
1 3

J Anesth (2016) 30:1037–1050
DOI 10.1007/s00540-016-2242-x

REVIEW ARTICLE

Systematic review of motor evoked potentials monitoring 
during thoracic and thoracoabdominal aortic aneurysm open 
repair surgery: a diagnostic meta‑analysis

Yuu Tanaka1  · Masahiko Kawaguchi2 · Yoshinori Noguchi3 · Kenji Yoshitani4 · 
Mikito Kawamata5 · Kenichi Masui6 · Takeo Nakayama7 · Yoshitugu Yamada8 

Received: 4 July 2016 / Accepted: 15 August 2016 / Published online: 9 September 2016 
© Japanese Society of Anesthesiologists 2016

criteria. The results of meta-analysis showed 89.1 % sum-
mary sensitivity (95 % confidence interval 47.9–98.6 %) 
and 99.3 % summary specificity (95 % confidence inter-
val 96.1–99.9 %). Sub-group analysis of pooled sensitivity 
and specificity by all-or-none cut-off point were better than 
other cut-off points. The results of the QUADAS-2 were 
not good. The performance of MEP monitoring was good 
for detecting postoperative paraplegia in TAA/TAAA open 
repair surgery. The cut-off point of all-or-none may be the 
best, according to our review.

Keywords Motor evoked potential (MEP) monitoring · 
TAAA open repair · Systematic review · Diagnostic meta-
analysis

Abstract Motor evoked potential (MEP) monitoring has 
been used to prevent neurological complications such as 
paraplegia in patients who underwent thoracic or thora-
coabdominal aortic aneurysm (TAA/TAAA) surgery. The 
object of this study was making a systematic review to 
survey the performance of MEP monitoring during TAA/
TAAA open repair surgery. We searched electronic data-
bases for relevant studies. We summarized the diagnostic 
data with summary sensitivity, summary specificity and 
forest plots of pooled sensitivity, and conducted sub-group 
analysis. The quality of the studies was assessed using 
the Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) tool. We also surveyed the reporting rate 
of clinical key factors such as methods of anesthesia, sur-
gery, and success rate of MEP. Nineteen studies met our 
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Introduction

Paraplegia is a serious complication secondary to thoracic 
or thoracoabdominal aortic aneurysm (TAA/TAAA) open 
repair because of intraoperative spinal cord ischemia. The 
reported incidence of paraplegia is very high, ranging from 
11 to 25 % in Crawford type II repair [1, 2]. To prevent 
these complications, motor evoked potential (MEP) moni-
toring is widely used as a predictive device during TAA/
TAAA open repair [3]. However, reliable MEP monitor-
ing may be impeded by various factors such as methods of 
anesthesia, surgery, cardiopulmonary bypass, body temper-
ature, success rate of MEP, and complication [4].

Appropriate methods of anesthesia, including selection 
of anesthetic drug and muscular relaxation monitoring are 
considered to be very important when conducting reliable 
MEP monitoring in TAA/TAAA surgery [4]. Kakinohana 
et al. reported that plasma propofol concentration markedly 
increased after induction of cardiopulmonary bypass with 
aortic occlusion, resulting in reduction in the bispectral 
index [5]. Hypothermia may have indirect effects on MEP 
by modulating the pharmacodynamics of anesthetic and 
neuromuscular agents [6].

The objective of this article was to undertake a system-
atic review of the literature to survey the performance of 
MEP monitoring in patients undergoing TAA/TAAA open 
repair and detecting the cut-off point of MEP monitoring 
in giving more sensitive, more specific evaluation, and the 
appropriateness of reporting on key factors including meth-
ods of anesthesia, surgery, cardiopulmonary bypass, body 
temperature, success rate of MEP, and complications.

Methods

We followed the recommendations of the PRISMA state-
ment [7] and Cochrane Reviewers’ Handbook version 5.1.0 
[8]. We made an a priori protocol and sent it to our mem-
bers in a multicenter research project to protect the spinal 
cord during TAA/TAAA surgery in Japan, before conduct-
ing the systematic review. We registered our protocol with 
PROSPERO (an international database of prospectively 
registered systematic reviews in health and social care 
http://www.crd.york.ac.uk/PROSPERO/, the PROSPERO 
registration number is CRD42016033475).

Eligibility criteria

We performed a literature search of all English and Japa-
nese language reports on MEP monitoring during TAA/
TAAA open repair. We included studies reporting on MEP 
monitoring during TAA/TAAA open repair and its rela-
tionship with clinical outcomes such as paraplegia and 

paralysis. We excluded animal studies, stent grafting for 
TAA/TAAA, reviews, commentaries, case reports, editori-
als, letters, proceedings, other topics, duplicated studies, 
studies using MEP monitoring only for D-wave monitor-
ing, and studies published in other languages except Eng-
lish and Japanese.

Literature search and study selection

We searched MEDLINE, the Cochrane Central Register 
of Controlled Trials, EMBASE, CINAHAL, and the Japa-
nese Central Review of Medicine (covering January 1980 
to September 2015) on September 1st 2015. We identified 
ongoing studies by searching WHO ICTPR (http://apps.
who.int/trialsearch/) and Clinical trial.gov (https://clinical-
trials.gov/).

We used a systematic search strategy (Appendix 1) and 
sourced relevant publications via an online information 
source of published literature. Moreover, the bibliographies 
of retrieved trials were used to identify other relevant stud-
ies. Publication bias was assessed by funnel plot and Egger 
test of diagnostic odds ratio.

Data collection and presentation

Two authors (MK & YT) independently selected the stud-
ies, and extracted the data. In cases of disagreement of 
study selection, a consensus was achieved between them, 
or among them and a third author. A data collection sheet 
was used to collate the following data: (1) basic data: 
authors, year of publication, name of publishing journal, 
study design, primary country of origin, and number of 
patients; (2) data for surgery and anesthesia: type of sur-
gery, use of cardiopulmonary bypass, anesthesia methods 
including induction and maintenance; (3) outcome of MEP: 
the incidence of amplitude changes in the evoked potential 
wave, relationship of paraplegia to incidence of changes in 
MEP amplitude.

Data summary, synthesis, and meta‑analysis

We summarized the data of the selected studies. The 
data sets included methods of anesthesia, surgery, car-
diopulmonary bypass, and study country of origin, and 
these were extracted for diagnostic meta-analysis. We 
also generated a hierarchical summary receiver operat-
ing characteristic (HSROC) model to summarize global 
MEP monitoring performance and summary sensitiv-
ity and specificity. The methods were recommended by 
the Cochrane Diagnostic Test Accuracy Working Meth-
ods Group [8]. We also performed a meta-analysis using 
pooled sensitivity and specificity based on the random 
effect model. Analyses were performed by Stata (ver. 13, 

http://www.crd.york.ac.uk/PROSPERO/
http://apps.who.int/trialsearch/
http://apps.who.int/trialsearch/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Stata Corp, USA) with the metandi program and Meta-
Disc version 1.4 (http://www.hrc.es/investigacion/meta-
disc_en.htm). Data was expressed as summarized value 
[95 % confidence interval (CI)].

Sub‑group analysis

We conducted sub-group analysis to determine which 
cut-off value of MEP amplitude reduction is better for 

Fig. 1  PRISMA flow chart of study selection. n, number of studies

http://www.hrc.es/investigacion/metadisc_en.htm
http://www.hrc.es/investigacion/metadisc_en.htm
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detecting post-operative paraplegia. We selected the cut-
off points, such as ‘all-or-none’ (disappearance of positive 
wave of MEP amplitude), 75 % reduction of MEP ampli-
tude, 50 % reduction of MEP amplitude, or 25 % reduction 
of MEP amplitude.

Reporting rate of key factors

We assessed the reporting rate of clinical key factors which 
affected the outcomes of MEP (success rate of MEP, meth-
ods of anesthesia, surgery, cardiopulmonary bypass, body 
temperature, and complication).

Assessment of methodological quality

Two of the authors (YT and MI) independently assessed 
the quality of the included studies. In cases of disagree-
ment about the assessment, these were either resolved by 
discussion or by consulting a third author. To evaluate the 
methodological quality of the studies, the Revised Tool 
for the Quality Assessment of Diagnostic Accuracy Stud-
ies (QUADAS-2) [9] was used. This tool comprises 4 
domains: patient selection, index test, reference standard, 
and flow and timing. Each domain assessed in terms of risk 
of bias, and the first 3 domains were assessed in terms of 
concerns regarding applicability. Signaling questions were 
also assessed in terms of concerns regarding applicability. 
A ‘risk of bias’ judgement (high, low, or unclear) was made 
for each domain. If the answers to all signaling questions 
within a domain were judged to be ‘yes’ (indicating low 
risk of bias for each question) then the domain was evalu-
ated to be at low risk of bias. If any signaling question was 
judged to be ‘no’, indicating a high risk of bias, the domain 
was reported as having a high risk of bias. A judgement 
about concerns regarding applicability for patient selection, 
index test, and reference standard domain were also made. 
The results of the assessment of methodology quality are 
presented graphically.

Assessment of methodological quality of this systematic 
review

We rated the methodological quality of our systematic 
review by using the Revised Assessment of Multiple Sys-
tematic Reviews (R-AMSTER) [10]. The R-AMSTER 
consists of eleven items with good face and content valid-
ity for measuring the methodological quality of systematic 
reviews. A score of 20 or less means poor methodological 
quality. Scores of 21–30 mean fair methodological qual-
ity. Scores 31–35 represented good methodological quality, 
and scores over 35 represented studies with excellent meth-
odological quality [11].

Results

Search results

Of the 306 relevant studies found by the search strategy, 19 
[3, 12–29] studies met our inclusion criteria. One ongoing 
study was detected (Appendix 2). Sixteen studies [3, 12–
17, 19, 21, 23–29] (Fig. 1) were finally selected for meta-
analysis of MEP monitoring during TAAA open repairs.

When we assessed the full text reviews, the kappa value 
between the two authors was 0.973 (95 % CI 0.84–1.0). In 
selecting which studies to include, and which studies were 
suitable for meta-analysis, the kappa values were 0.954 
(95 % CI 0.67–1.0) and 1.0 (95 % CI 0.55–1.0), respec-
tively. The funnel plot of diagnostic odds ratios was sym-
metric, and the Egger test was not statistically significant (p 
value = 0.096),which indicated that there was no publica-
tion bias (Fig. 2).

Study characteristics

Characteristics of included studies

Nineteen studies were included (Table 1). The number of 
patients in each study varied from 13 to 210. Nine studies 
were prospective, another 9 studies were retrospective, and the 
other study was unknown. The cut-off values of MEP ampli-
tude reduction in these studies were all-or-none, reduction to 
50 % and reduction to 75 % from the baseline measurement). 
The incidence of paraplegia in all included studies varied from 
0 to 16.7 %, with an overall rate of 3.9 % (55/1378 patients). 
Five studies [3, 12, 14, 21, 22], were conducted in Japan, 5 
[13, 18–20, 23] in the USA, three studies [24, 26, 28] in the 
Netherlands, three studies [13, 14, 25] in Germany, and one 
each in Korea [17], Saudi Arabia [27], and Canada [28].
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Fig. 2  Funnel plot of diagnostic odds ratios
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Table 1  Characteristics of included studies

K ketamine hydrochloride, P propofol, Iso isoflurane, MZ midazolam, CPB cardio-pulmonary bypass, FF femoral–femoral bypass, LHB left 
heart bypass, CS central sessation, BT body temperature, Design study design, Retro retrospective study, Pro prospective study, MR muscular 
relaxant, MM muscular monitoring, Cut-off (%) cut-off point of positive amplitude of MEP monitoring

−There is no description, +There is description

Author, year No. of patients 
(M/F)

Age: mean, 
(SD range)

MEP success  
rate (%)

Induction  
of anesthesia

Maintenance  
of anesthesia

MR MM

Ohno, 2013 Unknown Unknown UD − − − −
Greiner, 2012 130 (85/45) 60 (13) 100 − − Vecronium +
Horiuchi, 2011 44 (33/11) 65.6 (12.1) 100 K, P K, P Vecronium +
Fudicker, 2011 20 (14/6) 62.5 (9.7) UD K, P, Succynyl-

coline
P, Sufentanyl − −

Estrera, 2010 105 (65/40) 60 (17–83) 96 MZ, P Iso Cisatracrium +
Kawaharada, 2010 15 (12/3) 65 (52–79) 80 − − − −
Min, 2010 37 (24/9) 50.7 (15.2) 80 P − Vecronum –

Keyhani, 2009 233 (190/43) 67 (18–87) UD P, cisatracrium Iso Cisatracrium +
Shine, 2008 60 (27/33) 69 (–) 96.7 Thyopenton Sccoporamine 

fentanyl
Atracrium +

Etz, 2009 13 (5/8) 59 (17.3) 100 − − − −
Kawanishi, 2007 72 (52/20) 64.9 (12.8) 100 K, P, fentanyl P, K − −
Ogino, 2006 92 (68/24) 67 (19–91) UD − − Vecronium −
Etz, 2006 100 (67/33) 67 (27–86) UD − − − −
Jacobs, 2006 112 (75/37) 62 (28–80) 100 − − − −
Weigang, 2005 19 (10/9) 56 (29–81) UD – MZ Fentanyl − −
Jacobs, 2002 210 (–) ND 100 − K, Sufentanyl Vecronium +
MacDonald, 2002 31 (16/15) 66 (37–78) 100 − K, iso None None

Dong, 2002 56 (30/26) 67 (29–78) 100 P P None None

de Haan, 1997 20 (–) (22–83) 100 Etomide sufen-
tanyl

K, sufentanyl Vecronium +

Author, year CPB BT  
(°C)

Mortality (%) Number  
of pulse

Stimulation  
intensity

Upper arm 
control

Cut-off  
(%)

Design

Ohno, 2013 FF 35 7.8 (4/51) 5 400–600 V − 50 Retro

Greiner, 2012 FF LHB 32–33 − 5 500 V + – Pro

Horiuchi, 2011 FF 32 − 5 500 V + 25 Retro

Fudicker, 2011 FF 34 15 (3/20) 4 200–400 V + 50 Pro

Estrera, 2010 FF − 5.7 (6/105) 5 400 V − All-or-none Retro

Kawaharada, 2010 FF CS − 0 (0/15) 5 500 V − 50 Retro

Min, 2010 FF 31 6 (2/33) 5 500 V + 50 Retro

Keyhani, 2009 LHB CS − − 5 400 V − All-or-none Pro

Etz, 2009 LHB CS 32 − 9 10 % of MAX of MEP + 50 Retro

Shine, 2008 LHB CSFF 26–28 − − − − 25 Retro

Kawanishi, 2007 FF CS 31, DHT 5.6 (4/72) 5 500 V + 75 Pros

Ogino, 2006 FF CS 32 0 (0/92) − 600 V + 25 Retro

Etz, 2006 FF CS LHB 32 6 (5/67) 9 10 % of MAX of MEP + 50 Retro

Jacobs, 2006 FF CS LHB 30 − 5 500 V + 50 Pro

Weigang, 2005 FF CS 30 25 (3/12) 5 Adjusted intensity − All-or-none UD

Jacobs, 2002 CS LHB 31 10.8 (20/184) 9 10 % of MAX of MEP + 25 Pro

MacDonald, 2002 − − 3 (1/31) 3 to 5 250–1000 V + All-or-none Pro

Dong, 2002 CS LHB Oderate 5.4 (3/56) 3 to 5 250–700 V − All-or-none Pro

de Haan, 1997 CS LHB FF 31 − 1 Maximal producing − 25 Pro
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Fig. 3  a Summary of QUADAS-2 evaluation of included studies. b QUADAS-2 evaluation of each included study
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Characteristics of excluded studies

Thirty-two studies [2, 30–58, 60, 61] were excluded 
because of various reasons (such as animal studies, prob-
ably duplications, etc.) (Appendix 3).

Methodological quality of included studies

The results of the quality assessment by QUADAS-2 of the 
19 included studies are summarized in Fig. 3a. Individual 
assessment for each study is provided in Fig. 3b. For the 
patient selection domain, 7 studies [13, 14, 22, 24, 26–28] 
were judged to be at low risk of bias. Twelve of 19 studies 
[3, 12, 15–18, 20, 21, 23, 25, 28, 29] (63 %) were assessed 
as being at unclear risk of bias. Seven studies [13, 14, 22, 
24, 26–28] were judged to be have at low applicability con-
cern. For index test domain, 6 studies [14, 21, 24, 26–28] 
(32 %) were judged to be as low risk. Three studies [14, 21, 
28] were judged to be low applicability concern. Another 
13 studies (68 %) were assessed as studies with an unclear 
risk of bias. All included studies were evaluated as unclear 
risk in the reference standard domain. For the flow and tim-
ing domains, 9 studies (49 %) were judged to be low-risk 
studies. All included studies used the appropriate index 
because all included studies had sufficiently described the 
motor evoked potential. However, there were variations in 
the independent interpretation of the index test and timing 
of measurement. So all included studies were evaluated as 
unclear risk of bias.

Level of evidence of MEP systematic review

The R-AMSTER rating was 38. This score represented 
excellent methodological quality of systematic review.

Performance of MEP monitoring based on combined 
data by meta‑analysis

Sixteen studies with relevant data were extracted for diag-
nostic meta-analysis. MEP monitoring showed a wide 
range of cut-off values (from all-or-none to 75 %) in these 
studies (Table 2). The total number of patients included in 
this analysis was 992 patients, with sample sizes ranging 
from 15 to 208. The diagnostic meta-analysis results using 
the HSROC model showed 89.2 % summary sensitivity 
[95 % confidence interval (CI) 47.9–98.6 %] and 99.3 % 
summary sensitivity (95 % CI 93.8–99.9 %). Meta-analysis 
of the random effect model showed 72 % pooled sensitiv-
ity of selected studies (95 % CI 57–85 % I2 statistic = 0) 
and 96 % pooled specificity (95 % CI 95–97 % I2 statis-
tic = 91.7 %) (Fig. 4) The area under the summary ROC 
curve was 0.89 (Fig. 5). Sub-group analysis of pooled 
sensitivity and specificity for the all-or-none cut-off point 
were 75 % (95 % CI 35–97 % I2 = 0) and 99 % (95 % CI 
96–100 % I2 = 0), for the 25 % cut-off point were 67 % 
(95 % CI 27–94 % I2 = 0) and 96 % (95 % CI 93–96 % 
I2 = 93.5), and for the 50 % cut-off point were 55 % (95 % 
CI 28–80 % I2 = 0) and 93 % (95 % CI 90–96 % I2 = 70.0) 
(Fig. 6).

Table 2  2 × 2 Data for meta-
analysis

N number of patients, TP true positive, FP false positive, TN true negative, FN false negative

Study year N TP FP TN FN Immediate 
paraplegia

Ohono (2013) 37 2 2 33 0 2

Gainer (2012) 130 5 0 125 0 5

Horiuchi (2011) 44 2 9 32 1 3

Fudickar (2011) 16 0 0 13 3 0

Estrera (2010) 99 1 0 98 0 1

Kawaharada (2010) 15 0 0 15 0 0

Min (2010) 33 1 1 30 1 2

Etz (2009) 13 0 1 12 1 0

Kawanishi (2007) 72 8 1 63 0 8

Etz (2006) 100 1 0 99 0 2

Jacobs (2006) 112 3 16 93 0 3

Weigang (2005) 9 1 0 8 0 1

Jacobs (2002) 210 1 0 209 0 1

MacDonald (2002) 15 1 0 14 0 1

Dong (2002) 40 3 0 37 0 3

Haan (1997) 20 2 0 17 1 3
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Reporting rate of key factors

For the 19 studies selected, the reporting rate of key fac-
tors (success rate of MEP, methods of anesthesia, surgery, 

cardiopulmonary bypass, body temperature, and mortality) 
was assessed. Data on success rates of MEP monitoring 
were found in 13 studies [3, 15–17, 19–21, 24, 26–29]. The 
MEP monitoring success rate varied from 80 to 100 %. The 

Fig. 4  Pooled sensitivity and specificity of MEP monitoring
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overall success rate in the 13 studies [3, 13, 15–17, 19–21, 
24, 26–29] was 98 % (909/925 patients). Of the 19 stud-
ies included, 11 [3, 14, 15, 18, 19, 21, 25–29] studies had 
descriptions of anesthesia maintenance methods, although 
only 7 [3, 13, 15, 18, 19, 26, 29] reported monitoring for 
muscle relaxant regulation. Eleven [3, 13, 14, 17, 19, 21–
24, 26, 27] studies had descriptions of upper arm control 
of MEP. In all included studies there were descriptions of 
partial cardiopulmonary bypass. Body temperature was 
reported in 14 studies [3, 12–14, 17, 19–26, 29] and mor-
tality rate was reported in 13 [3, 12–15, 19–26] and varied 
from 0 to 25 %. The total mortality rate of 13 studies was 
6.9 % (54 /782 patients).

Discussion

To the best of our knowledge, our study is the first system-
atic review of motor evoked potentials monitoring during 
thoracic and thoracoabdominal aortic aneurysm open repair 
surgery. Based on the results of a diagnostic meta-analysis 
of selected studies (Fig. 4), MEP monitoring during TAAA 
open repair may be sufficiently sensitive and specific for 
detecting intraoperative spinal cord ischemia and postop-
erative paraplegia.

We conducted sub-group analysis of pooled sensitivity and 
specificity to find out which cut-off point is good for detect-
ing postoperative paraplegia. The all-or-none cut-off point 
showed better pooled sensitivity and specificity than other 
cut-off points (Fig. 6). We excluded one study [16] which 
had a 75 % cut-off point in conducting sub-group analysis, so 
pooled sensitivity and specificity could not be made.

In 8 [12, 13, 16, 17, 20, 22–24] studies, the anesthesia 
methods were not clearly described, although the impor-
tance of the anesthesia regimen was recognized during 
MEP monitoring. The relationship between body tempera-
ture and MEP monitoring outcomes were not described 
quantitatively in any study selected, although body tem-
perature may affect the reliability of MEP monitoring [19]. 
In future studies, the relationship between these key factors 
and the MEP monitoring outcomes should be investigated.

There are certain limitations in the present study. 
Because our search strategy was limited to only English 
and Japanese language articles, there is a possibility of 
publication (language) bias.

We searched the gray literature; however, we excluded 
the gray literature, such as proceedings, from our study. We 
also excluded 3 [18, 19, 22] studies because there were no 
dichotomous outcomes about MEP and paralysis. There-
fore, there is a possibility of publication bias because of 
these factors, though explicit publication bias was not 
detected.

Fehlings et al. conducted a systematic review of MEP 
monitoring in spinal surgery [59]. They researched the 
evidence for intraoperative neurophysiological monitor-
ing to improve clinical outcome, presented useful evidence 
on sensitivity and specificity, and answered the clinically 
relevant questions raised. They also pointed to the lack of 
evidence as to whether neuromonitoring reduces the rate of 
occurrence or worsening of neurological deficits in spinal 
surgery. In our search, we found no studies directly com-
paring TAAA open repair with and without MEP moni-
toring to detect its effectiveness in reducing neurologi-
cal deficits. So we Schepens et al. investigated the factor 
of postoperative paraplegia after TAAA open repair by 
multivariate analysis [60]. In that study, MEP monitoring 
combined with spinal drainage was found to be a factor in 
reducing the rate of postoperative paraplegia (odds ratio 
0.28; 95 % CI 14–56 %). Ethical issues may be involved 
in such controlled trials because neurophysiological moni-
toring is recognized as being useful in reducing such com-
plications through physiological and clinical common 
practices.

Conclusion

MEP monitoring may be sensitive and specific for detect-
ing intraoperative spinal cord ischemia and postoperative 
paraplegia in patients undergoing TAA/TAAA open repair. 
However, in some of the selected studies, we found a lack 
of reporting on key factors for reliable MEP monitoring, 
such as anesthesia methods, body temperature, and rela-
tionships between the MEP monitoring results and para-
plegia. There is a need for an evidence-based consensus 

Fig. 5  SROC curve made from data from each study
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Fig. 6  Subgroup analysis of pooled sensitivity and specificity by cut-off point of MEP positive amplitude
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protocol to describe the requirements in reporting items 
in MEP studies and to conduct better quality studies on 
patients undergoing TAA/TAAA open repair surgery.
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Appendix 1

Search strategy

MEDLINE

(motor evoked potential) AND ((descending thoracic aneu-
rysm) OR (thoracoabdominal aortic aneurysm)) Limits: 
English, Japanese, Publication Date from 1990.

EMBASE

Set File Items Description

S1  S ABDOMINAL(W)AORTA(W)ANEURYSM
S2  S THORACIC(W)AORTA(W)ANEURYSM
S3  S DESCENDING(W)THORACIC(W)ANEURYSM
S4  S THORACOABDOMINAL(W)AORTIC(W)

ANEURYSM
S5  S S1 + S2 + S3 + S4
S6  S MOTOR(W)EVOKED(W)POTENTIAL
S7  S EVOKED(W)MUSCLE(W)RESPONSE
S8  S S6 + S7
S9  S S5*S8
S10  S PY ≥ 1990
S11  S S9*S10

CINAHL

S9  S5 and S6
S6  S3 or S4
S5  S1 or S2
S4  (MH “Evoked Potentials, Motor”)

S3  motor evoked potential
S2  (MH “Aortic Aneurysm, Abdominal”) OR (MH 

“Aortic Aneurysm, Thoracic”)
S1  Descending thoracic aneurysm or thoracoabdom-

inal aortic aneurysm

The Japanese Central Register of Controlled Trials

Aneurysm- thoracic part/TH or Aortic aneurysm-
abdominal part/TH or Descending aortic aneurysm/
AL or Thoracoabdominal aneurysm/AL) and (motor 
evoked potential/TH or motor evoked potential/AL) 
and (LA = Japanese,engish and CK = human and 
PDAT = 1990/1/1:2011/5/31).

Cochrane database (CCTR)

#1  (Descending thoracic aneurysm) or (thoracoab-
dominal aortic aneurysm)

#2  MeSH descriptor Aortic Aneurysm, Thoracic 
explode all trees

#3  MeSH descriptor Aortic Aneurysm, Abdominal 
explode all trees

#4  (motor evoked potential)
#5  MeSH descriptor Evoked Potentials, Motor 

explode all trees
#6  (#1 OR #2 OR #3)
#7  (#4 OR #5)
#8  (#6 AND #7)

WHO ICTPR

TAAA AND motor evoked potential OR thoracic aor-
tic aneurysm AND motor evoked potential OR abdomi-
nal aortic aneurysm AND motor evoked potential OR 
descending thoracic aneurysm AND motor evoked poten-
tial OR thoracoabdominal aortic aneurysm AND motor 
evoked potential OR thoracic aneurysm AND motor 
evoked potential OR abdominal aneurysm AND motor 
evoked potential OR thoracoabdominal aneurysm AND 
motor evoked potential.

Clinical.trial.gov

(motor evoked potential*) AND (TAAA OR “thoracic 
aortic aneurysm” OR “abdominal aortic aneurysm” OR 
“descending thoracic aneurysm” OR “thoracoabdominal 
aortic aneurysm” OR “thoracic aneurysm” OR “abdominal 
aneurysm” OR “thoracoabdominal aneurysm”)
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Appendix 2

On‑going study

K Yoshitani et al. Motor Evoked Potential and Cerebro-
spinal Fluid Drainage in Thoracic and Thoracoabdominal 
Aneurysm Repair. National Cerebral and Cardiovascular 
center. Date of registration: 2014-11-01.

Appendix 3 

Excluded studies Reason for exclusion

Jacobs [2] This is a review article

Sloan [30] This is a review article

Takahashi [31] MEP is D-wave monitoring

Hamanishi [32] MEP is D-wave monitoring

Sueda [33] MEP is D-wave monitoring

Sueda [34] MEP is D-wave monitoring

Sueda [35] MEP is D-wave monitoring

Zoli [36] Possible duplicated article

Mommertz [37] Possible duplicated article

Backes [38] Possible duplicated article

Minatoya [39] Possible duplicated article

Nijenhuis [40] Possible duplicated article

Weigang [41] Possible duplicated article

Lases [42] Possible duplicated article

Hanafusa [43] Possible duplicated article

Jacobs [44] Possible duplicated article

Jacobs [45] Possible duplicated article

Meylaerts [46] Possible duplicated article

Jacobs [47] Possible duplicated article

Genstofer [48] Publication in language other than 
English or Japanese

Greiner [49] Publication in language other than 
English or Japanese

Weigang [50] This study involved stent-grafting 
procedures

Schepens [51] Insufficient descriptions about 
MEP monitoring

Gloviczki [52] Insufficient descriptions about 
MEP monitoring

Koja [53] Insufficient descriptions about 
MEP monitoring

Kurihara [54] Insuffficient description for MEP 
monitoring

Etz [55] Insuffficient description for MEP 
monitoring

Dong [56] Insuffficient description for MEP 
monitoring

Conrad [57] Insuffficient description for MEP 
monitoring

Lancaster [58] Insuffficient description for MEP 
monitoring

Sephens [60] Insuffficient description for MEP 
monitoring

Dong [61] Insuffficient description for MEP 
monitoring
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