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are totally noninvasive CO monitoring. Nexfin HD and 
the newer ClearSight systems are examples of noninva-
sive CO monitoring devices currently being marketed by 
Edwards Lifesciences. The developing focus in CO mon-
itoring devices appears to be shifting to tissue perfusion 
and microcirculatory flow and aimed more at markers that 
indicate the effectiveness of circulatory and microcircula-
tory resuscitations.
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Introduction

Cardiac output (CO) measurement has been considered one 
of the most important elements of perioperative hemody-
namic monitoring in modern medicine ever since balloon-
tip pulmonary artery catheterization (PAC) was introduced 
by Drs. Swan and Ganz in 1970 [1]. Perioperatively, PAC 
has been commonly used in major cardiothoracic surgery, 
in patients with significant coexisting cardiovascular dis-
eases undergoing non-cardiovascular procedures, and other 
critically ill patients [2]. For the past four decades, PAC has 
been considered the “gold standard” in CO measurement. 
However, it has been controversial whether the utilization 
of PAC-derived parameters to guide the clinical manage-
ment of critically ill patients improves clinical outcomes 
[3–7]. Clinicians worldwide have witnessed a gradual tran-
sition from the invasive PAC-thermodilution (TD) tech-
nique to less invasive techniques during the past decade [8]. 
This review is aimed at providing updates of the emerging 
and currently available minimally invasive and noninvasive 
techniques for the measurement of CO. The characteristics, 

Abstract  Although cardiac output (CO) by pulmonary 
artery catheterization (PAC) has been an important guide-
line in clinical management for more than four decades, 
some studies have questioned the clinical efficacy of CO in 
certain patient populations. Further, the use of CO by PAC 
has been linked to numerous complications including dys-
rhythmia, infection, rupture of pulmonary artery, injury to 
adjacent arteries, embolization, pulmonary infarction, car-
diac valvular damage, pericardial effusion, and intracar-
diac catheter knotting. The use of PAC has been steadily 
declining over the past two decades. Minimally invasive 
and noninvasive CO monitoring have been studied in the 
past two decades with some evidence of efficacy. Several 
different devices based on pulse contour analysis are avail-
able currently, including the uncalibrated FloTrac/Vigileo 
system and the calibrated PiCCO and LiDCO systems. 
The pressure-recording analytical method (PRAM) system 
requires only an arterial line and is commercially available 
as the MostCare system. Transesophageal echocardiogra-
phy (TEE) can measure CO by non-Doppler- or Doppler-
based methods. The partial CO2 rebreathing technique, 
another method to measure CO, is marketed by Novame-
trix Medical Systems as the NICO system. Thoracic elec-
trical bioimpedance (TEB) and electric bioreactance (EB) 
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indications, contraindications, and typical limitations of 
these different devices are also discussed.

CO measurement and pulmonary artery catheter

In 1870, Dr. Adolf Fick discovered a method of computing 
an animal’s CO based on the oxygen consumption and the 
difference in oxygen content between arterial and venous 
blood (Eq. 1) [9]:

where VO2  =  oxygen consumption per minute, 
CaO2 = arterial oxygen content, and CvO2 = mixed venous 
oxygen content.

In 1893, George Stewart developed an indicator-dilution 
technique, using hypertonic saline as an indicator, to deter-
mine CO [10]. Based on Stewart’s work, William Hamil-
ton used indocyanine green as the indicator, instead of 
saline, to measure the variation of concentrations over time 
in human circulation. CO is equal to the quantity of dye 
injected divided by the area under the time–concentration 
curve (Fig. 1; Eq. 2) [11].

where C0 =  initial concentration of injector, V0 =  initial 
volume of injector, and the denominator =  the integral of 
indicator concentration over time.

The application of Fick’s principle for the measure-
ment of CO was not possible in humans until Dr. Werner 
Forssman developed a technique to sample mixed venous 
blood from the pulmonary artery in 1929 [11]. However, 
widespread clinical use of CO measurement became prac-
tical only after the balloon-tipped PAC was introduced by 

(1)Fick’s principle: CO = (VO2)
/

(CaO2 − CvO2),

(2)Stewart-Hamilton equation: Flow = C0V0

/
∫

C(t)dt,

Drs. Swan and Ganz in 1970 [1]. Obviously, PAC is inva-
sive because it involves inserting a large-bore multi-lumen 
catheter from the internal jugular or subclavian vein to the 
pulmonary artery, going through two cardiac chambers and 
two cardiac valves. Its application has been associated with 
numerous complications (Table  1) [12, 13]. Beyond the 
complications associated with PAC placement, the efficacy 
and clinical benefit of PAC are questionable. Numerous 
studies indicated PAC lacks positive benefits in clinical out-
comes [5, 7, 14, 15], and some studies even demonstrated 
an increase in hospital mortality [3, 4, 16]. However, these 
studies showed an improvement in mortality in surgical, 
critically ill, and septic patients [17, 18]. Thus, PAC may 
still have a role in some specific conditions such as right 
ventricular failure, pulmonary hypertension requiring vaso-
dilator therapy, or septic patients [19]. For the aforemen-
tioned reasons, the clinical application of PAC has been 
noticed to experience a steady decline during the past dec-
ade. In the meantime, the race to develop alternative tech-
nology to replace PAC has been leaping forward [20]. Cur-
rently, there are some less invasive techniques already on 
the market. An ideal CO measurement should have the fol-
lowing features: advanced and comprehensive, minimally/

Fig. 1   Indicator-dilution curve. Cardiac output is inversely propor-
tional to area under the curve (AUC). Second peak is an effect of 
recirculation

Table 1   Complications associated with pulmonary artery catheteri-
zation [12, 13, 120]

PAC complications Reported incidence (%)

Central venous access

 Arterial puncture 0.1–13

 Postoperative neuropathy 0.3–1.1

 Pneumothorax 0.3–4.5

 Air embolism 0.5

Catheterization

 Minor dysrhythmias 4.7–68.9

 Severe dysrhythmias (ventricular  
tachycardia or fibrillation)

0.3–62.7

 Minor increase in tricuspid regurgitation 17

 Right bundle-branch block 0.1–4.3

 Complete heart block (in patient with  
coexisting left bundle-branch block)

0–8.5

Catheter indwelling

 Pulmonary artery rupture 0.03–1.5

 Positive catheter-tip cultures 1.4–34.8

 Catheter-related sepsis 0.7–11.4

 Thrombophlebitis 6.5

 Venous thrombosis 0.5–66.7

 Mural thrombus 28–61

 Valvular/endocardial vegetations or  
endocarditis

2.2–100

 Death (attributed to pulmonary artery 
catheter)

0.02–1.5

 Catheter knotting intracardially Several case reports
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noninvasive, continuous, and reliable hemodynamic assess-
ment, and be user friendly with minimal complication and 
ultimately improved outcome. Unfortunately, none of the 
current techniques yet meets all these criteria. In regard to 
acceptable precision of an alternative new development, 
Critchley and Critchley defined a cut-off value of 30  % 
agreement with current technology to be acceptable [21].

Minimally invasive CO monitoring

Arterial contour analysis

The idea that stroke volume (SV) can be derived from pulse 
pressure (PP) was observed by Erlanger and Hooker [22]. 
Currently, there are several different devices based on pulse 
contour analysis, including the uncalibrated FloTrac/Vig-
ileo system (Edwards Lifesciences) [20] and the calibrated 
systems including PiCCO (PULSION Medical Systems) 
and LiDCO (London, UK) [22].

FloTrac/Vigileo: a noncalibrated arterial contour analysis 
technique

The technique and  its mechanism  The FloTrac/Vigileo 
system was first introduced by Edwards Lifesciences in 
2005 [23]. It has a blood flow sensor (FloTrac) connecting 
to an arterial line and Vigileo monitor. The system provides 
a display of CO, SV, stroke volume variation (SVV), and 
systemic vascular resistance (SVR) without requiring exter-

nal calibration [20]. The basic principle is based on the lin-
ear relationship between PP and SV (Eq. 3) [24]:

where SDAP = the standard deviation of the data points and 
reflects PP (Fig. 2a), and factor χ =  the conversion factor 
that depends on arterial compliance (assessed by gender, 
age, height, weight), mean arterial pressure (MAP), and 
waveform characteristics. In the third-generation FloTrac/
Vigileo, factor χ is calculated every minute [21], whereas 
in the fourth- generation device it is calculated every 20 s 
[20].

Advantages and  limitations  The FloTrac system is less 
invasive, provides continuous CO monitoring, and is rela-
tively easy to use. However, its accuracy is limited in unsta-
ble patients, patients with severe arrhythmia, severe aortic 
valve regurgitation, and other factors disturbing the arterial 
waveform [25]. Because the FloTrac/Vigileo system does 
not require external calibration, the accuracy and preci-
sion may be slightly decreased when compared with the 
calibrated system in some conditions [22, 23, 26]. Hence, in 
patients with hemodynamic instability, the calibrated device 
may offer an advantage over the uncalibrated devices [24].

Validity studies  The FloTrac system has released three dif-
ferent versions of software. The third-generation software is 
improved in accuracy as it relies on a much larger dataset, 
including larger proportions of hyperdynamic and vaso-

(3)SV = SDAP × χ .

Fig. 2   Different methods of arterial waveform analysis. a The 
FloTrac system samples data points from the arterial waveform at 
a set frequency. Pulse pressure is assessed by calculating the stand-
ard deviation of the data point. b The PiCCO and PRAM system: 
the starting point is the area under the systolic portion of the arterial 

waveform. c The LiDCO system converts the arterial pressure wave-
form into a standardized volume waveform that is analyzed as sine 
wave [F(X)] using the root mean square (RMS) method, also known 
as pulse power analysis. (From [24], with permission)
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plegic patients [27]. In septic patients and cardiac surgery 
patients, an acceptable agreement of the third-generation 
FloTrac system and PAC was established [27, 28], with 
a percentage error of 29 % and 20 %, respectively. In the 
perioperative period, the third-generation FloTrac system 
was able to track changes in CO induced by fluid preload 
[29]. A study by Slagt et  al. found the ability to perform 
CO measurement in normodynamic or hypodynamic condi-
tions but not in hyperdynamic CO status [30]. One meta-
analysis study supported the use of the FloTrac system if 
used with consideration of its limitations [25]. However, the 
use of third-generation software was inaccurate in patients 
with low SVR [31–33], those using high doses of vasopres-
sor therapy [34, 35], during liver transplantation surgery 
[33], and during cardiac surgery [36]. Therefore, some 
studies suggested even the third-generation software may 
still not be the replacement of PAC [37]. To overcome the 
limitations, Edward Lifesciences improved the software and 
released the FloTrac system 4.0 in May 2014 [20]. A study 
compared CO measurement by FloTrac and transesopha-
geal echocardiography (TEE) during abdominal aortic 
aneurysm surgery. The FloTrac system was found not clini-
cally acceptable for use in abdominal aortic aneurysm sur-
gery [38]. In the study by Mutoh et al., CO measured by the 
third-generation FloTrac system was lower when compared 
to the PiCCO system during hyperdynamic therapy with 
dobutamine for reversing delayed cerebral ischemia [39].

PiCCO monitor (Pulse Medical System, Munich, Germany)

The technique and its mechanism  The PiCCO system was 
approved for clinical use in 2000. PiCCO applies a special 
algorithm that combines real-time continuous monitoring 
through pulse contour analysis with intermittent transpul-
monary thermodilution (TPTD) measurement (Fig.  3). 
PiCCO provides almost all the same hemodynamic param-
eters as other techniques [40]. The PiCCO system calculates 
CO by Eq. 4 [41].

(4)

CO = cal× HR×

∫

systole

(

P(t)
/

SV+ C(p)× dP
/

dt
)

dt,

where cal  =  calibration factor derived from TPTD, 
HR  =  heart rate, 

∫

systole
= systolic portion of curve 

(Fig.  2b), P(t) =  pressure change over time, SVR =  sys-
temic vascular resistance, P(t)/SVR =  the area under the 
arterial pressure curve in systole where SVR is derived 
from mean arterial pressure/CO, C(p) = aortic compliance, 
and dP/dt = shape of the arterial waveform [41].

PiCCO arterial contour analysis uses the TPTD technique 
as an external calibration. The calibration interval is recom-
mended to be every 8  h or whenever there is a clinically 
significant change in SVR. The central line catheterization 
should be placed in the central cardiopulmonary circulation; a 
common site is the internal jugular or subclavian vein. Place-
ment in the femoral vein proved to be an alternative choice 
[42]. An arterial line is typically inserted at the femoral artery, 
although axillary, brachial, and radial arteries are acceptable 
alternative choices. In patients under high doses of catecho-
lamine, pressure measurement in the femoral artery would be 
more advantageous than in the radial artery [43, 44].

Advantages and  limitations  The advantages for PiCCO 
are that it is less invasive and is useful in the pediatric 
population when a PAC is too large to be inserted [45–47]. 
Moreover, the TPTD method is independent of ventilator 
and respiratory cycles. Therefore, PiCCO gives consistent 
and reproducible results. The TPTD method has the unique 
ability to measure global end-diastolic volume (GEDV) and 
intrathoracic blood volume (ITBV), which can estimate the 
cardiac preload [48, 49].

Complications related to PiCCO were few, as reported 
by Belda et al. The incidence of site inflammation and cath-
eter-related infection were 2  % and 0.78  %, respectively. 
Other complications were rare [50].

Contraindications to the use of PiCCO can be divided 
into two categories: contraindications to vascular device 
insertion (e.g., arterial grafting) and anatomical or physio-
logical derangements that result in inaccurate measurement 
(e.g., regurgitant valve, intracardiac shunt, extracorporeal 
circulation).

Validity studies  The PiCCO system was compared to PAC 
in septic patients and cardiac and lung transplant surgery 

Fig. 3   Thermodilution curve 
after injection of cold saline 
(red arrow) via the superior 
vena cava. Peak temperature 
change arrives earlier when 
measured in the pulmonary 
artery (first peak) than if 
measured in the femoral artery 
(second peak). (Picture on left 
from Pulse Medical System, 
with permission)
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patients. The results showed satisfactory correlations [51, 
52]. In conditions of insignificant changes of SVR, PiCCO 
was claimed to have 20  % percentage error with a bias 
of 0.23 l/min [53]. PiCCO was also compared to LiDCO 
and FloTrac as cross comparison against PAC; the results 
showed PiCCO and LiDCO measurements were compara-
ble in a clinically acceptable range [54]. PiCCO was com-
pared to Doppler ultrasound in critically ill patients, and 
good agreement was found with these two techniques [55]. 
Broch et al. measured CO by PiCCO and ccNexfin during 
cardiac surgery; a good correlation between them was also 
found [56]. Moreover, CO monitoring and using ITBV as 
guidance by the PiCCO system could reduce duration of 
mechanical ventilation and improve patient outcomes in 
septic patients [57]. However, some studies revealed large 
discrepancies between PiCCO and PAC in off-pump coro-
nary artery bypass (OPCAB) surgery; the percentage error 
range can be as great as 32 % to 50 %, depending on the 
stage of operation [58].

LiDCOplus system (LiDCO, Cambridge, UK)

The technique and  its mechanism  The LiDCO sys-
tem uses lithium as an indicator to determine CO, first 
described by Linton et al. [59]. This method is based on 
Stewart–Hamilton principles (Eq.  2). The LiDCOplus 
system is based on running two proprietary algorithms: an 
indicator dilution CO monitoring (LiDCO system) and a 
continuous arterial waveform analysis (PulseCO system). 
To increase its accuracy, the LiDCO system is used to 
calibrate the PulseCO system. The LiDCO system con-
sists of a lithium sensor attached to the arterial line. Once 
lithium is injected into the venous circulation, blood sam-
ples from the arterial line are drawn, and a lithium con-
centration time curve is plotted. The area under the curve 
will determine CO. The lithium indicator can be injected 
via either central or peripheral venous access [60]. Thus, 
LiDCO system requires only an arterial line and a periph-
eral IV line.

The PulseCO system offers continuous CO monitoring. 
SV is calculated from the arterial pressure waveform using 
an autocorrelation algorithm. The volume of the arterial 
tree in arbitrary units is determined by the root mean square 
(RMS) method, which is independent of waveform mor-
phology (Fig. 2c). The score value after the RMS method 
is called nominal SV, which is recalibrated with patient-
specific factors to scale an “actual SV.” These factors 
include the lithium indicator dilution and arterial compli-
ance variations [24]. Therefore, the PulseCO system is rec-
ommended to be recalibrated every 8 h or with each major 
hemodynamic change [24, 61]. The LiDCOplus system 
provides various parameters including CO, intrathoracic 

blood volume (ITBV), MAP, SVR, SV, SVV, and pulse 
pressure variation (PPV) [61]. Recently, LiDCO Company 
has released “LiDCORapid,” a new monitor that derives 
SV from the patient’s arterial waveform using the PulseCO 
algorithm. The LiDCORapid helps optimally guide goal-
directed therapy via PPV and SVV analysis.

Advantages and limitations  The advantage of the LiDCO-
plus system is that it is less invasive than PAC and PiCCO 
because it needs only an arterial and a peripheral venous 
access [22, 40]. In addition, the LiDCOplus system can pro-
vide special parameters such as SVV or PPV. However, the 
accuracy of the LiDCOplus system may be compromised 
under circumstances such as patients with aortic regurgita-
tion, severe arrhythmia, and severe peripheral vasoconstric-
tion, and patients who receive lithium therapy [22, 40].

Contraindications of the LiDCOplus system include the 
following: (a) conditions related to a patient’s extra lithium 
intake because this will lead to an overestimate of CO [40]; 
(b) patients who receive nondepolarizing muscle relaxant, 
which will interfere with the lithium sensor [62]; (c) other 
conditions including body weight <40 kg and first trimes-
ter of pregnancy [63]; and conditions related to anatomic 
cardiac abnormalities that lead to compromise in the accu-
racy of the PulseCO [61], such as patients with aortic valve 
regurgitation, intraaortic balloon pump (IABP), and poor 
quality of arterial signal.

Validity studies  Linton et  al. compared the CO meas-
urements obtained by LiDCO and PAC thermodilution 
technique in immediate post-CABG patients. The results 
showed a good correlation of the two techniques [59]. 
LiDCO was also compared to PAC in post-liver transplant 
patients [64], post-cardiac surgery patients [65], and the 
postpartum period of patients with severe preeclampsia 
[66]. The results showed a satisfactory correlation between 
the two techniques. A randomized prospective controlled 
clinical trial conducted by Pearse et al. also demonstrated a 
significant reduction in complications and median hospital 
stay in high-risk surgical patients treated with LiDCOplus-
based goal-directed therapy [63]. However, Yamashita et al. 
showed a poor correlation and large bias of PulseCO dur-
ing off-pump CABG when compared to the PAC thermodi-
lution technique. They concluded that PulseCO might be 
unsuitable for off-pump cardiac surgery patients [67]. Cross 
comparisons of LiDCO, PiCCO, FloTrac, and PAC were 
also performed. The results indicated LiDCO was the least 
erroneous compared to other less invasive devices [54]. In 
OPCAB surgery patients, when hemodynamic parameters 
as assessed by PAC thermodilution, LiDCOplus, and TEE 
were compared after fluid challenging, LiDCOplus showed 
a high sensitivity for assessing intravascular volume [68].
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PRAM (pressure‑recording analytical method)

The technique and its mechanism  The pressure-recording 
analytical method (PRAM) is a technique designed for 
arterial pressure-derived continuous CO measurement 
with no need for any starting calibration or central venous 
catheterization. Therefore, PRAM needs only an arterial 
line as with FloTrac/Vigileo. PRAM technology is based 
on the principle that, in any given vessel, volume changes 
occur mainly because of radial expansion in response to 
pressure variations; simply put, the alterations of the sys-
tolic portion of the area under the curve reflect changes in 
SV [69]. This technique calculates CO using a number of 
physical parameters, including the force of left ventricu-
lar ejection, arterial impedance counteracting the pulsatile 
blood inflow, arterial compliance, and peripheral small 
vessel resistance [70]. What differentiates PRAM from 
other pulse contour analysis technology is that (1) PRAM 
calculates the area under curve by taking into account 
both pulsatile and continuous contribution of the physical 
forces underlying the relationship between pressure curve 
morphology and blood flow; and (2) the frequency sam-
pling of PRAM is 1000 Hz whereas the other pulse contour 
methods use 100  Hz [71]. A higher frequency sampling 
allows a higher degree of precision. PRAM also provides 
various hemodynamic parameters including CO, SVV, 
PPV, and SVR.

Advantages and limitations  PRAM is a less invasive tech-
nique that offers continuous monitoring of CO and other 
advanced hemodynamic parameters including SVV and 
PPV. PRAM can avoid the risk of CVP catheterization and 
is potentially more advantageous clinically. Although con-
troversial, PRAM could be used for unstable patients with 
high doses of inotropic drugs and even for patients with 
IABP with sinus rhythm [72]. However, PRAM has some 
limitations: some are technically related (over-damping 
or under-damping of arterial waveforms) and some are 
patient related, such as inappropriate signal acquisition 
(e.g., aortic valve regurgitation) or abnormality of the 
peripheral arteries (e.g., aortic dissection, atherosclerotic 
plaque) [73, 74].

Validity studies  The accuracy of PRAM has been studied 
over a wide range of conditions. Giomarelli et  al. com-
pared PRAM and PAC thermodilution technique in CABG 
patients, showing that PRAM is accurate for real-time mon-
itoring of CO during surgery and the immediate postopera-
tive period [75]. Similar results were also reported in unsta-
ble patients such as those with an intraaortic balloon pump 
(IABP) or patients with ongoing infusion of high doses of 
inotropic agents for low cardiac output syndrome [76]. A 
recent study in the post-cardiac surgery ICU also found a 

good agreement of cardiac index measurement between 
PRAM and PAC thermodilution technique in hemodynami-
cally unstable patients, but not in those with atrial fibrilla-
tion [72].To further validate the use of PRAM, Donati et al. 
compared PRAM, PiCCO, and continuous PAC thermodi-
lution in a mixed medical-surgical ICU. These results also 
showed a good concordance between PRAM, PAC, and 
PiCCO in hemodynamically stabilized patients, with per-
centage errors of 25 % and 28 %, respectively [77]. Romag-
noli et  al.investigated the utilization of PRAM, FloTrac/
Vigileo, and transthoracic echocardiography in patients 
undergoing vascular surgery and showed PRAM had a 
good concordance with echocardiographic measurement 
[69]. However, some studies did show a lack of agreement 
between PRAM and PAC thermodilution technique in post-
cardiac surgery patients [78] and in unstable patients with 
atrial fibrillation [79].

VolumeView (Edwards Lifesciences, Irvine, CA, USA)

VolumeView was introduced in 2010 by Edward Lifes-
ciences. This system consists of a specific thermistor-
tipped arterial catheter (the VolumeView catheter) and the 
EV1000 monitoring platform. It also has a special con-
tinuous central venous oxygen saturation (ScvO2) moni-
toring via the PreSep oximetry catheter. The VolumeView 
system determines CO by continuous arterial pressure 
analysis on the femoral artery and external calibration 
using the TPTD technique. It provides various parameters, 
including EVLW, pulmonary vascular permeability index 
(PVPI), GEDV, ITBV, a new variable global ejection frac-
tion (GEF), CO, SV, SVV, and SVR [80].The VolumeView 
was used in a surgical and interdisciplinary ICU and shown 
to be as reliable as the PiCCO system [81]. However, the 
technology is not yet fully validated in humans with larger 
sample size. Future studies would be required to evaluate 
the impact of the VolumeView system on morbidity and 
mortality.

Transpulmonary thermodilution (TPTD)

The transpulmonary thermodilution (TPTD) technique has 
been available for more than 20  years [82]. The PiCCO 
monitor and VolumeView are the only currently available 
devices applying the principle. TPTD is based on the Stew-
art–Hamilton principle and requires only central venous 
catheterization and arterial line [40]. After a bolus of cold 
saline (<8 °C) is injected via the central vein catheter, the 
cold saline is mixed with the blood in the circulation. The 
relative change in temperature reflects the CO flowing 
through the cardiovascular system (Fig.  3). A thermistor-
tipped catheter is usually placed at a femoral artery or axil-
lary or brachial artery [40, 41].
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Transesophageal echocardiography (TEE)

The technique and its mechanism

The first transesophageal echocardiography (TEE) was 
introduced in the early 1980s. Since then, TEE has evolved 
into an almost routinely used monitor and is an indispen-
sable diagnostic tool in cardiovascular surgery [83]. Meas-
urement of SV and CO with TEE can be accomplished by 
non-Doppler- or Doppler-based methods. However, the 
Doppler-based method is commonly used in clinical prac-
tice [23]. Blood flow is obtained by the Doppler frequency, 
which reflects the moving red blood cells (Eq.  5; Fig.  4) 
[23, 84, 85].

where SV = stroke volume, VTI = Doppler velocity–time 
integral, and CSA = cross-sectional area.

CO measurement can be achieved by placing the TEE 
probe close to the left ventricular outflow tract (LVOT), 
which is essentially cylinder shaped, where diameter can 
easily be determined. So, the cross-sectional area (CSA) 
can be calculated by the formula πr2. The “velocity time 
integral” (VTI) can be measured with continuous-wave 
Doppler at LVOT. With known CSA and VTI, SV can 
then be calculated (Fig. 4) [23]. TEE can provide not only 
hemodynamic assessment such as ventricular volume, SV, 
and CO, and estimation of ventricular systolic function 
(EF), but also anatomical information such as RV strain for 
suspected pulmonary embolism [85]. Furthermore, volume 
assessment can be obtained via TEE by measuring left ven-
tricular end diastolic area (LVEDA). Therefore, TEE can 
be crucial in guiding proper treatment, such as cessation of 
inotropic treatment, or administration of volume or vaso-
constrictors [82].

(5)SV = VTI× CSA, CO = SV× HR,

Advantages and limitations

TEE offers tremendous advantages, as it can detect ana-
tomical abnormalities, volume status, myocardial contrac-
tility information, and other functional assessment as well 
as hemodynamic parameters. TEE provides relatively mini-
mally invasive and real-time measurement of CO. How-
ever, TEE is usually limited to anesthetized patients. More-
over, it cannot be used in very small children because of 
the size of the probe. The accuracy is also highly depend-
ent upon the quality of echocardiographic images and the 
operator’s skill and experience [9, 22, 23]. Although over-
all it is very safe, TEE has its intrinsic risks. As the TEE 
probe is introduced blindly into the esophagus, it can 
potentially injure the hypopharynx or the esophagus [86]. 
The risk factors of the complications are often associated 
with preexisting esophageal pathologies. In a retrospective 
study of 7200 cardiac surgery patients, there was no TEE-
associated mortality, and morbidity incidence was 0.2  %. 
The most common complication was severe odynophagia 
(0.1  %). Other complications could include dental injury 
(0.03 %), endotracheal tube malpositioning (0.03 %), upper 
gastrointestinal hemorrhage (0.03 %), and esophageal per-
foration (0.01 %) [83]. Therefore, TEE should not be used 
in patients with severe esophageal strictures and should be 
used cautiously in those with esophageal varices or recent 
esophageal surgery [87]. The general risk factors for TEE 
complications are gastroesophageal pathology, difficulty 
with TEE probe insertion, the elderly or children, history of 
thoracic radiation, cervical arthritis, and prolonged surgical 
duration/TEE probe insertion time [88].

Validity studies

The TEE and PAC thermodilution techniques were com-
pared during cardiac surgery. The results indicated clini-
cally acceptable agreement between the two techniques 
[89]. TEE was compared to PAC in mechanically ventilated 
patients. A significant correlation between the two tech-
niques was identified. However, TEE had a wider range 
limits of concordance with PAC technique (−1.73 to 1.29 
l/min) and higher percentage errors (38.6 %) [90]. Concha 
et al. compared TEE with FloTrac/Vigileo in laparoscopic 
colon surgery patients and found a clinically significant 
discrepancy in CO measurement by TEE and FloTrac/Vig-
ileo (percentage error, 40 %) [91].

Partial CO2 rebreathing technique: the NICO system

The technique and its mechanism

The partial CO2 rebreathing technique was marketed by 
Novametrix Medical Systems as the NICO system in 1999 

Fig. 4   Left ventricular outflow tract (LVOT) diameter measure-
ment using LVOT long-axis view (left) and LVOT VTI measurement 
(right). (From [85], with permission)
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[22]. This method applies Fick’s principle (Eq. 6) by using 
expired carbon dioxide (CO2) concentration as an indica-
tor. Venous CO2 (VCO2) can be calculated from the dif-
ference between inspired and expired gases. NICO system 
uses an extra loop of ventilatory circuit to create a tran-
sient partial CO2 rebreathing system, thus increasing the 
end-tidal CO2 (EtCO2). The mixed venous CO2 (CvCO2) 
is estimated by this rebreathing process. The CaCO2 can 
be approximated by the change in EtCO2 and multiplied 
to the slope of the CO2 dissociation curve (S). Because 
the intrapulmonary shunt can affect the estimation of CO, 
arterial blood gas is needed to evaluate for shunt estima-
tion [22, 92].

where VCO2  =  the difference between inspired and 
expired CO2 content, CvCO2 is estimated by using a partial 
rebreathing technique, and CaCO2 is estimated from the 
PaCO2 and the end-tidal CO2.

The NICO system is limited to intubated, sedated, and 
mechanically ventilated patients. Moreover, NICO cannot 
be used in severe lung injury patients, as they often have 
increased shunt and this leads to potential errors in estimat-
ing CO [92]. Rocco et al. reported NICO worked very well 
when the pulmonary shunt level is low, but not when the 
pulmonary shunt was more than 35 % [93].

Advantages and limitations

The advantage of the NICO system is minimal invasiveness 
and capability of continuous monitoring of CO. However, 
NICO is restricted to intubated patients without severe 
gas-exchange abnormality and patients with PaCO2 above 
30 mmHg [22]. Moreover, it is contraindicated in patients 
who cannot tolerate a brief rebreathing period [23].

Validity studies

NICO was compared to the PAC technique in critically ill 
patients [94] and off-pump cardiac surgery patients [95]. 
The results showed a high degree of agreement of these 
two techniques. Some studies have demonstrated poor 
concordance between PAC and the NICO system in tho-
racic surgery and post-cardiac surgery [96]. Botero et al. 
reported a poor correlation between the PAC technique 
and the NICO system, as CO measured by NICO tends 
to be underestimated after separating from cardiopulmo-
nary bypass (CPB). However, better correlation was seen 
before initiation of CPB [97]. Erroneous measurement of 
CO by the NICO system was observed in acute altera-
tions of circulation [98], or in patients with decreased 
minute ventilation or increased intrapulmonary shunt 

(6)
Modified Fick’s equation: CO = ∆VCO2

/

S ×∆EtCO2,

[71, 99]. NICO was also compared to esophageal Dop-
pler in major abdominal surgery and a poor concordance 
was observed between them [100]. Similarly, Mielck 
et al. found weak correlation between NICO and PiCCO 
systems [101]. Thus, the NICO system may serve as an 
alternative CO measurement to the PAC thermodilution 
technique in certain patient groups such as heart surgery 
patients [92].

Noninvasive CO measurement techniques

In the past decade, a number of truly noninvasive CO moni-
toring devices have been developed. However, most of 
them still have limitations and will need further refining for 
better accuracy and precision.

Thoracic electrical bioimpedance (TEB)

The technique and its mechanism

TEB involves delivery of a low-amplitude high-frequency 
electrical current across the thorax. The sensing electrodes 
measuring impedance are placed on the upper and lower 
thorax. Hemodynamic parameters are measured by TEB 
devices based on changes in the thoracic electrical conduc-
tivity to changes of thoracic aortic blood flow during the 
cardiac cycle. By measuring the impedance change gener-
ated by the pulsatile flow and the time intervals between 
the changes, SV can be calculated [22, 102].

Advantages and limitations

TEB is a completely noninvasive CO monitoring method. 
However, TEB is limited by arrhythmia, fluid in the tho-
racic component, and noise from mechanical ventilation or 

Fig. 5   The NICOM system. (Pictures from NICOM Cheetah Medi-
cal with permission)
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surgical electrocautery. In addition, the patients need to be 
intubated, and signal stability often fades after 24 h of the 
application [22, 84]. Thus TEB is less likely to be used in 
routine CO monitoring alone. Subsequently, bioreactance 
was developed to overcome the limitations of TEB.

Validity studies

In post-cardiac surgery patients, CO measurement by the 
TEB and PAC techniques was compared. TEB had an 
acceptable accuracy but it might be more useful as a hemo-
dynamic trending analysis, not as a diagnostic interpreta-
tion tool [103].

Electrical bioreactance cardiography

The technique and its mechanism

Electric bioreactance (EB) was developed to overcome the 
limitations of TEB. EB analysis is based on changes in fre-
quency of electrical resistivity across the thorax. The EB 
signal is less susceptible to interference from chest wall 
movement, lung edema, and pleural effusion. EB technol-
ogy is commercially available as the NICOM system in 
the U.S. [22, 102]. To evaluate CO, four dual electrodes 
are placed on the chest wall. Each sticker contains an elec-
trode to inject an alternating current (i) with the frequency 
75 kHz into the body, and the other electrode is the volt-
age input amplifier (v) to detect and summarize the return 
signal (Fig.  5). Then NICOM measures the time delay 
between these two signals (i and v), which is called a phase 
shift. In humans, the majority of phase shifts are pulsa-
tile flow from the aorta [104]. The NICOM monitor has a 

highly sensitive “phase detector” that detects phase shifts 
and summarizes them into the NICOM signals [104]. The 
NICOM signals are mainly correlated with aortic blood 
volume. Flow is the change in volume over time; thus, 
NICOM flow signals (dNICOM) can be obtained by deriv-
ing the NICOM signals in time. The maximum flow (dX/
dtmax) is measured by the maximum point of the dNICOM 
signals. The ventricular ejection time is measured from the 
first and second zero crossing. The SV is calculated based 
on Eq. 7:

Stroke volume is calculated based on thoracic phase-
shift signals.

Advantages and limitations

Bioreactance is a totally noninvasive, continuous monitoring 
with more variety in clinical applications (e.g., from small 
children to adults) and is very safe for clinical use. However, 
signal interference was reported by electrocautery, causing 
transiently impaired signals [105]. Moreover, during episodes 
of low flow, NICOM signals may lose their accuracy [106].

Validity studies

In post-cardiac surgery patients, NICOM was compared to 
PAC technique with good correlation observed [104, 106]. 
In a multicenter study of intensive care patients, the NICOM, 
PAC, Fick’s principle, and bioreactance technique were simul-
taneously compared [107]. In the subset analysis, NICOM 
had a better correlation to PAC than did other techniques 
[107]. In major abdominal surgery patients and post-cardiac 

(7)SV = dX
/

dt × VET,CO = SV× HR.

Fig. 6   Finger cuff and volume 
clamp method. (Pictures from 
Edwards Lifesciences website 
with permission)
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surgery patients, NICOM was compared to the FloTrac sys-
tem, with good agreement between these two techniques 
observed [105, 108]. Squara et  al. studied the performance 
of NICOM by using PiCCO device as the reference. NICOM 
was also showed a good agreement with the PiCCO system 
[109]. However, an inconsistent result was seen in critically ill 
patients, with a percentage error of 82 % [110].

The ccNexfin system

The technique and its mechanism

The ccNexfin system was first introduced in 2007 by 
Edwards Lifesciences. Recently, a newer version called 
the ClearSight system has been available. This system is a 
completely noninvasive continuous CO monitoring system. 
It measures CO by combining continuous blood pressure 
monitoring and a novel pulse contour method (Nexfin CO-
Trek) [111]. The ccNexfin system includes the following 
components [112]:

1.	 Continuous finger BP measurement: the finger cuffs 
wrap around the middle phalanx of the fingers to 
measure BP. Each finger cuff includes a LED emitter-
detector that measures the diameter of the finger arter-
ies (Fig. 6); it inflates and deflates to keep the diameter 
of finger arteries constant throughout the cardiac cycle 
(volume clamp method). The latest version improves 
its accuracy by performing real-time finger pressure 
measurement 1000 times per second [113].

2.	 Brachial pressure reconstruction: the brachial pressure 
waveform is modified from the finger pressure wave-
form by a transfer function based on the vast clinical 
database and correcting for the brachial–finger pres-
sure gradient waveform.

3.	 Pulse contour method: the pulse contour method is 
used to estimate CO, which is based on the interaction 
between the cardiac systole, arterial input impedance 
(Zin), and the systolic and diastolic arterial pressures, as 
shown by this formula: ΔP/Q =  Zin. Zin is calculated 
from the characteristic impedance, the total arterial 
compliance, and the total peripheral resistance, whereas 
ΔP is calculated from the systolic pressure–time inte-
gral of the brachial arterial pressure waveform.

The ccNexfin system provides various hemodynamic 
parameters including continuous BP, SV, CO, SVV, and 
SVR.

Advantages and limitations

The ccNexfin system provides continuous, noninvasive CO 
monitoring, and it is very easy to use. It also provides SVV Ta

bl
e 

2  
c

on
tin

ue
d

C
O

 te
ch

ni
qu

e
Pr

od
uc

t s
ys

te
m

In
va

si
ve

ne
ss

In
te

rm
itt

en
t  

or
 c

on
tin

uo
us

A
dv

an
ta

ge
L

im
ita

tio
ns

A
dd

iti
on

al
 in

fo
rm

at
io

n

B
io

re
ac

ta
nc

e
N

IC
O

M
–

C
on

tin
uo

us
N

on
in

va
si

ve
L

im
it 

in
 c

on
di

tio
n 

of
 lo

w
 fl

ow
 

pe
ri

od

Si
gn

al
 a

rt
if

ac
t, 

e.
g.

, e
le

ct
ro

ca
ut

er
y

Si
gn

al
 s

ta
bi

lit
y 

fa
ils

 a
ft

er
 2

4 
h

PA
P

 p
ul

m
on

ar
y 

ar
te

ry
 p

re
ss

ur
e,

 P
C

W
P

 p
ul

m
on

ar
y 

ca
pi

lla
ry

 w
ed

ge
 p

re
ss

ur
e,

 S
V

 s
tr

ok
e 

vo
lu

m
e,

 S
V

V
 s

tr
ok

e 
vo

lu
m

e 
va

ri
at

io
n,

 P
P

V
 p

ul
se

 p
re

ss
ur

e 
va

ri
at

io
n,

 G
E

D
V

 g
lo

ba
l e

nd
 d

ia
st

ol
ic

 v
ol

um
e,

 
E

V
LW

 e
xt

ra
va

sc
ul

ar
 l

un
g 

w
at

er
, P

V
P

I 
pu

lm
on

ar
y 

va
sc

ul
ar

 p
er

m
ea

bi
lit

y 
in

de
x,

 I
T

B
V

 i
nt

ra
th

or
ac

ic
 b

lo
od

 v
ol

um
e,

 G
E

F
 g

lo
ba

l 
ej

ec
tio

n 
fr

ac
tio

n,
 E

F
 e

je
ct

io
n 

fr
ac

tio
n,

 L
V

E
D

A
 l

ef
t 

ve
nt

ri
cu

la
r 

en
d 

di
as

to
lic

 a
re

a,
 S

vO
2 

m
ix

ed
 v

en
ou

s 
ox

yg
en

 s
at

ur
at

io
n,

 S
cv

O
2 

ce
nt

ra
l v

en
ou

s 
ox

yg
en

 s
at

ur
at

io
n



473J Anesth (2016) 30:461–480	

1 3

Ta
bl

e 
3  

A
cc

ur
ac

y 
an

d 
pr

ec
is

io
n 

of
 d

if
fe

re
nt

 m
in

im
al

ly
 a

nd
 n

on
in

va
si

ve
 C

O
 m

on
ito

ri
ng

 te
ch

ni
qu

es

Te
ch

no
lo

gy
R

ef
er

en
ce

s
St

ud
ie

d 
de

vi
ce

Pa
tie

nt
 p

op
ul

at
io

n
C

as
es

C
ri

te
ri

on
 s

ta
nd

ar
d

C
O

 o
r 

C
I

B
ia

s 
or

 r
 v

al
ue

E
rr

or
 (

%
)

C
on

cl
us

io
n

Fl
oT

ra
c-

V
ig

ile
o 

sy
st

em
V

as
de

v 
[2

8]
T

hi
rd

-g
en

er
at

io
n 

Fl
oT

ra
c-

V
ig

ile
o

C
ar

di
ac

 s
ur

ge
ry

 
pa

tie
nt

s
40

PA
C

-T
D

C
O

0.
21

 (
−

0.
86

 to
 1

.0
0)

 
l/m

in
19

T
he

 n
ew

er
 s

of
tw

ar
e 

co
rr

el
at

es
 b

et
te

r 
to

 
PA

C
 d

er
iv

ed
 C

O
 

in
 th

e 
po

st
 b

yp
as

s 
pe

ri
od

D
e 

B
ac

ke
r 

[2
7]

T
hi

rd
-g

en
er

at
io

n 
Fl

oT
ra

c-
V

ig
ile

o
Se

pt
ic

 p
at

ie
nt

s
58

PA
C

-T
D

C
O

−
2.

6 
(−

4.
1 

to
 −

1.
2)

 
l/m

in
30

In
 p

at
ie

nt
 w

ith
 s

ep
si

s,
 

th
e 

th
ir

d 
ge

ne
ra

tio
n 

is
 m

or
e 

ac
cu

ra
te

, 
as

 p
re

ci
se

, a
nd

 le
ss

 
in

flu
en

ce
d 

by
 S

V
R

 
th

an
 th

e 
se

co
nd

-g
en

-
er

at
io

n 
so

ft
w

ar
e

M
ar

qu
é 

[3
1]

T
hi

rd
-g

en
er

at
io

n 
Fl

oT
ra

c-
V

ig
ile

o
Se

pt
ic

 s
ho

ck
 p

at
ie

nt
s

18
C

on
tin

uo
us

 P
A

C
-T

D
C

I
−

0.
1 

(2
.1

) 
l/m

in
/m

2
64

T
hi

rd
-g

en
er

at
io

n 
Fl

oT
ra

c/
V

ig
ile

o 
ap

pe
ar

s 
to

 b
e 

in
ac

cu
ra

te
 f

or
 C

I 
m

on
ito

ri
ng

 in
 s

ep
tic

 
sh

oc
k

M
on

ne
t [

35
]

T
hi

rd
-g

en
er

at
io

n 
Fl

oT
ra

c-
V

ig
ile

o
C

ir
cu

la
to

ry
 f

ai
lu

re
 

pa
tie

nt
s

60
PA

C
-T

D
C

I
0.

26
 (

0.
94

) 
l/m

in
/m

2
54

T
hi

rd
-g

en
er

at
io

n 
Fl

oT
ra

c/
V

ig
ile

o 
de

vi
ce

 w
as

 m
od

-
er

at
el

y 
re

lia
bl

e 
fo

r 
tr

ac
ki

ng
 c

ha
ng

es
 

in
 C

I 
in

du
ce

d 
by

 
vo

lu
m

e 
ex

pa
ns

io
n 

an
d 

po
or

ly
 r

el
ia

bl
e 

fo
r 

tr
ac

ki
ng

 c
ha

ng
es

 
in

 C
I 

in
du

ce
d 

by
 

no
re

pi
ne

ph
ri

ne

B
ia

nc
ofi

or
e 

[3
3]

T
hi

rd
-g

en
er

at
io

n 
Fl

oT
ra

c-
V

ig
ile

o
L

iv
er

 tr
an

sp
la

nt
 p

at
ie

nt
21

PA
C

-T
D

C
I

0.
4 

(0
.9

4)
 l/

m
in

/m
2

52
T

hi
rd

-g
en

er
at

io
n 

Fl
oT

ra
c-

V
ig

ile
o 

pr
ov

id
ed

 im
pr

ov
e-

m
en

ts
 o

ve
r 

th
e 

pr
ev

io
us

 v
er

si
on

. 
Fu

rt
he

r 
al

go
ri

th
m

 
re

fin
em

en
ts

 w
ill

 
in

cr
ea

se
 r

el
ia

bi
lit

y 
in

 
th

e 
hi

gh
ly

 c
om

pl
ex

 
se

tti
ng

 o
f 

ci
rr

ho
tic

 
pa

tie
nt

s 
un

de
rg

oi
ng

 
liv

er
 tr

an
sp

la
nt

at
io

n



474	 J Anesth (2016) 30:461–480

1 3

Ta
bl

e 
3  

c
on

tin
ue

d

Te
ch

no
lo

gy
R

ef
er

en
ce

s
St

ud
ie

d 
de

vi
ce

Pa
tie

nt
 p

op
ul

at
io

n
C

as
es

C
ri

te
ri

on
 s

ta
nd

ar
d

C
O

 o
r 

C
I

B
ia

s 
or

 r
 v

al
ue

E
rr

or
 (

%
)

C
on

cl
us

io
n

Pi
C

C
O

 m
on

ito
r

B
uh

re
 [

51
]

Pi
C

C
O

 s
ys

te
m

M
in

im
al

ly
 in

va
si

ve
 

ca
rd

ia
c 

su
rg

er
y

36
PA

C
-T

D
C

O
0.

00
3 

(1
.2

6)
 (

0.
94

) 
l/

m
in

–
Pi

C
C

O
 o

ff
er

s 
co

nt
in

uo
us

 C
O

 in
 

pa
tie

nt
s 

un
de

rg
oi

ng
 

m
in

im
al

ly
 in

va
si

ve
 

C
A

B
G

D
el

la
 R

oc
ca

Pi
C

C
O

 s
ys

te
m

Si
ng

le
 lu

ng
 tr

an
sp

la
n-

ta
tio

n
58

PA
C

-T
D

C
O

0.
18

 (
1.

59
) 

l/m
in

–
Pi

C
C

O
 s

ys
te

m
 g

av
e 

co
nt

in
uo

us
 a

nd
 

in
te

rm
itt

en
t v

al
ue

s 
ag

re
ei

ng
 w

ith
 P

A
C

L
iD

C
O

pl
us

 s
ys

te
m

Su
ja

th
a 

[5
3]

Pi
C

C
O

O
ff

-p
um

p 
co

ro
na

ry
 

by
pa

ss
 s

ur
ge

ry
60

PA
C

-T
D

C
O

0.
23

 (
0.

5)
 l/

m
in

20
C

on
tin

uo
us

 C
O

 b
y 

Pi
C

C
O

 a
nd

 in
te

rm
it-

te
nt

 P
A

C
 T

D
 te

ch
-

ni
qu

e 
w

er
e 

co
m

pa
ra

-
bl

e 
du

ri
ng

 O
PB

A
B

 
su

rg
er

y 
as

 lo
ng

 a
s 

no
 s

ig
ni

fic
an

t S
V

R
 

ch
an

ge
s

C
os

ta
 [

64
]

L
iD

C
O

 s
ys

te
m

Po
st

-l
iv

er
 tr

an
sp

la
nt

a-
tio

n 
pa

tie
nt

s
23

PA
C

-T
D

C
O

0.
1 

(1
.5

4)
 l/

m
in

15
.1

 %
Pa

tie
nt

s 
w

ith
 h

yp
er

-
dy

na
m

ic
 c

ir
cu

la
tio

n,
 

in
te

rm
itt

en
t a

nd
 c

on
-

tin
uo

us
 C

O
 v

al
ue

s 
by

 L
iD

C
O

 s
ys

te
m

 
sh

ow
ed

 g
oo

d 
ag

re
e-

m
en

t w
ith

 th
os

e 
by

 
PA

C
 T

D

M
cC

oy
 [

65
]

L
iD

C
O

 s
ys

te
m

Po
st

op
er

at
iv

e 
ca

rd
ia

c 
su

rg
er

y 
pa

tie
nt

s
8

PA
C

-T
D

C
I

−
0.

01
 (

1.
3)

 l/
m

in
/m

2
–

L
iD

C
O

 d
em

on
st

ra
te

d 
lo

w
 b

ia
s 

co
m

pa
re

d 
w

ith
 c

on
tin

uo
us

 C
I 

by
 P

A
C

 s
ig

ni
fic

an
t

D
ye

r 
[6

6]
L

iD
C

O
pl

us
 s

ys
te

m
Pa

tie
nt

s 
w

ith
 p

os
tp

ar
-

tu
m

 c
om

pl
ic

at
io

ns
 o

f 
se

ve
re

 p
re

ec
la

m
ps

ia

18
PA

C
-T

D
C

O
−

0.
58

 (
−

0.
77

 to
 

−
0.

39
) 

l/m
in

<
30

L
iD

C
O

pl
us

 m
ay

 h
av

e 
a 

va
lu

ab
le

 r
ol

e 
in

 
ob

st
et

ri
c 

cr
iti

ca
l c

ar
e

T
E

E
Pa

rr
a 

[8
9]

Ph
ili

ps
 S

on
os

 5
50

0
C

ar
di

ac
 s

ur
ge

ry
50

PA
C

-T
D

C
O

0.
01

5 
(−

1.
21

 to
 1

.2
2)

 
l/m

in
29

.1
C

O
 b

y 
T

E
E

 a
nd

 b
y 

PA
C

 is
 a

cc
ep

ta
bl

e 
an

d 
T

E
E

 is
 r

el
ia

bl
e 

to
 a

ss
es

s 
si

gn
ifi

ca
nt

 
C

O
 c

ha
ng

es
 in

 
se

le
ct

ed
 p

at
ie

nt
s

M
ǿl

le
r-

So
re

ns
en

 [
90

]
Ph

ili
ps

 X
7-

2t
 (

Ph
ili

ps
 

H
ea

lth
ca

re
)

C
ar

di
ac

 s
ur

ge
ry

25
PA

C
-T

D
C

O
−

0.
22

 (
−

0.
54

 to
 0

.1
) 

l/m
in

38
.6

C
O

 b
y 

T
E

E
 a

nd
 P

A
C

 
T

D
 h

ad
 w

id
e 

lim
its

 
of

 a
gr

ee
m

en
t. 

T
E

E
 

is
 n

ot
 in

te
rc

ha
ng

e-
ab

le
 w

ith
 P

A
C

 T
D

 
fo

r 
C

O



475J Anesth (2016) 30:461–480	

1 3

Ta
bl

e 
3  

c
on

tin
ue

d

Te
ch

no
lo

gy
R

ef
er

en
ce

s
St

ud
ie

d 
de

vi
ce

Pa
tie

nt
 p

op
ul

at
io

n
C

as
es

C
ri

te
ri

on
 s

ta
nd

ar
d

C
O

 o
r 

C
I

B
ia

s 
or

 r
 v

al
ue

E
rr

or
 (

%
)

C
on

cl
us

io
n

Pa
rt

ia
l C

O
2 

re
br

ea
th

in
g 

te
ch

ni
qu

e
O

de
ns

te
dt

 [
94

]
N

IC
O

 s
ys

te
m

U
nd

er
go

in
g 

m
aj

or
 

su
rg

er
y 

or
 in

 I
C

U
15

PA
C

-T
D

C
O

−
1.

68
 (

1.
76

) 
l/m

in
–

N
IC

O
 is

 a
 u

se
fu

l a
nd

 
ac

cu
ra

te
 n

on
in

va
si

ve
 

es
tim

at
e 

of
 C

O
. 

N
IC

O
 c

an
no

t f
ul

ly
 

re
pl

ac
e 

th
e 

PA
C

G
ue

re
t [

95
]

N
IC

O
 s

ys
te

m
D

ur
in

g 
of

f-
pu

m
p 

ca
rd

ia
c 

su
rg

er
y

22
PA

C
-T

D
C

O
−

3.
1 

(2
.5

) 
l/m

in
–

N
IC

O
 r

el
ia

bl
y 

m
ea

s-
ur

ed
 C

O
 a

nd
 m

or
e 

ra
pi

d 
th

an
 P

A
C

. M
ay

 
be

 m
or

e 
us

ef
ul

 to
 

de
te

ct
 r

ap
id

 h
em

o-
dy

na
m

ic
 c

ha
ng

es

B
ot

er
o 

[9
7]

N
IC

O
 s

ys
te

m
Po

st
-C

A
B

G
 s

ur
ge

ry
68

PA
C

-T
D

C
O

0.
18

 (
1.

01
) 

l/m
in

41
.7

B
ef

or
e 

C
PB

, t
he

 a
cc

u-
ra

cy
 o

f 
N

IC
O

, P
A

C
 

T
D

, a
nd

 tr
an

se
so

ph
-

ag
ea

l D
op

pl
er

 w
as

 
si

m
ila

r. 
A

ft
er

 C
PB

, 
N

IC
O

 te
nd

s 
to

 
un

de
re

st
im

at
e 

C
O

E
le

ct
ri

ca
l b

io
re

ac
ta

nc
e 

ca
rd

io
gr

ap
hy

Sq
ua

ra
 [

10
3]

N
IC

O
M

 s
ys

te
m

Po
st

-c
ar

di
ac

 s
ur

ge
ry

11
0

PA
C

-T
D

C
O

0.
06

 (
0.

71
) 

l/m
in

–
C

O
 m

ea
su

re
d 

by
 

N
IC

O
M

 h
ad

 a
cc

ep
t-

ab
le

 a
cc

ur
ac

y,
 p

re
ci

-
si

on
, a

nd
 r

es
po

n-
si

ve
ne

ss
 in

 a
 w

id
e 

ra
ng

e 
of

 c
ir

cu
la

to
ry

 
si

tu
at

io
n

R
av

al
 [

10
7]

N
IC

O
M

 s
ys

te
m

In
te

ns
iv

e 
ca

re
 u

ni
t

11
1

C
on

tin
uo

us
 P

A
C

-T
D

C
O

−
0.

09
 (
−

2.
5 

to
 2

.3
) 

l/m
in

–
N

IC
O

M
 h

as
 a

cc
ep

t-
ab

le
 a

cc
ur

ac
y 

in
 

ch
al

le
ng

in
g 

cl
in

ic
al

 
en

vi
ro

nm
en

ts

M
ar

qu
é 

[1
08

]
N

IC
O

M
 s

ys
te

m
Po

st
-c

ar
di

ac
 s

ur
ge

ry
29

C
on

tin
uo

us
 P

A
C

-T
D

C
O

−
0.

01
 (

0.
84

) 
l/m

in
–

N
IC

O
M

 s
ho

ul
d 

be
 

ad
de

d 
to

 th
e 

ar
ra

y 
of

 
C

O
 m

on
ito

ri
ng

 to
ol

s 
in

 s
el

ec
te

d 
pa

tie
nt

s

cc
N

ex
fin

A
m

el
oo

t [
11

6]
N

ex
fin

 (
B

m
ey

e,
 

A
m

st
er

da
m

)
C

ri
tic

al
ly

 il
l p

at
ie

nt
s

45
PA

C
-T

D
C

O
0.

4 
(2

.3
2)

 l/
m

in
36

N
ex

fin
 h

as
 a

n 
ac

ce
pt

-
ab

le
 c

on
co

rd
an

ce
 

be
tw

ee
n 

T
D

C
O

 a
nd

 
N

ex
C

O

St
ov

er
 [

11
8]

N
ex

fin
 H

D
 (

B
m

ey
e)

C
ri

tic
al

ly
 il

l p
at

ie
nt

s
10

PA
C

-T
D

C
O

0.
23

 (
2.

1)
 l/

m
in

29
N

ex
fin

 H
D

 m
on

ito
ri

ng
 

in
 th

e 
IC

U
 c

an
no

t 
be

 r
ec

om
m

en
de

d 
ge

ne
ra

lly

So
ko

ls
ki

 [
11

4]
N

ex
fin

 (
B

m
ey

e,
 

A
m

st
er

da
m

)
A

dv
an

ce
d 

he
ar

t f
ai

lu
re

 
pa

tie
nt

s
25

PA
C

-T
D

C
O

r 
va

lu
es

 =
 0

.8
9

–
N

ex
fin

 r
ev

ea
l a

de
qu

at
e 

co
nc

or
da

nc
e 

w
ith

 
th

e 
PA

C
 T

D



476	 J Anesth (2016) 30:461–480

1 3

and PPV, which are used in goal-directed therapy. How-
ever, the volume clamp method requires the finger cuff to 
be inflated continuously. Therefore, the use of ccNexfin is 
restricted to a maximum of 8 h per finger. Also, the use of 
ccNexfin may not be suitable in patients with severe periph-
eral vasoconstriction, very edematous fingers, regurgitant 
aortic valve, and those with an aneurysm in the proximal 
aorta [112].

Validity studies

The ccNexfin system had a good concordance with the PAC 
technique in a small group of heart failure patients [114] 
and patients undergoing CABG [115]. Ameloot et al. com-
pared ccNexfin with PiCCO system, with results showing 
moderate to good correlation [116]. Similar results were 
found when comparing the ccNexfin system with transtho-
racic echocardiography [117]. However, there are reports 
that in critically ill patients the ccNexfin system had a poor 
correlation with PAC technique, with a percentage error as 
high as 50  % [118]. Unfavorable results were also found 
when ccNexfin was compared to transesophageal Doppler 
[119]. Thus, the use of the ccNexfin system should take 
into consideration the clinical situations and its limitations.

Future trends in CO measurement 
and hemodynamic monitoring

The PAC thermodilution technique is invasive in nature and 
has well-documented complications [12, 13, 120]. The uti-
lization of PAC has experienced a steady decline whereas 
less invasive and noninvasive CO measurement techniques 
have been increasingly used in clinical practice. The cur-
rently available minimally invasive and noninvasive tech-
niques are summarized in Tables  2 and 3. Looking into 
the future, hemodynamic monitoring and CO measure-
ment will have the following trends: the decline in use of 
PAC will likely continue; the current minimally invasive or 
noninvasive techniques will be improved in accuracy and 
precision, being more suitable for clinical use, thus their 
use will steadily increase; PAC and minimally/noninvasive 
techniques will be used in better defined and more-specific 
patient populations; and circulatory functional monitor-
ing will very likely go beyond the assessment of global 
hemodynamic parameters and step into microcirculation 
monitoring [121]. The development focus in CO monitor-
ing devices seems to be shifting gears to emphasize the 
alterations of microcirculatory flow, aiming more at the 
markers that indicate the effectiveness of circulatory and 
microcirculatory resuscitations (e.g., lactic acid, vascular 
endothelial growth factor) [122–124]. Better understanding 
of the physiology and pathophysiology of microcirculation, 

especially at the molecular level, needs to be emphasized to 
design monitors that will detect the alterations and reflect 
more genuinely the physiological changes in patients.
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