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Abstract

Background Daikenchuto (DKT), a gastrointestinal

prokinetic Japanese herbal medicine, is prescribed for

patients with postoperative ileus (POI) and adhesive bowel

obstruction following abdominal surgery. Several mecha-

nisms for the amelioration of POI by DKT have been sug-

gested; however, it has remained unclear whether DKT

shows anti-inflammatory effects in POI. In the present study,

we investigated the effects of DKT in a mouse POI model

and attempted to clarify the detailed mechanisms of action.

Method Intestinal manipulation (IM) was applied to the

distal ileum of mice. DKT was administered orally to the

animals 4 times before and after IM. Gastrointestinal transit

in vivo, leukocyte infiltration, cytokine mRNA expression

and gastrointestinal motility were analyzed. We also

investigated the effects of the a7nAChR antagonist meth-

yllycaconitine citrate (MLA) on the DKT-mediated ame-

liorative action against POI, and we studied the effects of

DKT on inflammatory activity in a7nAChR knockout

mice.

Results DKT treatment led to recovery of the delayed

intestinal transit induced by IM. DKT significantly inhib-

ited the infiltration of neutrophils and CD68-positive

macrophages, and inhibited mRNA expressions of TNF-a
and MCP-1. MLA significantly reduced the anti-inflam-

matory action of DKT, and the amelioration of macrophage

infiltration by DKT was partially suppressed in a7nAChR

knockout mice.

Conclusions In conclusion, in addition to the gastroin-

testinal prokinetic action, DKT serves as a novel thera-

peutic agent for POI characterized by its anti-inflammatory

potency. The DKT-induced anti-inflammatory activity may

be partly mediated by activation of a7nAChR.

Keywords Anti-inflammatory action � Daikenchuto �
Macrophage � Nicotinic acetylcholine receptor �
Postoperative ileus

Abbreviations

POI Post-operative ileus

DKT Daikenchuto

IM Intestinal manipulation

a7nAChR a7 Nicotinic acetylcholine receptor

TNF-a Tumor necrosis factor alpha

Introduction

Post operative ileus (POI) is a problem that results in

treatment delays and increased cost burden of hospitaliza-

tion among patients undergoing abdominal surgery [1].

Gastrointestinal prokinetic agents, such as metoclopramide

[2], cisapride [3] and mosapride [4, 5], provide treatment

options for POI. At present, however, they are rarely used
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in clinical settings. Therefore, further elucidation of the

pathogenesis of POI and establishment of new options for

its treatment are required [6].

Daikenchuto (DKT) is a traditional herbal (Kampo)

medicine in Japan, and comprises four medical herbs;

zanthoxylum fruit, processed dried ginger, ginseng, and

malt sugar. This formula is known for its prokinetic action

or clinical efficacy against intestinal obstruction sub-

sequent to laparotomy or radiation therapy [7–11]. In

experimental studies, DKT showed preventive effects

against POI [8, 12, 13]. It is conceivable that DKT stim-

ulates intestinal motility and accelerates delayed intestinal

transit through the cholinergic pathway and activation of

5-HT3R and 5-HT4R. The main mechanism of contractile

action and improvement of gastrointestinal motility medi-

ated by DKT is the release of acetylcholine (ACh) from the

cholinergic nerves through 5-HT3R and 5-HT4R stimula-

tion [12–14]. This ACh improves delayed intestinal transit

and recovers delayed gastric emptying in POI [12–14].

Recent studies have revealed that local inflammation is

responsible for prolonging post-operative gastrointestinal

motility disorder [6, 15]. Macrophages and neutrophils play

a pivotal role in the induction of post-operative ileus. These

inflammatory cells express inducible nitric oxide synthase,

which in turn produces nitric oxide, thus inducing gastroin-

testinal motility disorder [16, 17]. As noted above, ga-

stroprokinetic agents such as 5-HT4R agonists provide

effective therapeutic treatment for POI. We recently found

that mosapride citrate exerts anti-inflammatory effects by

activating alpha7 nicotinic acetylcholine receptors

(a7nAChR) on macrophages via released ACh from myen-

teric plexus, which in turn ameliorates POI [5].

On the other hand, it has been reported that DKT decreases

serum C reactive protein (CRP) levels induced by laparo-

scopic colorectal resection [18], and increases adrenomed-

ullin (ADM) and calcitonin gene-related peptide (CGRP)

levels [19, 20]. We therefore hypothesized that DKT prevents

POI due to its gastroprokinetic activity, as well as it anti-

inflammatory action via a7nAChR stimulation and other

pathways. In the present study, we investigated the efficacy

and mechanisms of action of DKT primarily on its anti-

inflammatory potency, using a mouse POI model. The results

indicated that DKT has an anti-inflammatory action, in

addition to its prokinetic action, and part of this anti-inflam-

matory action is mediated through a7nAChR activation.

Materials and methods

Animals

Male BALB/c mice (Japan SLC, Hamamatsu, Japan)

weighing 21–26 g were used. Mice were housed under

conditions of constant temperature (23 ± 2 �C) and

humidity (55 ± 10 %) with standard rodent chow and

water ad libitum, and a 12-h light/dark cycle. All animal

experiments were performed according to the ‘‘Regulations

for the Care and Use of Laboratory Animals in Kitasato

University’’ published by Kitasato University. The Insti-

tutional Animal Care and Use Committee for Kitasato

University approved the study protocol.

Female and male a7nAChR knock out (KO) mice of

C57BL/6J background and weighing 21–23 g (The Jackson

Laboratory, Bar Harbor, ME) were obtained from back-

crossing with wild-type (WT; C57BL/6J) strains. Mice

were cared for in strict compliance with the ‘‘Guide to

Animal Use and Care’’ published by the University of

Tokyo. The Institutional Review Board of the Graduate

School of Agriculture and Life Science of the University of

Tokyo approved the study protocol.

Preparation of Kampo medicines

DKT was blended in the Oriental Medicine Research

Center of Kitasato University. Daily human doses

(190 mg/kg) of the crude herbs (ninjin, Ginsen radix

3.0 g; kankyo, Zingiberis Siccatum rhizoma 3.0 g; sansho,

Zanthoxylum fructus 2.0 g; and koi, Saccharum Gramo-

rumb 20.0 g) in DKT were decocted with 600 ml of

distilled water until the filtered decoction was reduced by

half. The decocted extract solution was centrifuged at

3,000 rpm for 15 min, and the supernatant was lyophi-

lized. The obtained freeze-dried powder (9.5 g) was dis-

solved in distilled water to the appropriate dose just

before administration. In the current series of experiments

using mice, the half daily human dose (95 mg/kg) was

used. Manufactured DKT (m-DKT) prepared as a dried

powder extract of mixing the crude herbs (Ginsen radix,

3.0 g; Zingiberis siccatum, 5.0 g; Zanthoxylum fructus,

2.0 g) was from Tsumura & Co. Ltd. (Tokyo, Japan) with

dried powder extract of Saccharum gramorumb at a ratio

of 1:8.

Three-dimensional HPLC

DKT was dissolved with H2O, and was then filtered and

analyzed by HPLC (ACQUITY UPLC; Nihon Waters K.K,

Tokyo, Japan) under the following conditions. Sample

(10 ll) was applied to a COSMOSIL C18-MS-II column

(3.0 9 50 mm; Nacalai Tesuque Co., Inc., Kyoto, Japan).

The mobile phase was water (H2O)/acetonitrile (CH3Hn)

(9:1) for the first 10 min, changing to a linear gradient of

(1:1) over 85 min. The flow rate was 1.0 ml/min and the

oven temperature was 30 �C. HPLC patterns were analyzed

by absorbance at 200–340 nm.
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Intestinal manipulation (IM) for mouse model of POI

All animals were anesthetized with isoflurane (Escain;

Mylan Inc., Tokyo, Japan) or pentobarbital sodium

(Somnopentyl; Kyoritsu Seiyaku Corp., Tokyo, Japan).

Intestinal manipulation (IM) was performed as reported

previously [21, 22]. Briefly, the distal ileal part (10 cm

from the ileocecal valve) was exteriorized and then gently

scraped with compression along its entire length for about

3–5 min at a strength equal to general writing pressure

using a sterile cotton applicator moistened with physio-

logical saline. After manipulation, the abdomen was closed

with sutures.

Intestinal transit determination

Twenty-three hours after IM with fasting, the non-absorb-

able marker, 80 ll of 0.25 % (w/v) phenol red (PR) in

phosphate buffered saline (PBS), was orally administered

to mice via a gastric tube. After 1 h, the gastrointestinal

part was isolated and stomach and intestine were separated

as a single stomach segment (Sto), ten small intestine

segments (SI1–SI10), a single cecum segment (Cec) and

three colon segments (Co1–Co3). The contents of each

segment were mixed with 0.1 N sodium hydroxide. Pro-

teins in the sample were precipitated by addition of 20 %

(w v-1) trichloroacetate. The optical density volume of

each supernatant after centrifugation at 16009g for 20 min

with 0.6 N sodium hydroxide was then determined at

570 nm. The volume of PR for 14 segments was calculated

using a standard curve. Each geometric center (GC) of

distribution for PR in 14 segments of the gastrointestinal

tract was calculated using the following formula [17, 22]:

GC ¼ R % of each fluorescence signalð Þf
� segment numberð Þg � 100

13C-acetate breath test

Twenty-two hours after IM with fasting, mice were given a

[1-13C] sodium acetate (Cambridge Isotope Laboratories,

Woburn, MA, USA) labeled solid test meal and placed in

test chambers. To collect air from the chambers, we used

the noninvasive breath test system [23], comprising four

animal chambers, a pump and breath sampling bags.

Expired air was collected and measured at 5-min intervals

until 30 min, with additional measurements at 10-min

intervals until 60 min. 13CO2 levels in the trapped air were

measured by POC one (Otsuka Electronics Co., Ltd.,

Tokyo, Japan) and are given as D13CO2 (%), as reported

previously [24].

Whole mount preparations

Histochemical examination was performed on whole-

mount muscularis preparations of the ileum. Whole-mount

muscularis (5 cm from ileocecal valve of the distal ileal

region) samples were prepared as reported previously [23,

25, 26]. The isolated mucosa-free muscularis tissue sheets

were pinned to the silicon base of dishes. The tissue sheets

were stretched to 110 % of their resting length on the sil-

icon sheet and then fixed in 4 % paraformaldehyde in PBS

for 30 min at 4 �C to make a whole mount preparation

(5 mm 9 5 mm sheet). After fixation, whole mount were

washed in PBS and were then cut and used for staining

procedures.

Whole mount immunohistochemistry

Muscularis whole mounts were used for immunohisto-

chemical analysis of CD68 and PGP9.5. Each whole mount

was incubated with 0.2 % triton X-100 in PBS at room

temperature (RT) for 2 h. After blocking with 2 % BSA in

PBS at RT for 1 h, whole mounts were incubated overnight

in primary antibody (rat anti-mouse CD68 Ab, dilution

1:1000; Serotec, Düsseldorf, Germany; and rabbit anti-

human PGP9.5 poly Ab, dilution 1:1000; Cosmo Bio Co.,

Ltd, Tokyo, Japan) at 4 �C, washed three times in PBS,

incubated in 5 % normal donkey and goat IgG in blocking

buffer for 15 min, followed by the appropriate secondary

antibody (donkey anti-rat Alexa 488, dilution 1:500;

Molecular Probes Inc., Eugene, OR; and goat anti-rabbit

Alexa 568, dilution 1:500; Invitrogen, Carlsbad, CA) at RT

for 90 min. After washing three times, whole mounts were

cover-slipped and inspected by confocal microscopy

(ECLIPSE Ti; Nikon, Tokyo, Japan). CD68-positive cells

were counted in three randomly selected fields in each

specimen at a magnification of 409. The same experiment

was performed four times in order to calculate

mean ± SEM.

Myeloperoxidase staining

In order to detect myeloperoxidase (MPO)-positive neu-

trophils, freshly prepared whole mounts were stained with

PBS containing 0.1 %(w/v) Hanker-Yates reagent (Poly-

sciences, Warrington, PA) and 0.03 %(v/v) hydrogen per-

oxidase (Wako Pure Chemical Industries Ltd., Osaka,

Japan), and were then rinsed in PBS [27]. Cells that were

obviously MPO-positive in the muscularis were counted

under a microscope (BX41; Olympus Corporation, Tokyo,

Japan) in three randomly selected fields for each specimen

at a magnification of 409.
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Measurement of myeloperoxidase activity

MPO activity in the ileum tissue was measured as descri-

bed previously, with some modifications [28]. To measure

the MPO activity spectrophotometrically, ileal segment

tissue homogenates prepared 24 h after IM were combined

with TMB substrate reagent. The absorbance at 460 nm

was measured on a spectrophotometer (Model 680; Bio

Rad, Hercules, CA, USA). The units of MPO activity were

divided by the colonic wet weight of the tissue.

Semi-quantitative RT-PCR

Quantitative RT-PCR was performed as described previ-

ously [26]. Oligonucleotide primers for GAPDH (NM

008084), MCP-1 (NM 011333), TNF-a (NM 013693), IL-6

(NM 031168), IL-1b (NM 008361) and iNOS (BC 062378)

were designed based on the cDNA database. The forward

and reverse primers and product sizes were listed in

Table 1. Amplification proceeded in a PCR Thermal

Cycler (Takara PCR Thermal Cycler MP; Takara Bio,

Otsu-shi, Japan) using 32 cycles consisting of 94 �C for

40 s, 58 �C for 60 s, and 72 �C for 90 s. The products of

each cycle were resolved on 2 % agarose gels containing

0.1 % ethidium bromide. Detectable fluorescent bands

were visualized with an ultraviolet transilluminator (High

Performance UV transilluminator; UVP, Upland, CA), and

the density of detectable fluorescent bands was measured

using NIH Image software (Image J, Ver. 1.44p).

Experimental design

Animals were randomly divided into the following exper-

imental groups: (1) Normal, no treatment, no IM; (2)

Control (IM ? Vehicle), ultrapure water was orally

administered at 3 days, 2 days and 1 day before, and at 6 h

after IM; and (3) IM ? DKT, 0.2 ml of DKT with doses at

one tenth (19 mg/kg) or half (95 mg/kg) the human daily

dose were similarly orally administered four times to the

mice via gastric tube. The group information was not

blinded to the operator. To assess the effects of DKT alone,

mice were randomly assigned into 2 groups: 1) Normal;

and 2) Normal ? DKT. After sacrifice, the muscle layer of

the ileum was used for histochemical staining for MPO and

immunohistochemical staining for macrophages. The

a7nACh receptor antagonist methyllycaconitine citrate

(MLA; 0.0125 mg/kg, s.c.) was also applied 30 min before

each DKT administration as necessary. Mice were eutha-

nized at 24 h after IM. For analysis of expression of

inflammatory mediators, vehicle or DKT was given orally

at 3 days, 2 days and 1 day before IM. Samples were taken

after at 3 h after IM. Isolated and prepared whole mount

smooth intestinal muscle layer was used for analysis of

cytokine messenger RNA (mRNA) expression. Intestinal

tissue samples were used for MPO staining. In vivo

intestinal transit from 23 to 24 h after IM was also deter-

mined. All animals recovered rapidly from the bowel

manipulation procedure (within 3 days; data not shown).

We therefore evaluated the efficacy of DKT at 24 h after

IM. Surgery is generally performed according to plan in

clinical practice, except in extreme emergencies; prophy-

lactic administration of DKT before IM may therefore have

important clinical implications.

Statistics

Results are expressed as mean ± SEM. Data were statis-

tically evaluated using unpaired Student’s t test for com-

parisons between two groups and by one-way analysis of

variance (ANOVA) followed by Dunnett’s test for com-

parisons among three or more groups. Values of P \ 0.05

were considered to be statistically significant.

Table 1 Seqences of PCR

primers and their Tm values and

product sizes

Gene (locus) Forward primers reverse primers Tm (�C) PCR cycles Size (bp)

GAPDH TGTTCCTACCCCCAATGTGT 58 32 269

(NM 007778.2) CCCTGTTGCTGTAGCCGTAT

TNF-a ACGGCATGGATCTCAAAGAC 58 32 324

(NM 013693) CGGACTCCGCAAAGTCTAAG

IL-6 TCTCTGGGAAATCGTGGAAA 58 32 397

(NM 031168) GATGGTCTTGGTCCTTAGCC

IL-1b TGACGTTCCCATTAGACAGC 58 37 497

(NM 008361) TGGGGAAGGCATTAGAAACA

MCP-1 CCCACTCACCTGCTGCTACT 58 32 381

(NM 011333) AAGGCATCACAGTCCGAGTC

iNOS AAGAGAGTGCTGTTCCAGGT 58 37 196

(BC 062378.1) CCACCAGCTTCTTCAACGTG
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Results

Three-dimensional HPLC

HPLC profile of DKT was shown in Fig. 1. HPLC analysis

revealed that the prepared DKT contained ginsenoside-

Rg1, [6]-gingerol, ginsenoside-Rb1 and [6]-shogaol. The

main component detected at 75 min should be hydroxy-a-

sanshool plus hydroxy-b-sanshool, as reported previously

[10, 29], although this was not confirmed using standard

preparations.

Recovery of IM-induced intestinal transit disorder

by treatment with DKT

The effects of DKT on delayed intestinal transit in the

mouse POI model are summarized in Fig. 2. Approxi-

mately 6 % of the orally administered labeled phenol red

(PR) remained inside the stomach, while 94 % was trans-

ported down the intestine to the distal end of the ileum,

peaking at SI-8 in the normal group (Fig. 2a). The average

calculated geometric center and gastric emptying rate in

the normal group were 7.16 ± 0.22 and 94.42 ± 0.85 %

for the 15 segments of the gastrointestinal tract, respec-

tively (Fig. 2b, c). In the IM ? Vehicle group, approxi-

mately 44 % of the orally administered labeled PR

remained inside the stomach, while 56 % was transported

to SI-1 and SI-2 (Fig. 2a). The IM group showed signifi-

cantly delayed rates for the geometric center at

2.04 ± 0.07 and gastric emptying at 55.56 ± 4.13, as

compared with the normal group (Fig. 2b, c). The

IM ? DKT (95 mg/kg) group showed significant recovery

of the delayed intestinal transit caused by IM, in which

22 % of the orally administered content remained in the

stomach, while 78 % of the transported content moved

between SI-1 and SI-3, peaking in SI-3 (Fig. 2a). Both the

geometric center and gastric emptying rate in IM ? DKT

(95 mg/kg) were significantly higher, reaching 4.11 ± 0.37

and 84.13 ± 2.60, respectively (Fig. 2b, c). In normal

mice, DKT slightly but significantly increased intestinal

transit and gastric emptying rate (Geometric center: nor-

mal, 7.15 ± 0.15, ?DKT, 9.53 ± 0.78, P \ 0.05; Gastric

emptying rate: normal 94.96 ± 0.63 %, ?DKT, 99.70 ±

0.22 %, P \ 0.05, n = 3–5), thus suggesting the prokinetic
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Fig. 1 HPLC profile of DKT. DKT analyzed by HPLC (ACQUITY

UPLC; Nihon Waters K.K, Tokyo, Japan) under following conditions:

column, COSMOSIL C18-MS-II (3.0 9 50 mm); mobile phase,

H2O:CH3Hn (9: 1 ? 1:1, linear gradient, for 95 min); flow rate;

1.0 ml/min; oven temperature, 30 �C; injection volume, 10 ll
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potential of DKT under the current experimental

conditions.

Effect of IM-induced delayed gastric emptying

by treatment with DKT

To further examine an effect of DKT on gastric emptying rate

by measuring 13C-acetate breath test. Curves obtained for
13CO2 excretion in the two different doses of DKT ? IM, IM

and normal groups are shown in Fig. 3. Excretion (A) and

cumulative excretion (B) of 13CO2 in the IM group were

significantly lower than those in the normal group (P \ 0.01

by ANOVA). At each time-point from 15 to 40 min, excre-

tion of 13CO2 in the IM group was significantly lower

(P \ 0.01 each) than those of the normal group. At each

time-point from 15 to 60 min, cumulative excretion of 13CO2

in the IM group was significantly lower (P \ 0.01 each) than

that in the normal group. The maximum concentration (Cmax;

D %) (Normal; 55.24 ± 5.22, IM ? vehicle; 21.23 ± 1.41,

P \ 0.05) and the aria under the curve (AUC; D %/min)

(Normal; 1385.33 ± 221.31, IM ? vehicle; 180.75 ±

18.71, P \ 0.01) were significantly decreased and the time to

reach the maximum concentration (Tmax; min) (Normal;

19.00 ± 0.94, IM ? vehicle; 28.57 ± 1.71, P \ 0.01) was

significantly increased in IM.

Excretion of 13CO2 in the IM ? DKT (95 mg/kg) group

significantly increased (P \ 0.01 by ANOVA) the delayed

gastric emptying induced by IM but not at each time-point

from 0 to 60 min. DKT does not show the efficacy for Cmax

(IM ? DKT 19 mg/kg; 28.97 ± 2.24, 95 mg/kg;

32.02 ± 3.29), AUC (19 mg/kg; 317.01 ± 38.59, 95 mg/

kg; 441.35 ± 95.53) and Tmax (19 mg/kg; 25.00 ± 1.15,

95 mg/kg; 32.02 ± 1.70). The cumulative excretion of
13CO2 in the IM ? DKT (19 mg/kg and 95 mg/kg) group

significantly increased (P \ 0.01 by ANOVA) the delayed

gastric emptying induced by IM but not at each time-point

from 0 to 60 min.

Amelioration of IM-induced inflammation of intestinal

wall by treatment with DKT

After DKT treatment, we immunohistochemically moni-

tored changes in MPO-stained neutrophils, and CD68-

positive resident and monocyte-derived macrophages, as

shown in Figs. 4 and 5. In Fig. 4, MPO-stained neutrophil

infiltration into the ileal muscle layer was increased in the

IM ? Vehicle group, as compared with that in the normal

group. Neutrophil infiltration by IM was significantly

ameliorated in the IM ? DKT group. In Fig. 5, resident

dendritic macrophages [30] stained by CD68 were present
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mouse POI model. Detailed procedures are described in ‘‘Materials
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in the myenteric plexus region in normal intestine [26, 31].

At 24 h after IM, many infiltrating monocyte-derived

macrophages and activated round [30] resident macro-

phages were observed, as reported previously [5]. The

CD68-positive macrophage population increased 6-fold in

the inflamed ileal muscle layer of the intestine of the

IM ? Vehicle group, as compared with the normal group.

The increased CD68-positive macrophage population was

significantly inhibited in the IM ? DKT group, as com-

pared with the IM group. However, DKT had no effects on

MPO-stained neutrophils or CD68-positive macrophages in

the control ileal muscle layer (MPO-positive cells: normal,

3.26 ± 1.46 cells/mm2, ?DKT, 4.88 ± 1.49 cells/mm2;

CD68-positive cells: normal, 646.16 ± 16.59 cells/mm2,

?DKT, 626.63 ± 29.52 cells/mm2). Neutrophil infiltration

and increased CD68-positive macrophage population by

IM was significantly ameliorated in manufactured DKT,

m-DKT treated group as it was in our hand-made DKT

(MPO-positive cells: normal 1.05 ± 0.39 cells/mm2, IM

1653.66 ± 121.24 cells/mm2, IM ? DKT 1047.47 ±

92.27 cells/mm2, P \ 0.05, IM ? m-DKT 603.0 ± 90.70

cells/mm2, P \ 0.01, n = 4; CD68-positive cells: normal

186.71 ± 13.15 cells/mm2, IM 2095.99 ± 144.04 cells/

mm2, IM ? DKT 1484.53 ± 70.11 cells/mm2, P \ 0.05,

IM ? m-DKT 1515.12 ± 71.51 cells/mm2, P \ 0.05,

n = 4).

Inhibition of IM-induced mRNA expression

of inflammatory mediators by treatment with DKT

It has been reported that monocyte chemoattractant pro-

tein-1 (MCP-1) and tumor necrosis factor alpha (TNF-a)

and IL-6 are the most important chemokines/cytokines for

inflammation of POI in mice [17, 32]. We thus investigated

the effects of DKT on mRNA expression of MCP-1, TNF-

a, IL-6 at 3 h after IM by semi-quantitative RT-PCR. In

case of IL-1b, we measured mRNA expression at 6 h after

IM, because preliminary data indicated that IL-1b mRNA

expression did not increase at 3 h after IM (data not

shown). In addition, motility disorder mediated by IM is
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known to be induced by nitric oxide (NO) through induc-

ible nitric oxide synthase (iNOS) [17, 32] in smooth muscle

cell. So we also investigated effect of iNOS mRNA

expression at 6 h after IM. It has been reported that IL-1b
upregulated in inflammatory lesion of POI model [5, 17].

In this study, however, mRNA expression of IL-1b did not

significantly increased in POI model mice.

As shown in Fig. 6, mRNA expressions of MCP-1 and

TNF-a were significantly elevated in the IM ? Vehicle

group. IL-6 and iNOS genes also showed an upward trend

in IM (Dunnet’s test values: IL-6; P = 0.06, iNOS;

P = 0.44). mRNA expression of TNF-a and MCP-1 were

significantly inhibited in the IM ? DKT group, as com-

pared with the IM ? Vehicle group. The IM-induced

increase in IL-6 and iNOS mRNA expressions also showed

a downward trend in DKT-treated mice (Dunnet’s test

values: IL-6; P = 0.25, iNOS; P = 0.29).

Attenuation of DKT-induced anti-inflammatory activity

by MLA

The effects of MLA on anti-inflammatory activity of

DKT in the mouse POI model are summarized in Figs. 7

and 8. As shown in Fig. 6b and c, MLA partly attenu-

ated anti-inflammatory activity by DKT, as tissue MPO

activity and MPO-positive neutrophil numbers were

inhibited when compared with the IM ? Vehicle group,

respectively.
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Similar results were obtained for CD-68-positive mac-

rophages. As shown in Fig. 8, MLA came in predisposed to

attenuated the DKT-induced inhibition of macrophage

infiltration by IM, although IM ? MLA group was no

significantly different from IM group (P = 0.06, n = 5).

We confirmed that MLA itself had no effect on MPO

activity, the immunohistochemical properties of neutro-

phils or CD68-positive macrophages in normal mice (MPO

activity: normal, 10.01 ± 0.97 U/g wet tissue, ?MLA,

36.80 ± 4.26 U/g wet tissue; MPO-positive cells: normal,

15.47 ± 1.53 cells/mm2, ?MLA, 15.19 ± 1.49 cells/mm2;

CD68-positive cells: normal, 429.67 ± 45.95 cells/mm2,

?MLA, 261.50 ± 9.76 cells/mm2). In addition, MLA did

not contribute to increasing inflammation by IM, as

assessed by MPO activity, MPO-positive neutrophils and

CD68-positive macrophages at the concentrations used in

this study (n = 2, data not shown).

Reduction in DKT-induced inhibition of macrophage

populations in a7nAChR KO mice

Figure 9 shows the anti-inflammatory activity of DKT in

a7nAChR KO mice, with reference to that in wild-type

mice (C57BL/6J). In wild-type mice, the MPO-positive

infiltrating neutrophil and CD68-positive macrophage

populations increased in the IM ? Vehicle group, as was

seen in BALB/c mice, and these increases were signifi-

cantly inhibited in the IM ? DKT group, as compared with

the IM ? Vehicle group.

In a7nAChR KO mice, MPO-positive infiltrating neu-

trophils and CD68-positive macrophages were also ele-

vated in the IM ? Vehicle group. This inflammatory cell

infiltration in IM ? Vehicle group was not altered in KO

mice when compared with wild-type mice. The attenuating

effects of DKT on increased MPO-positive infiltrating

neutrophils were maintained, which was similar to the

trend seen in wild-type mice. On the other hand, the

attenuating effects of DKT on infiltrating CD68-positive
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macrophages by IM were significantly reduced in

a7nAChR KO mice when compared with wild-type mice,

indicating that the DKT-induced ameliorative effects on

CD68 macrophage infiltration by IM is partly dependent on

a7nAChR activation. DKT had no effects on cell numbers

of either neutrophils or macrophages in the control ileal

muscle layer (MPO-positive cells: normal, 7.63 ± 1.23

cells/mm2, ?DKT, 6.63 ± 0.90 cells/mm2; CD68-positive

cells: normal, 692.68 ± 51.93 cells/mm2, ?DKT,

706.75 ± 68.17 cells/mm2).

Discussion

We investigated here whether DKT ameliorates the intes-

tinal transit dysfunction and the delayed gastric emptying

seen in the mouse POI model. DKT significantly recovered

the intestinal transit. The calculated gastric emptying rate

was also recovered by DKT as shown in Fig. 2c. These

results in the mouse POI model agree with the DKT data

obtained in the rat POI model [12, 13]. We further directly

measured gastric emptying ability by using 13C-acetate

breath test, and investigated effect of DKT on the delayed

gastric emptying induced by IM. Results indicated that

DKT appears to have a little ameliorative effect on the

delayed gastric emptying by IM as monitored with 13C-

acetate breath test. These results support the view that DKT

accelerates motility in the lower gastrointestinal tract, but

has no effects on gastric emptying in healthy humans [7].

DKT-induced recovery of delayed gastric emptying rate

monitored by intestinal transit test (Fig. 2c) might be

apparent recovery mediated through amelioration of

intestinal transit by DKT. Phenol red was just retained

inside stomach by delayed intestinal transit induced by IM.

Ameliorative action of DKT for lower intestinal transit

might be able to recover the delayed gastric emptying rate

by IM. In this study, we further showed for the first time

that DKT significantly suppresses neutrophil and macro-

phage infiltration induced by IM, thus suggesting that DKT

exerts an anti-inflammatory effect in POI. These findings

indicate that clinical amelioration of POI by DKT is related

to improvements in both in gastrointestinal motility and

inflammation. Our data may therefore provide new insights

into the use of DKT in the treatment of POI.

To date, several mechanisms for the gastroprokinetic

action of DKT have been posited. First, DKT accelerates

ACh release from cholinergic myenteric neurons mediated

by activation of 5-HT3R and 5-HT4R [12–14], and smooth

muscles contract due to the released ACh through stimu-

lation of muscarinic receptors (M2R and M3R). Second, it

has been reported that DKT raises plasma levels of motilin,

a gastrointestinal polypeptide hormone, and this improves

morphine-induced constipation in cancer patients and

intestinal motility dysfunction in conscious dogs [33, 34].

Third, DKT induces the release of substance P from pri-

mary sensory nerves through the vanilloid receptors on

intramucosal terminal sensory nerves, and this contracts

smooth muscle [35, 36]. In recent years, it was reported

that pharmacological modulation of transient receptor

potential vanilloid type1 (TRPV1) is a possible therapeutic

option in POI [37], and this may be one of the mechanisms

responsible for the gastroprokinetic activity of DKT [37].

The efficacy of DKT against POI has largely been

explained to date by improvements in gastrointestinal

motility and increased blood flow [19].

On the other hand, there have also been several reports

on the anti-inflammatory effects of DKT in inflammatory

diseases. It has been reported that DKT improves intestinal

blood flow by increasing CGRP and substance P levels in

plasma, which regulate the growth of bacterial flora, as

well as inflammatory cytokine and cyclooxygenase-2

(COX-2) production in the intestine [38]. In an another

report, the vasodilatory effects due to up-regulation of the

ADM and CGRP system were thought to have therapeutic

and preventive effects on intestinal inflammation in Cro-

hn’s disease (CD) [39], and DKT was thought to improve

CD by increasing ADM and CGRP levels [19, 20]. In

addition, it was reported that postoperative DKT adminis-

tration significantly suppressed CRP and postoperative

inflammation following surgery for colorectal cancer [18].

However, it still remains unclear how DKT acts against

inflammation on POI.

In the present study, we found that DKT markedly

reduces inflammatory cell infiltration into the inflamed

muscle region, thus suggesting potent anti-inflammatory

effects of DKT on POI. Local inflammation in the intes-

tinal muscle layer is known to be closely correlated with

gastrointestinal motility disorder [3, 17, 23, 40], and

amelioration of inflammation in the intestinal muscle layer

improves motility disorder [5, 17, 30]. Although intestinal

transit in healthy mice is improved by DKT in this study,

improvement by DKT in intestinal transit in POI mice is

more effective than in healthy mice. Taken together, these

results have led us to hypothesize that the ameliorative

effects of DKT on gastrointestinal motility in POI are

mediated by anti-inflammatory action against IM, in

addition to the gastrointestinal prokinetic action of DKT.

We next investigated effect of DKT on mRNA expres-

sions of inflammatory mediators induced by IM. IM

upregulated the mRNA expression of cytokine/chemokine

such as TNF-a, IL-6, IL-1b and MCP-1 [17]. Inducible

NOS (iNOS) gene is also upregulated by IM, which in turn

induces motility disorder in POI [17]. Our observations

suggest the inhibition of TNF-a and MCP-1 by DKT, and

this agrees with a report on the anti-inflammatory efficacy

of DKT via inhibition of TNF-a in rat and mouse CD
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models [29, 41]. The IM-induced increase in IL-6 and

iNOS mRNA expressions also showed a downward trend

in DKT-treated mice. Taken together, DKT has an inhibi-

tory action of inflammatory mediator genes expression

induced by IM.

DKT exerts its gastroprokinetic activity through acti-

vation of 5-HT3R and/or 5-HT4R of the vagal afferent,

which stimulates cholinergic transmission in the myenteric

plexus [13]. We previously found that the 5-HT4R agonist

mosapride citrate induced anti-inflammatory effects via

activation of a7nAChR on muscularis-activated macro-

phages through the release of ACh from cholinergic nerves

in the myenteric plexus [5]. Subsequently, activation of

a7nAChR suppressed inflammatory cytokine production

by macrophages, which improved POI [42]. So we further

investigated the effects of the a7nAChR antagonist MLA

on DKT-induced anti-inflammatory actions in POI. The

results suggested that MLA significantly inhibited the

DKT-mediated anti-inflammatory activity, as monitored by

infiltrating macrophages and neutrophils. These results

suggest that DKT-induced anti-inflammatory activity in

POI may be mediated through a7nAChR activation. In

fact, another report supports our observation that the

selective a7nAChR agonist AR-R17779 prevents inflam-

mation in POI [43]. In the rat POI model, we confirmed

that infiltrating macrophages and activated resident mac-

rophages, but not infiltrating neutrophils, had an affinity for

a-bungarotoxin [5]. We therefore speculated that these a-

bungarotoxin-bound macrophages may be effector cells in

the anti-inflammatory action of DKT.

We further confirmed this conclusion by using

a7nAChR KO mice. Interestingly, DKT-induced anti-

inflammatory actions were partly suppressed in a7nAChR

KO mice. With regard to macrophage infiltration, the

DKT-induced ameliorative effects were partly but signifi-

cantly reduced in a7nAChR KO mice, suggesting that, at

least in part, DKT-induced inhibitory effects on macro-

phage infiltration could be mediated through a7nAChR. In

contrast, in the case of neutrophil infiltration, the DKT-

induced inhibitory action was not affected in a7nAChR KO

mice, indicating that DKT-induced inhibitory action for

neutrophil infiltration may not be mediated through

a7nAChR. Taken together, these results suggest that

a7nAChR and other subtypes of nicotinic receptors are

involved in the DKT-induced anti-inflammatory effects.

Recent work also supports the notion that nicotinic inhi-

bition of macrophage activation involves other receptors, in

addition to a7nAChR [43]. One possible candidate is a4b2

heteropentameric nAChR [44]. It has been reported that

activation of this nAChR subtype also inhibits transacti-

vational activity of the transcription factor NF-jB p65.

However, it has been reported that MLA only has binding

affinity for the a6 and a7 isoforms of nAChR [45]. Further

investigation is thus necessary in order to clarify other

types of nAChR activated by DKT.

In conclusion, DKT may serve as a novel therapeutic

agent against POI, as characterized by its anti-inflamma-

tory potency, in addition to its gastrointestinal prokinetic

action. The anti-inflammatory potency of DKT in POI may

be mediated through the activation of nAChRs via ACh

release from the myenteric plexus nerve. DKT-induced

anti-inflammatory activity may be partly mediated by the

activation of a7nAChR. Interestingly, it was reported that

herb zanthoxylum fruit and maltose syrup include target

component to induce prokinetic ability [12]. So we are

preparing to undertake a process to identify the target

herb(s) in DKT to induce anti-inflammatory ability.
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