Skip to main content

Advertisement

Log in

Role of Th-2 cytokines in the development of Barrett’s esophagus in rats

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Barrett’s esophagus is characterized by a distinct Th-2-predominant cytokine profile, unlike the pro-inflammatory nature of reflux esophagitis. The aim of this study was to examine the role of Th-2 cytokines during the development of Barrett’s esophagus, using a rat model.

Methods

Barrett’s esophagus was induced by Levrat’s esophagojejunostomy technique in Brown-Norway (BN) rats. Rats were killed at 8, 15, 30, and 50 weeks after the operation. We studied the incidences of esophagitis and Barrett’s esophagus, and the mRNA expression of cytokines and CDX2 by real-time reverse transcriptase-polymerase chain reaction and immunohistochemical staining. Finally, we compared the incidence of Barrett’s esophagus in BN rats with that in Sprague-Dawley (SD) rats.

Results

Esophagitis was found in all rats. Barrett’s esophagus appeared 8 weeks after the operation, and its incidence and length increased over time. Levels of Th-2 cytokines such as interleukin (IL)-4, IL-10, and IL-13 were significantly increased in Barrett’s esophagus as compared to those in non-Barrett’s esophagus, while there were no differences in the levels of pro-inflammatory cytokines. The peak of elevated IL-4 mRNA was observed before that of CDX2 mRNA. IL-4 was co-localized in CD4-positive cells and CDX2-positive goblet cells. The incidence of Barrett’s esophagus was more common in BN rats (8/10, 80%) than in SD rats (2/7, 28%) at 30 weeks.

Conclusion

Th-2 cytokines, especially IL-4, may play a crucial role in the development of Barrett’s esophagus in an early phase. These results provide understanding of the pathogenesis of Barrett’s esophagus from the aspect of the Th-2 immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Champion G, Richter JE, Vaezi MF, Singh S, Alexander R. Duodenogastroesophageal reflux: relationship to pH and importance in Barrett’s esophagus. Gastroenterology. 1994;107:747–54.

    Article  PubMed  CAS  Google Scholar 

  2. Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology. 1996;111:1192–9.

    Article  PubMed  CAS  Google Scholar 

  3. Falk GW. Barrett’s esophagus. Gastroenterology. 2002;122:1569–91.

    Article  PubMed  Google Scholar 

  4. Jankowski JA, Wright NA, Meltzer SJ, Triadafilopoulos G, Geboes K, Casson AG, et al. Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol. 1999;154:965–73.

    Article  PubMed  CAS  Google Scholar 

  5. Pera M. Experimental Barrett’s esophagus and the origin of intestinal metaplasia. Chest Surg Clin N Am. 2002;12:25–37.

    Article  PubMed  Google Scholar 

  6. Seery JP. Stem cells of the oesophageal epithelium. J Cell Sci. 2002;115:1783–9.

    PubMed  Google Scholar 

  7. Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21:43–50.

    PubMed  CAS  Google Scholar 

  8. Souza RF, Krishnan K, Spechler SJ. Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol. 2008;295:G211–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hu Y, Williams VA, Gellersen O, Jones C, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophageal cells. J Gastrointest Surg. 2007;11:827–34.

    Article  PubMed  Google Scholar 

  10. Kazumori H, Ishihara S, Kinoshita Y. Roles of caudal-related homeobox gene Cdx1 in oesophageal epithelial cells in Barrett’s epithelium development. Gut. 2009;58:620–8.

    Article  PubMed  CAS  Google Scholar 

  11. Souza RF, Huo X, Mittal V, Schuler CM, Carmack SW, Zhang HY, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137:1776–84.

    Article  PubMed  CAS  Google Scholar 

  12. Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut. 2002;50:451–9.

    Article  PubMed  CAS  Google Scholar 

  13. Moons LM, Kusters JG, Bultman E, Kuipers EJ, van Dekken H, Tra WM, et al. Barrett’s oesophagus is characterized by a predominantly humoral inflammatory response. J Pathol. 2005;207:269–76.

    Article  PubMed  CAS  Google Scholar 

  14. Dvorakova K, Payne CM, Ramsey L, Holubec H, Sampliner R, Dominguez J, et al. Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clin Cancer Res. 2004;10:2020–8.

    Article  PubMed  CAS  Google Scholar 

  15. Pera M, Brito MJ, Poulsom R, Riera E, Grande L, Hanby A, et al. Duodenal-content reflux esophagitis induces the development of glandular metaplasia and adenosquamous carcinoma in rats. Carcinogenesis. 2000;21:1587–91.

    Article  PubMed  CAS  Google Scholar 

  16. Levrat M, Lambert R, Kirshbaum G. Esophagitis produced by reflux of duodenal contents in rats. Am J Dig Dis. 1962;7:564–73.

    Article  PubMed  CAS  Google Scholar 

  17. Pera M, Cardesa A, Bombi JA, Ernst H, Pera C, Mohr U. Influence of esophagojejunostomy on the induction of adenocarcinoma of the distal esophagus in Sprague-Dawley rats by subcutaneous injection of 2,6-dimethylnitrosomorpholine. Cancer Res. 1989;49:6803–8.

    PubMed  CAS  Google Scholar 

  18. Sugawa T, Fujiwara Y, Yamagami H, Watanabe K, Tanigawa T, Shiba M, et al. A novel rat model to determine interaction between reflux oesophagitis and bronchial asthma. Gut. 2008;57:575–81.

    Article  PubMed  CAS  Google Scholar 

  19. Hamaguchi M, Fujiwara Y, Takashima T, Hayakawa T, Sasaki E, Shiba M, et al. Increased expression of cytokines and adhesion molecules in rat chronic esophagitis. Digestion. 2003;68:189–97.

    Article  PubMed  CAS  Google Scholar 

  20. Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol. 2008;103:788–97.

    Article  PubMed  Google Scholar 

  21. Watson A, Shepherd NA. The definition of “Barrett’s” columnar-lined oesophagus. Guidelines for the diagnosis and management of Barrett’s columnar-lined oesophagus: a report of the Working Party of the British Society of Gastroenterology. Loughborough: Q3 Print Project Management Limited; 2005. p. 4–6.

  22. Hellier MD, Shepherd NA. Diagnosis of columnar-lined oesophagus. Guidelines for the diagnosis and management of Barrett’s columnar-lined oesophagus: a report of the Working Party of the British Society of Gastroenterology. Loughborough: Q3 Print Project Management Limited; 2005. p. 13–7.

  23. Japan Esophageal Society. Japanese classification of esophageal cancer. 10th ed. Tokyo: Kanahara & Co., Ltd.; 2008. p. 42–4.

  24. Kuperman D, Schofield B, Wills-Karp M, Grusby MJ. Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med. 1998;187:939–48.

    Article  PubMed  CAS  Google Scholar 

  25. Gavett SH, O’Hearn DJ, Karp CL, Patel EA, Schofield BH, Finkelman FD, et al. Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am J Physiol. 1997;272:L253–61.

    PubMed  CAS  Google Scholar 

  26. Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J Immunol. 1999;162:6233–7.

    PubMed  CAS  Google Scholar 

  27. Temann UA, Prasad B, Gallup MW, Basbaum C, Ho SB, Flavell RA, et al. A novel role for murine IL-4 in vivo: induction of MUC5AC gene expression and mucin hypersecretion. Am J Respir Cell Mol Biol. 1997;16:471–8.

    PubMed  CAS  Google Scholar 

  28. Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H, Abe T. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol. 2003;81:275–82.

    Article  PubMed  CAS  Google Scholar 

  29. Dohi T, Fujihashi K, Koga T, Shirai Y, Kawamura YI, Ejima C, et al. T helper type-2 cells induce ileal villus atrophy, goblet cell metaplasia, and wasting disease in T cell-deficient mice. Gastroenterology. 2003;124:672–82.

    Article  PubMed  CAS  Google Scholar 

  30. Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut. 2006;55:16–25.

    Article  PubMed  CAS  Google Scholar 

  31. Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28:488–96.

    Article  PubMed  CAS  Google Scholar 

  32. Pera M, de Bolos C, Brito MJ, Palacin A, Grande L, Cardesa A, et al. Duodenal-content reflux into the esophagus leads to expression of Cdx2 and Muc2 in areas of squamous epithelium in rats. J Gastrointest Surg. 2007;11:869–74.

    Article  PubMed  Google Scholar 

  33. Tatsuta T, Mukaisho K, Sugihara H, Miwa K, Tani T, Hattori T. Expression of Cdx2 in early GRCL of Barrett’s esophagus induced in rats by duodenal reflux. Dig Dis Sci. 2005;50:425–31.

    Article  PubMed  CAS  Google Scholar 

  34. Ingravallo G, Dall’Olmo L, Segat D, Fassan M, Mescoli C, Dazzo E, et al. CDX2 hox gene product in a rat model of esophageal cancer. J Exp Clin Cancer Res. 2009;28:108.

    Article  PubMed  Google Scholar 

  35. Zhang HY, Zhang X, Chen X, Thomas D, Hormi-Carver K, Elder F, et al. Differences in activity and phosphorylation of MAPK enzymes in esophageal squamous cells of GERD patients with and without Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol. 2008;295:G470–8.

    Article  PubMed  CAS  Google Scholar 

  36. Huo X, Zhang HY, Zhang XI, Lynch JP, Strauch ED, Wang JY, et al. Acid and bile salt-induced CDX2 expression differs in esophageal squamous cells from patients with and without Barrett’s esophagus. Gastroenterology. 2010;139:194–203.

    Article  PubMed  CAS  Google Scholar 

  37. Hylkema MN, Hoekstra MO, Luinge M, Timens W. The strength of the OVA-induced airway inflammation in rats is strain dependent. Clin Exp Immunol. 2002;129:390–6.

    Article  PubMed  CAS  Google Scholar 

  38. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohata, Y., Fujiwara, Y., Machida, H. et al. Role of Th-2 cytokines in the development of Barrett’s esophagus in rats. J Gastroenterol 46, 883–893 (2011). https://doi.org/10.1007/s00535-011-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0405-y

Keywords

Navigation