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Abstract
In this paper, we study oscillatory properties of neutral differential equations. More-
over, we discuss some examples that show the effectiveness and the feasibility of the
main results.
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1 Introduction

Delay differential equations are widely used in mathematical modeling to describe
physical and biological systems, by inducing oscillatory behavior.

In the literature, several mathematical models with different levels of complexity
have been proposed for delay differential equations in order to represent for example
the cardiovascular system (CVS).

The pioneering and remarkable paper of Ottesen (1997) shows how to use delay dif-
ferential equations to solve a cardiovascular model that has a discontinuous derivative.
Ottesen (1997) also illustrated that complex dynamic interactions between nonlinear
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behaviors and delays associated with the autonomic-cardiac regulation may cause
instability (Ataeea et al. 2015).

Moreover, a model-based approach to stability analysis of autonomic-cardiac reg-
ulation was studied in Ataeea et al. (2015); specifically, it is important to underline
that the autonomic-cardiac regulation operates by the interaction between autonomic
nervous system (ANS) and cardiovascular system (CVS) (Ataeea et al. 2015).

It is clear that mathematical analysis related to physics-based models can be a
versatile tool in examining delay differential equations from the point of view of
medical and biological systems.

In this paper we consider the following equation of neutral type

(
a(y)

(
w′(y)

)γ )′ +
m2∑

j=1

q j (y)x
β j

(
ϑ j (y)

) = 0, y ≥ y0, (1.1)

belonging to those families used to model problems that arise in the biological
sciences. Our aim is to study the oscillatory behavior of (1.1) where w(y) =
x(y)+∑m1

i=1 pi (y)x
αi (ςi (y)), αi , γ and β j , for all i = 1, . . . ,m1 and j = 1, . . . ,m2,

are quotients of odd positive integers.
Moreover, many researchers study qualitative properties of delay mathematical

models examining oscillation and nonoscillation properties of different delay logistic
models and their modifications (Agarwal et al. 2014c). These studies are concerned
also with the investigation of local and global stability. Mainly the oscillation prop-
erties are investigated for models with delayed feedback, hyperlogistic models and
models with varying capacity. For further details regarding the techniques and other
applications to Biology we refer the reader to Agarwal et al. (2014a, b, c, 2015, 2016),
Baculíková et al. (2011), Džurina et al. (2020), Fisnarova and Marik (2017), Grace
et al. (2018), Li and Rogovchenko (2014, 2015, 2017), Li et al. (2015), Pinelas and
Santra (2018), Qian and Xu (2011), Santra (2016, 2017, 2019a, b, 2020a, b); Santra
andDix (2020) Tripathy and Santra (2020), Zhang et al. (2015); Bazighifan (2020a, b);
Chatzarakis et al. (2019b), Moaaz et al. (2017), Bazifghifan and Ramos (2020) and
Bazighifan et al. (2020a).

For a recent reviewon the asymptotic properties for functional differential equations
(FDEs), we suggest to the reader the interesting book Berezansky et al. (2020).

2 Mathematical Background and Hypotheses

Throughout this work, we assume that the following assumptions are fulfilled for
Eq. (1.1):

(A1) ϑ j , ςi ∈ C([y0,∞),R+), ςi ∈ C2([y0,∞),R+), ϑ j (y) < y, ςi (y) < y,
limy→∞ ϑ j (y) = ∞, limy→∞ ςi (y) = ∞ for all i = 1, 2, . . . ,m1 and j =
1, 2, . . . ,m2;

(A2) a ∈ C1([y0,∞),R+), q j ∈ C([y0,∞),R+); 0 ≤ q j (y), for all y ≥ 0 and
j = 1, 2, . . . ,m2;

∑m2
j=1 q j (y) is not identically zero in any interval [b,∞);

(A3) limy→∞ A(y) = ∞, where A(y) = ∫ y
y0
a−1/γ (η) dη;
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(A4) pi : [y0,∞) → R
+ are continuous functions for i = 1, 2, . . . ,m;

(A5) there exists a differentiable functionϑ0(y) satisfying the properties 0 < ϑ0(y) =
min j=1,...,m2{ϑ j (y) : y ≥ y∗ > y0} and ϑ ′

0(y) ≥ ϑ0 for y ≥ y∗ > y0, ϑ0 > 0.

Now we recall some basic definitions.

Definition 2.1 A function x(y) : [yx ,∞) → R, yx ≥ y0 is said to be a solution of
(1.1) if x(y) and a(y)

(
w′(y)

)γ are continuously differentiable for all y ∈ [yx ,∞)

and it satisfies the equation (1.1) for all y ∈ [yx ,∞).

We assume that (1.1) admits a solution in the sense of Definition 2.1.

Definition 2.2 A solution x(y) of (1.1) is said to be non-oscillatory if it is eventually
positive or eventually negative; otherwise, it is said to be oscillatory.

Definition 2.3 Equation (1.1) is said to be oscillatory if all of its solutions are oscilla-
tory.

In this paper, we restrict our attention to study oscillation and non-oscillation of
(1.1). First of all, it is interesting to make a review in the context of functional differ-
ential equation.

Brands (1978) proved that for each bounded delay ϑ(y), the equation

x ′′(y) + q(y)x(y − ϑ(y)) = 0

is oscillatory if and only if the equation

x ′′(y) + q(y)x(y) = 0

is oscillatory. Chatzarakis et al. (2019a) and Chatzarakis and Jadlovská (2019) con-
sidered the following more general equation

(
a(x ′)β

)′
(y) + q(y)xβ(ϑ(y)) = 0 (2.1)

and established new oscillation criteria for (2.1) when limy→∞ A(y) = ∞ and
limy→∞ A(y) < ∞.

Wong (2000) has obtained oscillation conditions of

(
x(y) + px(y − ς)

)′′ + q(y) f (x(y − ϑ)) = 0, −1 < p < 0

in which the neutral coefficient and delays are constants. In Baculíková and Džurina
(2011a) and Džurina (2011), the authors studied the equation

(
a(y)

(
w′(y)

)γ )′ + q(y)xβ(ϑ(y)) = 0, w(y) = x(y) + p(y)x(ς(y)), y ≥ y0, (2.2)

and established the oscillation of solutions of (2.2) using comparison techniques when
γ = β = 1, 0 ≤ p(y) < ∞ and limy→∞ A(y) = ∞. Using the same technique,
Baculíková and Džurina (2011b) considered (2.2) and obtained oscillation conditions
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of (2.2) considering the assumptions 0 ≤ p(y) < ∞ and limy→∞ A(y) = ∞.
Tripathy et al. (2016), studied (2.2) and established several conditions of the solutions
of (2.2) considering the assumptions limy→∞ A(y) = ∞ and limy→∞ A(y) < ∞ for
different values of the neutral coefficient p. Bohner et al. (2017) obtained sufficient
conditions for the oscillation of the solutions of (2.2)whenγ = β, limy→∞ A(y) < ∞
and 0 ≤ p(y) < 1. Grace et al. (2018) studied the oscillation of (2.2) when γ = β j ,
assuming that limy→∞ A(y) < ∞, limy→∞ A(y) = ∞ and 0 ≤ p(y) < 1. Li et al.
(2019) established sufficient conditions for the oscillation of the solutions of (2.2),
under the assumptions limy→∞ A(y) < ∞ and p(y) ≥ 0. Karpuz and Santra (2019)
studied the equation

(
a(y)(x(y) + p(y)x(ς(y)))′

)′ + q(y) f
(
x(ϑ(y))

) = 0,

considering the assumptions limy→∞ A(y) < ∞ and limy→∞ A(y) = ∞, for differ-
ent values of p.

For any positive, continuous and decreasing to zero function ρ : [y0,∞) → R
+,

we set

P(y) =
(

1 −
m∑

i=1

αi pi (y) − 1

ρ(y)

m∑

i=1

(1 − αi )pi (y)

)

;

Q1(y) =
m2∑

j=1

q j (y)P
β j

(
ϑ j (y)

) ;

Q2(y) =
m2∑

j=1

q j (y)P
β j

(
ϑ j (y)

)
ρβ j−1 (

ϑ j (y)
) ;

Q3(y) =
m2∑

j=1

q j (y)P
β j

(
ϑ j (y)

)
Aβ j−1 (

ϑ j (y)
) ;

Q4(y) =
m2∑

j=1

q j (y)P
β j

(
ϑ j (y)

)
Aβ j (ϑ j (y));

U (y) =
∫ ∞

y

m2∑

j=1

q j (ζ )xβ j (ϑ j (ζ )) dζ .

Let us assume that P(y) and U (y) are non-negative in [y0,∞).
We now recall the technical lemmas and the main results contained in Bazighifan

et al. (2020b).

Lemma 2.1 Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1.1) is eventually
positive, then w satisfies

w(y) > 0, w′(y) > 0, and
(
a(w′)γ

)′
(y) ≤ 0 for y ≥ y1. (2.3)
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Lemma 2.2 Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1.1) is eventually
positive, then w satisfies

w(y) ≥ (a(y))1/γ w′(y)A(y) for y ≥ y1.

and

w(y)

A(y)
is decreasing for y ≥ y1.

Lemma 2.3 Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1.1) is eventually
positive, then w satisfies

x(y) ≥ P(y)w(y) for y ≥ y1. (2.4)

Lemma 2.4 Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1.1) is eventually
positive, then there exist y1 > y0 and δ > 0 such that

0 < w(y) ≤ δA(y) and (2.5)

A(y)U 1/γ (y) ≤ w(y) (2.6)

hold for all y ≥ y1.

Theorem 2.4 Assume that there exists a constant δ1, quotient of odd positive integers,
such that 0 < β j < δ1 < γ , and (A1)–(A4) hold for y ≥ y0. If

(A6)
∫ ∞
0 Q4(η) dη = ∞ .

holds, then every solution of (1.1) is oscillatory.

Theorem 2.5 Assume that there exists a constant δ2, quotient of odd positive integers,
such that γ < δ2 < β j . Furthermore, assume that (A1)–(A5) hold for y ≥ y0 and
a(y) is non-decreasing. If

(A7)
∫ ∞
0

[
1

a(η)

∫ ∞
η

Q1(ζ ) dζ
]1/γ

dη = ∞
holds, then every solution of (1.1) is oscillatory.

3 Oscillation Criteria for (1.1)

In this section we discuss our main results. The oscillation criteria in this paper com-
plete the study started in Bazighifan et al. (2020b) but it is important to underline
that the criteria discussed in Bazighifan et al. (2020b) differ from those examined
in this work in terms of assumptions. Precisely, both the main results of Bazighifan
et al. (2020b) (Theorem 1 and 2), require the existence of two constants δ1 and δ2 that
are quotients of odd positive integers and the bounds for b j involve such constants.
The results presented in this paper do not involve the existence of auxiliary constants
and under fewer hypotheses guarantee the oscillatory behavior of the equations under
consideration.
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Theorem 3.1 Let (A1)–(A4) hold for y ≥ y0. If

(A6)
∫ ∞
0 Q1(η)dη = ∞

holds, then every solution of (1.1) is oscillatory.

Proof Let the solution x be eventually positive. Then there exists y0 > 0 such that
x(y) > 0, x(ςi (y)) > 0 and x

(
ϑ j (y)

)
> 0 for all y ≥ y0 and for all i = 1, 2, . . . ,m1

and i = 1, 2, . . . ,m2. Applying Lemmas 2.1 and 2.3 for y ≥ y1 > y0 we conclude
that w satisfies (2.3), w is increasing and x(y) ≥ P(y)w(y) for all y ≥ y1. From
(1.1), we have

(
a(y)

(
w′(y)

)γ
)′ +

m2∑

j=1

q j (y)P
β j

(
ϑ j (y)

)
wβ j

(
ϑ j (y)

) ≤ 0 (3.1)

for y ≥ y1. Applying (2.3) we conclude that limy→∞
(
a(y)

(
w′(y)

)γ
)
exists, and

there exist y2 > y1 and a number c > 0 such that w(y) ≥ c for y ≥ y2. Integrating
(3.1) from y2 to y, for a suitable constant c̃, we have

c̃
∫ y

y2

m2∑

j=1

q j (η)Pβ j
(
ϑ j (η)

)
dη ≤ −

[
a(η)

(
w′(η)

)γ
]y

y2
< ∞ as y → ∞,

which is a contradiction to (A6).
The case where x is an eventually negative solution is similar and we omit it here.

Thus, the proof is complete. 	

Remark Theorem 3.1 holds for any β j and γ .

Theorem 3.2 Let (A1)–(A4) hold for y ≥ y0 and β j > 1. If

(A7)
∫ ∞
0 Q2(η)dη = ∞

holds, then every solution of (1.1) is oscillatory.

Proof Proceeding as in the proof of Theorem3.1weobtain (3.1). Sincew(y) is positive
and increasing, ρ(y) is positive and decreasing to zero, there exists y0 ≥ y1 such that

w(y) ≥ ρ(y) for y ≥ y1. (3.2)

Applying (3.2) in (3.1) we have

(
a(y)

(
w′(y)

)γ
)′ +

m2∑

j=1

q j (y)P
β j

(
ϑ j (y)

)
ρβ j−1(ϑ j (y)

)
w

(
ϑ j (y)

) ≤ 0. (3.3)

The rest of the proof is similar to that of Theorem 3.1 and hence it is omitted. 	

Theorem 3.3 Let (A1)–(A4) hold for y ≥ y0 and 0 < β j < 1. If
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(A8)
∫ ∞
0 Q3(η)dη = ∞

holds, then every solution of (1.1) is oscillatory.

Proof Proceeding as in the proof of Theorem 3.1 we obtain (3.1). Now (3.1) can be
written as

(
a(y)

(
w′(y)

)γ
)′+

m2∑

j=1
q j (y)P

β j
(
ϑ j (y)

)
Aβ j−1(ϑ j (y)

)wβ j−1(ϑ j (y)
)

Aβ j−1(ϑ j (y)
)w

(
ϑ j (y)

) ≤ 0

(3.4)

for y ≥ y2 > y1. Since
w(y)
A(y) is decreasing, there exists a constant k such that

w(y)

A(y)
≤ k for y ≥ y2. (3.5)

Using (3.5) and β j < 1 in (3.4), we have

(
a(y)

(
w′(y)

)γ
)′ +

m2∑

j=1

q j (y)
Pβ j

(
ϑ j (y)

)
Aβ j−1

(
ϑ j (y)

)

k1−β j
w

(
ϑ j (y)

) ≤ 0.

The rest of the proof is similar to that of Theorem 3.2 and hence it is omitted. 	


4 Examples

We conclude the paper presenting some examples that show the effectiveness and the
feasibility of the main results.

Example 4.1 Let us consider the differential equation

(
y
((

x(y) + 1

y
x

1
3

( y

2

)
+ 1

y2
x

1
5

( y

3

) )′)3)′ + y6x3
( y

3

)
+ y7x3

( y

4

)
= 0 for y ≥ 4,

(4.1)

where a(y) :≡ y, pi (y) :≡ 1
yi
,αi :≡ 1

2i+1 , ςi (y) :≡ y
i+1 ,β j = γ = 3, q j (y) :≡ y j+5

and ϑ j (y) :≡ y
j+2 for i = 1, 2, j = 1, 2 and y ≥ 4. All the assumptions of Theorem

3.1 are fulfilled with i = 1, 2, j = 1, 2. Hence, due to Theorem 3.1, equation (4.1) is
oscillatory in the sense of Definition of 2.3.

Example 4.2 Let us consider the differential equation

(
y
((

x(y) + 1

y
x

1
3

( y

3

)
+ 1

y2
x

1
5

( y

4

) )′)5)′ + y
6
5 x

( y

2

)
+ y

7
6 x

( y

3

)
= 0 for y ≥ 2,

(4.2)
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where a(y) :≡ y, pi (y) :≡ 1
yi
, αi :≡ 1

2i+1 , ςi (y) :≡ y
i+2 , β j = 1 < γ = 5,

q j (y) :≡ y
j+5
j+4 and ϑ j (y) :≡ y

j+1 for i = 1, 2, j = 1, 2 and y ≥ 2. All the
assumptions of Theorem 3.1 are fulfilled with i = 1, 2, j = 1, 2. Hence, due to
Theorem 3.1, equation (4.2) is oscillatory in the sense of Definition of 2.3.

Example 4.3 Let us consider the differential equation

(
y2

((
x(y) + 1

y2
x

1
5

( y

3

)
+ 1

y4
x

1
9

( y

5

) )′)3)′ + y7x3
( y

4

)
+ y9x3

( y

6

)
= 0 for y ≥ 6,

(4.3)

where a(y) :≡ y2, pi (y) :≡ 1
y2i

, αi :≡ 1
4i+1 , ςi (y) :≡ y

2i+1 , β j = 3 > 1, γ = 3,

q j (y) :≡ y2 j+5 and ϑ j (y) :≡ y
2 j+2 for i = 1, 2, j = 1, 2 and y ≥ 6. All the

assumptions of Theorem 3.2 are fulfilled with i = 1, 2, j = 1, 2 and ρ(y) = 1
y .

Hence, due to Theorem 3.2, equation (4.3) is oscillatory in the sense of Definition of
2.3.

Example 4.4 Let us consider the differential equation

(
y
((

x(y) + 1

y1/2
x

1
5

( y

3

)
+ 1

y
x

1
9

( y

5

) )′)3)′ + y5x1/5
( y

4

)
+ y6x1/5

( y

5

)
= 0 for y ≥ 5,

(4.4)

where a(y) :≡ y, pi (y) :≡ 1
yi/2

, αi :≡ 1
4i+1 , ςi (y) :≡ y

2i+1 , β j = 1
5 < 1, γ = 3,

q j (y) :≡ y j+4 andϑ j (y) :≡ y
j+3 for i = 1, 2, j = 1, 2 and y ≥ 5.All the assumptions

of Theorem3.3 are fulfilledwith i = 1, 2, j = 1, 2 and A(y) = 5
2 (y

2/5−y2/50 ). Hence,
due to Theorem 3.3, equation (4.4) is oscillatory in the sense of Definition of 2.3.

Example 4.1 and 4.2 show that Theorem 3.1 can be applied for any γ and β j .
Example 4.3 is valid for γ > 1 and ρ(y) = 1

y , and Example 4.4 is valid for γ < 1.

5 Conclusions

In this work we established several oscillation criteria for second-order nonlinear
neutral differential equations. Our results complete the research started in Bazighifan
et al. (2020b). For the sake of completeness, we presented some examples related to
the main results of the paper.

Acknowledgements MariannaRuggieri is amember of the INdAMResearchgroupGNFM.AndreaScapel-
lato is a member of the INdAM Research group GNAMPA.

123



Oscillatory Behavior of Second-Order Neutral... 673

Funding Open access funding provided by Universitá degli Studi di Catania within the CRUI-CARE
Agreement.

Declarations

Conflict of interests The authors declare no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order differential equations with a
sublinear neutral term. Carpathian J. Math. 30, 1–6 (2014a)

Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order Emden–Fowler neutral delay
differential equations. Ann. Mat. Pura Appl. 193(4), 1861–1875 (2014b)

Agarwal, R.P., O’Regan, D., Saker, S.H.: Oscillation and Stability of Delay Models in Biology. Springer,
New York (2014c)

Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Even-order half-linear advanced differential equations:
improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 266, 481–490 (2015)

Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations.
Appl. Math. Comput. 274, 178–181 (2016)

Ataeea, P., Hahn, J.O., Dumont, G.A., Noubari, H.A., Boyce, W.T.: A model-based approach to stability
analysis of autonomic-cardiac regulation. Comput. Biol. Med. 61(1), 119–126 (2015)

Baculíková, B., Džurina, J.: Oscillation theorems for second-order neutral differential equations. Comput.
Math. Appl. 61, 94–99 (2011a)

Baculíková, B., Džurina, J.: Oscillation theorems for second-order nonlinear neutral differential equations.
Comput. Math. Appl. 62, 4472–4478 (2011b)

Baculíková, B., Li, T., Dzurina, J.: Oscillation theorems for second order neutral differential equations.
Electron. J. Qual. Theory Differ. Equ. 74, 1–13 (2011)

Bazighifan, O.: Improved approach for studying oscillatory properties of fourth-order advanced differential
equations with p-laplacian like operator. Mathematics 81, 1–11 (2020a)

Bazighifan, O.: Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations.
Adv. Differ. Equ. 201, 1–12 (2020b)

Bazifghifan, O., Ramos, H.: On the asymptotic and oscillatory behavior of the solutions of a class of
higher-order differential equations with middle term. Appl. Math. Lett. 107, 106431 (2020)

Bazighifan, O., Ruggieri, M., Scapellato, A.: An improved criterion for the oscillation of fourth-order
differential equations. Mathematics 8(4), 610 (2020a). https://doi.org/10.3390/math8040610

Bazighifan, O., Ruggieri,M., Santra, S.S., Scapellato, A.: Qualitative properties of solutions of second-order
neutral differential equations. Symmetry 12(9), 1520 (2020b). https://doi.org/10.3390/sym12091520

Berezansky, L., Domoshnitsky, A., Koplatadze, R.: Oscillation, Nonoscillation, Stability and Asymptotic
Properties for Second and Higher Order Functional Differential Equations. Chapman & Hall/CRC
Press, Boca Raton (2020)

Bohner, M., Grace, S.R., Jadlovská, I.: Oscillation criteria for second-order neutral delay differential equa-
tions. Electron. J. Qual. Theory Differ. Equ. 60, 1–12 (2017)

Brands, J.J.M.S.: Oscillation theorems for second-order functional–differential equations. J. Math. Anal.
Appl. 63(1), 54–64 (1978)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math8040610
https://doi.org/10.3390/sym12091520


674 M. Ruggieri et al.

Chatzarakis, G.E., Jadlovská, I.: Improved oscillation results for second-order half-linear delay differential
equations. Hacet. J. Math. Stat. 48(1), 170–179 (2019)

Chatzarakis, G.E., Džurina, J., Jadlovská, I.: New oscillation criteria for second-order half-linear advanced
differential equations. Appl. Math. Comput. 347, 404–416 (2019a)

Chatzarakis, G.E., Elabbasy, E.M., Bazighifan, O.: An oscillation criterion in 4th-order neutral differential
equations with a continuously distributed delay. Adv. Differ. Equ. 336, 1–9 (2019b)

Džurina, J.: Oscillation theorems for second-order advanced neutral differential equations. Tatra Mt. Math.
Publ. 48, 61–71 (2011)

Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay
differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)

Fisnarova, S., Marik, R.: Oscillation of neutral second-order half-linear differential equations without com-
mutativity in delays. Math. Slovaca 67(3), 701–718 (2017)

Grace, S.R., Džurina, J., Jadlovská, I.: An improved approach for studying oscillation of second-order
neutral delay differential equations. J. Inequ. Appl. 196, 11 (2018)

Karpuz, B., Santra, S.S.: Oscillation theorems for second-order nonlinear delay differential equations of
neutral type. Hacet. J. Math. Stat. 48(3), 633–643 (2019)

Li, T., Rogovchenko, Y.V.: Oscillation theorems for second-order nonlinear neutral delay differential equa-
tions. Abstr. Appl. Anal. 2014, 1–11 (2014). ((ID 594190))

Li, T., Rogovchenko, Y.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288,
1150–1162 (2015)

Li, T., Rogovchenko, Y.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differ-
ential equations. Monatsh. Math. 184, 489–500 (2017)

Li, Q., Wang, R., Chen, F., Li, T.: Oscillation of second-order nonlinear delay differential equations with
nonpositive neutral coefficients. Adv. Differ. Equ. 2015, 7 (2015)

Li, H., Zhao, Y., Han, Z.: New oscillation criterion for Emden–Fowler type nonlinear neutral delay differ-
ential equations. J. Appl. Math. Comput. 60(1–2), 191–200 (2019)

Moaaz, O., Elabbasy, E.M., Bazighifan, O.: On the asymptotic behavior of fourth-order functional differ-
ential equations. Adv. Differ. Equ. 261, 1–13 (2017)

Ottesen, J.T.:Modelling of the Baroreflex-feedbackmechanismwith time-delay. J.Math. Biol. 36(1), 41–63
(1997)

Pinelas, S., Santra, S.S.: Necessary and sufficient condition for oscillation of nonlinear neutral first-order
differential equations with several delays. J. Fixed Point Theory Appl. 20(27), 1–13 (2018)

Pinelas, S., Santra, S.S.: Necessary and sufficient conditions for oscillation of nonlinear first order forced
differential equations with several delays of neutral type. Analysis 39(3), 97–105 (2019)

Qian, Y., Xu, R.: Some new oscillation criteria for higher order quasi-linear neutral delay differential
equations. Differ. Equ. Appl. 3, 323–335 (2011)

Santra, S.S.: Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay
differential equations. Differ. Equ. Appl. 8(1), 33–51 (2016)

Santra, S.S.: Oscillation analysis for nonlinear neutral differential equations of second-order with several
delays. Mathematica 59(82), 111–123 (2017)

Santra, S.S.: Necessary and Sufficient Conditions for Oscillation to Second-order Half-linear Delay Differ-
ential Equations. J. Fixed Point Theory Appl. 21(3), 1–10 (2019a)

Santra, S.S.: Oscillation analysis for nonlinear neutral differential equations of second-order with several
delays and forcing term. Mathematica 31(84), 63–78 (2019b)

Santra, S.S.: Necessary and sufficient condition for oscillatory and asymptotic behavior of second-order
functional differential equations. Krag. J. Math. 44(3), 459–473 (2020a)

Santra, S.S.: Necessary and sufficient conditions for oscillatory and asymptotic behavior of solutions to
second-order nonlinear neutral differential equations with several delays. Tatra Mt. Math. Publ. 75,
121–134 (2020b)

Santra, S.S., Dix, J.G.: Necessary and sufficient conditions for the oscillation of solutions to a second-order
neutral differential equation with impulses. Nonlinear Stud. 27(2), 375–387 (2020)

Tripathy, A.K., Santra, S.S.: On oscillatory nonlinear forced neutral impulsive systems of second order.
Nonlinear Oscillat. 23(2), 274–288 (2020)

Tripathy, A.K., Panda, B., Sethi, A.K.: On oscillatory nonlinear second-order neutral delay differential
equations. Differ. Equ. Appl. 8(2), 247–258 (2016)

Wong, J.S.W.: Necessary and suffcient conditions for oscillation of second-order neutral differential equa-
tions. J. Math. Anal. Appl. 252(1), 342–352 (2000)

123



Oscillatory Behavior of Second-Order Neutral... 675

Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of second-order nonlinear neutral dynamic equa-
tions with noncanonical operators. Bull. Malays. Math. Sci. Soc. 38, 761–778 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Oscillatory Behavior of Second-Order Neutral Differential Equations
	Abstract
	1 Introduction
	2 Mathematical Background and Hypotheses
	3 Oscillation Criteria for (1.1)
	4 Examples
	5 Conclusions
	Acknowledgements
	References




