.1007/s00586-006-0291-9

    Article  PubMed Central  PubMed  Google Scholar 

  13. Setzer M, Eleraky M, Johnson WM, Aghayev K, Tran ND, Vrionis FD (2012) Biomechanical comparison of anterior cervical spine instrumentation techniques with and without supplemental posterior fusion after different corpectomy and discectomy combinations: laboratory investigation. J Neurosurg Spine 16:579–584. doi:10.3171/2012.2.SPINE11611

    Article  PubMed  Google Scholar 

  14. Acosta FL, Aryan HE, Chou D, Ames CP (2008) Long-term biomechanical stability and clinical improvement after extended multilevel corpectomy and circumferential reconstruction of the cervical spine using titanium mesh cages. J Spinal Disord Tech 21:165–174. doi:10.1097/BSD.0b013e3180654205

    Article  PubMed  Google Scholar 

  15. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300. doi:10.1002/jor.1100030305

    Article  CAS  PubMed  Google Scholar 

  16. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19

    Article  CAS  PubMed  Google Scholar 

  17. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976) 13:1129–1134

    Article  CAS  Google Scholar 

  18. Wilke HJ, Mehnert U, Claes LE, Bierschneider MM, Jaksche H, Boszczyk BM (2006) Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine (Phila Pa 1976) 31:2934–2941. doi:10.1097/01.brs.0000248423.28511.44

    Article  Google Scholar 

  19. Kristof RA, Kiefer T, Thudium M, Ringel F, Stoffel M, Kovacs A, Mueller CA (2009) Comparison of ventral corpectomy and plate–screw-instrumented fusion with dorsal laminectomy and rod–screw-instrumented fusion for treatment of at least two vertebral-level spondylotic cervical myelopathy. Eur Spine J 18:1951–1956. doi:10.1007/s00586-009-1110-x

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu Y, Qi M, Chen H, Yang L, Wang X, Shi G, Gao R, Wang C, Yuan W (2012) Comparative analysis of complications of different reconstructive techniques following anterior decompression for multilevel cervical spondylotic myelopathy. Eur Spine J 21:2428–2435. doi:10.1007/s00586-012-2323-y

    Article  PubMed Central  PubMed  Google Scholar 

  21. Herrmann AM, Geisler FH (2004) Geometric results of anterior cervical plate stabilization in degenerative disease. Spine (Phila Pa 1976) 29:1226–1234

    Article  Google Scholar 

  22. Mourning D, Reitman CA, Heggeness MH, Esses SI, Hipp JA (2007) Initial intervertebral stability after anterior cervical discectomy and fusion with plating. Spine J 7:643–646. doi:10.1016/j.spinee.2006.10.024

    Article  PubMed  Google Scholar 

  23. Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine (Phila Pa 1976) 28:2352–2358. doi:10.1097/01.BRS.0000085344.22471.23 (discussion 2358)

    Article  Google Scholar 

  24. Koller H, Hempfing A, Ferraris L, Maier O, Hitzl W, Metz-Stavenhagen P (2007) 4- and 5-level anterior fusions of the cervical spine: review of literature and clinical results. Eur Spine J 16:2055–2071. doi:10.1007/s00586-007-0398-7

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hee HT, Majd ME, Holt RT, Whitecloud TS, Pienkowski D (2003) Complications of multilevel cervical corpectomies and reconstruction with titanium cages and anterior plating. J Spinal Disord Tech 16:1–8 (discussion 8–9)

    Article  PubMed  Google Scholar 

  26. Uribe JS, Sangala JR, Duckworth EA, Vale FL (2009) Comparison between anterior cervical discectomy fusion and cervical corpectomy fusion using titanium cages for reconstruction: analysis of outcome and long-term follow-up. Eur Spine J 18:654–662. doi:10.1007/s00586-009-0897-9

    Article  PubMed Central  PubMed  Google Scholar 

  27. Doğan S, Baek S, Sonntag VK, Crawford NR (2008) Biomechanical consequences of cervical spondylectomy versus corpectomy. Neurosurgery 63:303–308. doi:10.1227/01.NEU.0000327569.03654.96 (discussion 308)

    Article  PubMed  Google Scholar 

  28. Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2004) Enhancement of stability following anterior cervical corpectomy: a biomechanical study. Spine (Phila Pa 1976) 29:845–849

    Article  Google Scholar 

  29. Koller H, Schmidt R, Mayer M, Hitzl W, Zenner J, Midderhoff S, Middendorf S, Graf N, Gräf N, Resch H, Wilke HJ, Willke HJ (2010) The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping. Eur Spine J 19:2137–2148. doi:10.1007/s00586-010-1503-x

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schmidt R, Koller H, Wilke HJ, Brade J, Zenner J, Meier O, Ferraris L, Mayer M (2010) The impact of cervical pedicle screws for primary stability in multilevel posterior cervical stabilizations. Spine (Phila Pa 1976) 35:E1167–E1171. doi:10.1097/BRS.0b013e3181e6bc59

    Article  Google Scholar 

  31. Porter RW, Crawford NR, Chamberlain RH, Park SC, Detwiler PW, Apostolides PJ, Sonntag VK (2003) Biomechanical analysis of multilevel cervical corpectomy and plate constructs. J Neurosurg 99:98–103

    PubMed  Google Scholar 

  32. Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instumentations. Spine (Phila Pa 1976) 28:1821–1828. doi:10.1097/01.BRS.0000083287.23521.48

    Article  Google Scholar 

  33. Koller H, Schmoelz W, Zenner J, Auffarth A, Resch H, Hitzl W, Malekzadeh D, Ernstbrunner L, Blocher M, Mayer M (2015) Construct stability of an instrumented 2-level cervical corpectomy model following fatigue testing: biomechanical comparison of circumferential antero-posterior instrumentation versus a novel anterior-only transpedicular screw–plate fixation technique. Eur Spine J. doi:10.1007/s00586-015-3770-z

    Google Scholar 

  34. Isomi T, Panjabi MM, Wang JL, Vaccaro AR, Garfin SR, Patel T (1999) Stabilizing potential of anterior cervical plates in multilevel corpectomies. Spine (Phila Pa 1976) 24:2219–2223

    Article  CAS  Google Scholar 

  35. Kirkpatrick JS, Levy JA, Carillo J, Moeini SR (1999) Reconstruction after multilevel corpectomy in the cervical spine. A sagittal plane biomechanical study. Spine (Phila Pa 1976) 24:1186–1190 (discussion 1191)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Tyrolean research fund (Tiroler Wissenschaftsfond, TWF). All of the implants were provided free of charge by DepuySynthes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hartmann.

Ethics declarations

Conflict of interest

None of the authors has any conflicts of interest in connection with the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, S., Thomé, C., Keiler, A. et al. Biomechanical testing of circumferential instrumentation after cervical multilevel corpectomy. Eur Spine J 24, 2788–2798 (2015). https://doi.org/10.1007/s00586-015-4167-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4167-8

Keywords

Navigation