Skip to main content
Log in

Significance of cartilage endplate within herniated disc tissue

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Disc herniations sometimes contain hyaline cartilage fragments, but their origins and significance are uncertain.

Methods

Herniations were removed surgically from 21 patients (aged 35–74 years) whose main symptom was sciatica (10 patients) or back pain (11 patients). Frozen sections, 5 µm thick, were examined histologically, and antibodies were used to label the matrix-degrading enzyme MMP 1, pro-inflammatory mediator TNFα, and cell proliferation marker Ki-67. Proportions of each tissue type were quantified by image analysis. Cartilage and bone components of the endplate were examined in 7-µm frozen sections from 16 cadaveric spines, aged 61–98 years.

Results

Cartilage fragments were found in 10/21 herniations. They averaged 5.0 mm in length, comprised 25 % of the herniation area, and two had some bone attached. Hyaline cartilage was more common in herniations from patients with sciatica (7/10) than with back pain (3/11, P = 0.050), and the area (%) of the herniation occupied by the cartilage was greater in sciatica patients (P < 0.05). Cartilage fragments showed little evidence of swelling, proteoglycan loss or inflammatory cell invasion, although cell clustering was common, and TNFα was sometimes expressed. Each cartilage fragment showed at least one straight edge, as if it had been peeled off the bony endplate, and this mechanism of failure was demonstrated in preliminary mechanical experiments.

Conclusion

Disc herniations often include hyaline cartilage pulled from the vertebral endplates. Cartilage fragments show little swelling or proteoglycan loss, and may be slow to resorb, increasing the risk of persisting sciatica. Loss of cartilage will increase endplate permeability, facilitating endplate inflammation and disc infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21:2149–2155

    Article  CAS  PubMed  Google Scholar 

  2. Willburger RE, Ehiosun UK, Kuhnen C, Kramer J, Schmid G (2004) Clinical symptoms in lumbar disc herniations and their correlation to the histological composition of the extruded disc material. Spine 29:1655–1661

    Article  PubMed  Google Scholar 

  3. Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS prize winner: The anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine 38:1491–1500

    Article  CAS  PubMed  Google Scholar 

  4. Dolan P, Adams MA, Hutton WC (1987) The short-term effects of chymopapain on intervertebral discs. J Bone Joint Surg [Br] 69:422–428

    CAS  Google Scholar 

  5. Autio RA, Karppinen J, Niinimaki J, Ojala R, Kurunlahti M et al (2006) Determinants of spontaneous resorption of intervertebral disc herniations. Spine 31:1247–1252

    Article  PubMed  Google Scholar 

  6. Lama P, Le Maitre CL, Dolan P, Tarlton JF, Harding IJ et al (2013) Do intervertebral discs degenerate before they herniate, or after? Bone Joint J 95-B:1127–1133

    Article  CAS  PubMed  Google Scholar 

  7. Summers GC, Merrill A, Sharif M, Adams MA (2008) Swelling of articular cartilage depends on the integrity of adjacent cartilage and bone. Biorheology 45:365–374

    PubMed  Google Scholar 

  8. Fields AJ, Liebenberg EC, Lotz JC (2014) Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J 14(3):513–521

  9. Fagan A, Moore R, Vernon Roberts B, Blumbergs P, Fraser R (2003) ISSLS prize winner: The innervation of the intervertebral disc: a quantitative analysis. Spine 28:2570–2576

    Article  PubMed  Google Scholar 

  10. Peng B, Chen J, Kuang Z, Li D, Pang X et al (2009) Diagnosis and surgical treatment of back pain originating from endplate. Eur Spine J 18:1035–1040

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kuslich SD, Ulstrom CL, Michael CJ (1991) The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 22:181–187

    CAS  PubMed  Google Scholar 

  12. Wang Y, Videman T, Battie MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine 37:1432–1439

    Article  PubMed  Google Scholar 

  13. Wang Y, Videman T, Battie MC (2012) ISSLS prize winner: Lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine 37:1490–1496

    Article  PubMed  Google Scholar 

  14. Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ et al (2011) Human disc nucleus properties and vertebral endplate permeability. Spine 36:512–520

    Article  PubMed Central  PubMed  Google Scholar 

  15. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T et al (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine 30:2621–2630

    Article  PubMed  Google Scholar 

  17. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636

    Article  CAS  PubMed  Google Scholar 

  18. Kato T, Haro H, Komori H, Shinomiya K (2004) Sequential dynamics of inflammatory cytokine, angiogenesis inducing factor and matrix degrading enzymes during spontaneous resorption of the herniated disc. J Orthop Res 22:895–900

    Article  CAS  PubMed  Google Scholar 

  19. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Skrzypiec D, Tarala M, Pollintine P, Dolan P, Adams MA (2007) When are intervertebral discs stronger than their adjacent vertebrae? Spine 32:2455–2461

    Article  PubMed  Google Scholar 

  21. Fields AJ, Lee GL, Keaveny TM (2010) Mechanisms of initial endplate failure in the human vertebral body. J Biomech 43:3126–3131

    Article  PubMed Central  PubMed  Google Scholar 

  22. Eckert C, Decker A (1947) Pathological studies of intervertebral discs. J Bone Joint Surg Am 29:447–454

    CAS  PubMed  Google Scholar 

  23. Harada Y, Nakahara S (1989) A pathologic study of lumbar disc herniation in the elderly. Spine 14:1020–1024

    Article  CAS  PubMed  Google Scholar 

  24. Shan Z, Fan S, Xie Q, Suyou L, Liu J, et al. (2014) Spontaneous resorption of lumbar disc herniation is less likely when Modic changes are present. Spine 39(9):736–744

  25. Tanaka M, Nakahara S, Inoue H (1993) A pathologic study of discs in the elderly. Separation between the cartilaginous endplate and the vertebral body. Spine 18:1456–1462

    Article  CAS  PubMed  Google Scholar 

  26. Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur Spine J 2:209–214

    Article  CAS  PubMed  Google Scholar 

  27. Adams MA, Green TP (1993) Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength. Eur Spine J 2:203–208

    Article  CAS  PubMed  Google Scholar 

  28. Wade KR, Robertson PA, Broom ND (2011) A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J 20:1225–1232

    Article  PubMed Central  PubMed  Google Scholar 

  29. Adams MA, McNally DS, Chinn H, Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14

    Article  CAS  Google Scholar 

  30. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972

    Article  CAS  PubMed  Google Scholar 

  31. Dolan P, Earley M, Adams MA (1994) Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 27:1237–1248

    Article  CAS  PubMed  Google Scholar 

  32. Adams MA, Green TP, Dolan P (1994) The strength in anterior bending of lumbar intervertebral discs. Spine 19:2197–2203

    Article  CAS  PubMed  Google Scholar 

  33. Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, et al. (2013) Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J 22:1820–1828

  34. Rodrigues SA, Wade KR, Thambyah A, Broom ND (2012) Micromechanics of annulus-end plate integration in the intervertebral disc. Spine J 12:143–150

    Article  PubMed  Google Scholar 

  35. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science. Spine 7:184–191

    Article  CAS  PubMed  Google Scholar 

  36. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R et al (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 93:1722–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Urban JPG, Maroudas A (1981) Swelling of the intervertebral disc in vitro. Connect Tissue Res 9:1–10

    Article  CAS  PubMed  Google Scholar 

  38. Johnson WE, Caterson B, Eisenstein SM, Roberts S (2005) Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine 30:1139–1147

    Article  PubMed  Google Scholar 

  39. Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM et al (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum 46:2658–2664

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S et al (2012) Morphology of the human vertebral endplate. J Orthop Res 30:280–287

    Article  PubMed Central  PubMed  Google Scholar 

  41. Albert HB, Manniche C (2007) Modic changes following lumbar disc herniation. Eur Spine J 16:977–982

    Article  PubMed Central  PubMed  Google Scholar 

  42. Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22:697–707

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in the U.K. by BackCare, and by a scholarship from the State Government of Sikkim, India.

Conflict of interest

All authors have no conflict of interest.

Ethical standard

Research approved by the NRes Ethics Committee, Frenchay Hospital, Bristol, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lama, P., Zehra, U., Balkovec, C. et al. Significance of cartilage endplate within herniated disc tissue. Eur Spine J 23, 1869–1877 (2014). https://doi.org/10.1007/s00586-014-3399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3399-3

Keywords

Navigation