Skip to main content

Advertisement

Log in

Piezoelectric-thermo-elastic coupling effect analysis for piezoelectric vibration energy harvester

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The paper investigates the influence of piezoelectric-thermo-elastic coupling on the piezoelectric material in piezoelectric energy harvester for the flexural vibration. The coupled constitutive equations which present the mechanical, thermal and electric fields correlation are derived and the field parameters of displacement, temperature and output voltage are deduced. Then the frequency shift ratio and piezoelectric-thermo-elastic damping which is influenced by the irreversible heat energy dissipation are concluded. The comparison of piezoelectric structure is made between piezoelectric-thermo-elastic coupling fields and piezoelectric-elastic fields to determine the effect of temperature on piezoelectric structure. The numerical results with the help of MATLAB software are proposed graphically for intuitional presentation of the piezoelectric-thermo-elastic coupling effect on lead zirconate titanate (PZT)-5H structure of energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad SN, Upadhyay CS, Venkatesan C (2006) Electro-thermo-elastic formulation for the analysis of smart structures. Smart Mater Struct 15(2):401

    Article  Google Scholar 

  • Andosca R, McDonald TG, Genova V et al (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87

    Article  Google Scholar 

  • Chattopadhyay A, Li J, Gu H (1999) Coupled thermo-piezoelectric-mechanical model for smart composite laminates. AIAA J 37(12):1633–1638

    Article  Google Scholar 

  • Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus 91:294–295

    MATH  Google Scholar 

  • Dutoit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71(1):121–160

    Article  Google Scholar 

  • Duwel A, Candler RN, Kenny TW et al (2006) Engineering MEMS resonators with low thermoelastic damping. Microelectromech Syst J 15(6):1437–1445

    Article  Google Scholar 

  • Fahsi B (2015) Study of a piezo-thermo-elastic materials console. J Mater Eng Struct. JMES 2(3):130–144

    Google Scholar 

  • Grover D, Sharma JN (2012) Transverse vibrations in piezothermoelastic beam resonators. J Intell Mater Syst Struct 23(1):77–84

    Article  Google Scholar 

  • Ikeda T (1996) Fundamentals of piezoelectricity. Oxford University Press, Oxford

    Google Scholar 

  • Li P, Fang Y, Rufu H (2012) Thermoelastic damping in rectangular and circular microplate resonators. J Sound Vib 331(3):721–733

    Article  Google Scholar 

  • Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600

    Article  Google Scholar 

  • Liu JQ, Fang HB, Xu ZY et al (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806

    Article  Google Scholar 

  • Mindlin RD (1989) On the equations of motion of piezoelectric crystals. Probl Contin Mech 1:282–290

    Google Scholar 

  • Nowacki W (1978) Some general theorems of thermopiezoelectricity. J Therm Stresses 1(2):171–182

    Article  Google Scholar 

  • Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stresses 34(7):650–666

    Article  Google Scholar 

  • Vahdat AS, Rezazadeh G, Ahmadi G (2012) Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers. Acta Mech Solida Sin 25(1):73–81

    Article  Google Scholar 

  • Vigevani G, Kuypers J, Pisano AP (2008) Modeling of thermoelastic damping in piezoelectric aluminum nitride tuning forks. Proc, Ultrason Electron

    Google Scholar 

  • Yang JS, Batra RC (1995) Free vibrations of a linear thermopiezoelectric body. J Therm Stresses 18(2):247–262

    Article  Google Scholar 

  • Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230

    Article  MATH  Google Scholar 

  • Zhou SW, Rogers CA (1995) Heat generation, temperature, and thermal stress of structurally integrated piezo-actuators. J Intell Mater Syst Struct 6(3):372–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, C. & Cong, B. Piezoelectric-thermo-elastic coupling effect analysis for piezoelectric vibration energy harvester. Microsyst Technol 24, 3823–3832 (2018). https://doi.org/10.1007/s00542-018-3852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3852-z

Navigation