Skip to main content
Log in

Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to compare bone union rate between autologous iliac bone and local bone graft in patients treated by posterior lumbar interbody fusion (PLIF) using carbon cage for single level interbody fusion.

Methods

The subjects were 106 patients whose course could be observed for at least 2 years. The diagnosis was lumbar spinal canal stenosis in 46 patients, herniated lumbar disk in 12 patients and degenerative spondylolisthesis in 51 patients. Single interbody PLIF was done using iliac bone graft in 53 patients and local bone graft in 56 patients. Existence of pseudo-arthrosis on X-P (AP and lateral view) was investigated during the same follow up period.

Results

No significant differences were found in operation time and blood loss. Significant differences were also not observed in fusion grade at any follow up period or in fusion progression between the two groups. Donor site pain continued for more than 3 months in five cases (9 %). The final fusion rate was 96.3 versus 98.3 %.

Conclusions

Almost the same results in fusion were obtained from both the local bone group and the autologous iliac bone group. Fusion progression was almost the same. Complications at donor sites were seen in 19 % of the cases. From the above results, it was concluded that local bone graft is as beneficial as autologous iliac bone graft for PLIF at a single level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. An HS, Lynch K, Toth J (1995) Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 8:131–135

    Article  PubMed  CAS  Google Scholar 

  2. Le Huec JC, Lesprit E, Delavigne C et al (1997) Tri-calcium phosphate ceramics and allografts as bone substitutes for spinal fusion in idiopathic scoliosis: comparative clinical results at four years. Acta Orthop Belg 63:202–211

    PubMed  Google Scholar 

  3. Frenkel SR, Moskovich R, Spivak J et al (1993) Demineralized bone matrix. Enhancement of spinal fusion. Spine 18:1634–1639

    Article  PubMed  CAS  Google Scholar 

  4. Holliger EH, Trawick RH, Boden SD et al (1996) Morphology of the lumbar intertransverse process fusion mass in the rabbit model: a comparison between two bone graft materials-rhBMP-2 and autograft. J Spinal Disord 9:125–128

    Article  PubMed  CAS  Google Scholar 

  5. Tay BK, Le AX, Heilman M et al (1998) Use of a collagen-hydroxyapatite matrix in spinal fusion. A rabbit model. Spine 23:2276–2281

    Article  PubMed  CAS  Google Scholar 

  6. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195

    Article  PubMed  CAS  Google Scholar 

  7. Keller EE, Triplett WW (1987) Iliac bone grafting: review of 160 consecutive cases. J Oral Maxillofac Surg 45:11–14

    Article  PubMed  CAS  Google Scholar 

  8. Summers BN, Eisenstein SM (1989) Donor site pain from the ilium: a complication of lumbar spine fusion. J Bone Joint Surg Br 71:677–680

    PubMed  CAS  Google Scholar 

  9. Violas P, Chapuis M, Bracq H (2004) Local autograft bone in the surgical management of adolescent idiopathic scoliosis. Spine 29:189–192

    Article  PubMed  Google Scholar 

  10. Miura Y, Imagama S, Yoda M et al (2003) Is local bone viable as a source of bone graft in posterior lumbar interbody fusion? Spine 28:2386–2389

    Article  PubMed  Google Scholar 

  11. Hashimoto T, Oha F, Shigenobu K et al (2001) Mid-term clinical results of Graf stabilization for lumbar degenerative pathologies: a minimum 2-year follow-up. Spine J 1:283–289

    Article  PubMed  CAS  Google Scholar 

  12. Tsuchiya K, Bridwell KH, Kuklo TR et al (2006) Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine 31(3):303–308

    Google Scholar 

  13. Ito Z, Matsuyama Y, Sakai Y et al (2010) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine 35(21):E1101–E1105

    Google Scholar 

  14. Brantigan JW, Steffee AD, Lewis ML et al (2000) Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine 25:1437–1446

    Article  PubMed  CAS  Google Scholar 

  15. Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg 91:186–192

    PubMed  CAS  Google Scholar 

  16. Christensen FB, Hansen ES, Eiskjaer SP et al (2002) Circumferential lumbar spinal fusion with Brantigan cage versus posterolateral fusion with titanium Cotrel-Dubousset instrumentation: a prospective, randomized clinical study of 146 patients. Spine 27:2674–2683

    Article  PubMed  Google Scholar 

  17. Hashimoto T, Shigenobu K, Kanayama M et al (2002) Clinical results of single-level posterior lumbar interbody fusion using the Brantigan I/F carbon cage filled with a mixture of local morselized bone and bioactive ceramic granules. Spine 27:258–262

    Article  PubMed  Google Scholar 

  18. Kim KS, Ki YT, Lee JC (2005) Radiological changes in the bone fusion site after posterior lumbar interbody fusion using carbon cages impacted with laminar bone chips: follow-up study over more than 4 years. Spine 30:655–660

    Article  PubMed  Google Scholar 

  19. Diedrich O, Perlick L, Schmitt O et al (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532

    Article  PubMed  CAS  Google Scholar 

  20. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine 20:1055–1060

    Google Scholar 

  21. Robertson PA, Wray AC (2001) Natural history of posterior iliac crest bone graft donation for spinal surgery: a prospective analysis of morbidity. Spine 26:1473–1476

    Article  PubMed  CAS  Google Scholar 

  22. Sengupta DK, Truumees E, Patel CK et al (2006) Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine 31:985–991

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenya Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, Z., Imagama, S., Kanemura, T. et al. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J 22, 1158–1163 (2013). https://doi.org/10.1007/s00586-012-2593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2593-4

Keywords

Navigation