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Abstract Lag compensation algorithms used in net-

worked games require programmers to manage the com-

plexities of dealing with both time and shared state. This

can make implementing lag compensation techniques

challenging. The difficulties in expressing these algorithms

limit experimentation with different algorithms and inhibit

programmers from exploring the space of the algorithms

and testing their effects. The solution is to have a pro-

gramming model that is better able to deal with time. In

this paper, we present such a programming model, time-

lines. Timelines dramatically reduce the time and effort

required to implement lag compensation techniques by

allowing for the explicit treatment of time. The timelines

model has been implemented as part of the Janus toolkit.

Keywords Lag compensation � Consistency

maintenance � Networked games

1 Introduction

Networked digital games afford an unprecedented level of

interaction at a distance. Games permit people to closely

coordinate the activities of small groups in real-time, to

engage in large combats involving hundreds of people, and

to view and react to the actions of opponents in real-time.

New gaming technologies, however, are increasingly

exposing the limits of interaction over the network. For

example, motion-based input technologies such as Micro-

soft’s Kinect open the opportunity for true real-time com-

bat, where players react to other players’ movements as

they occur. Hardware advances have allowed games to

include rich physics, enabling highly accurate sports and

driving simulations, as well as allowing the game world

itself to be physically modified as a consequence of player

actions. While examples exist of games fully taking

advantage of these techniques, the presence of network

latency limits the ability to achieve such interactions over

the network.

Specifically, true real-time combat is inhibited by the

fact that it takes time to transmit each player’s actions over

the network. By the time a player sees another player

starting an action, the action may have been completed,

making it impossible to react. Similarly, it is difficult to

synchronize physical actions (e.g., two players trying to

kick the same ball) in the presence of latency. Current

games make compromises to accommodate latency. For

example, World of Warcraft’s combat is based on special

actions rather than true real-time movement. The execution

of these actions is delayed, allowing time for them to be

transmitted over the network. Games often compromise by

making physics purely cosmetic. For example, a physics

simulation might be used to show how the shards of a

broken window fly through the air, but these positions are

not used to compute damage to players.

Some of the limitations of latency are fundamental, but

progress can be made through the deployment of novel lag

compensation algorithms. For example, Bernier’s Half-Life

algorithm [3] helps with the problem of real-time aiming,

and Sharkey, Ryan and Robert’s local perception filters

show great promise in the distributed physics problem [32].

A significant barrier to the invention, evaluation and

deployment of such algorithms, however, is their complexity.
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It is hard to understand the consequences of new algorithms’

tradeoffs on player experience; it is hard to compare alter-

native algorithms, and it is hard to communicate to game

developers how the algorithms work so that they can be

implemented in new contexts.

In this paper, we argue that much of the complexity of

lag compensation algorithms comes from the fact that they

deal with time, requiring programmers to consider not just

what value shared data has, but when that value was held.

Current programming languages do not provide support for

dealing with time. We remedy this lack by presenting our

timelines programming model for game networking. Tim-

elines is a novel programming model for shared state in

multiplayer games that exposes the temporal dimension of

shared data. This allows programmers to access and

manipulate past and future state values. Timeline variables

can be shared between remote players, allowing program-

mers to modify the rate at which time flows and to create

divergent timelines for different players. By making time

an integral part of the programming model, timelines

simplify the expression of lag compensation algorithms.

This paves the way for the exploration of new ideas. Pro-

grammers can easily compare algorithms, test combina-

tions of algorithms and develop new algorithms potentially

enabling new styles of multiplayer games.

Our timelines model has been implemented within the

Janus toolkit, and used by the authors and by other

developers to experiment with lag compensation tech-

niques and to create a range of multiplayer games. To show

the power of timelines, we demonstrate how a range of

existing algorithms can be expressed. To truly show the

power of the approach, we use it to extend the local per-

ception filters [32] algorithm, combining it with smooth

corrections [34] to provide a novel solution to the distrib-

uted physics problem.

The paper is organized as follows. We begin by arguing

why time plays such an important role in lag compensation,

thus motivating the need for a programming model that

explicitly deals with time. Next, we present our timelines

model, showing how it facilitates the implementation of a

range of lag compensation algorithms, including our novel

extension to local perception filters. Finally we discuss the

model’s implementation in the Janus toolkit, and report our

experience using the toolkit.

2 Why time matters

Lag compensation techniques are used in games to reduce

surprising behavior due to the presence of network latency.

Surprises might include not hitting an enemy who is clearly

within the player’s cross-hairs, being damaged in a colli-

sion when no obstacle can be seen, or seeing another player

suddenly warp from one location to another. This surpris-

ing behavior results from differences in players’ views of

shared state due to the time to transmit state changes over

the network.

Lag compensation algorithms attempt to reduce surprise

by mitigating the effects of network lag. As we shall dis-

cuss in detail, there are three fundamental approaches to

compensating for lag: dead reckoning [1], delaying local

inputs [9], and remote lag [3]. These techniques are noto-

riously difficult to program, and their effects are difficult to

analyze. In this section, we argue that this difficulty arises

from the fact that the programmer needs to deal with time

as well as with shared state data. For example, a lag

compensation algorithm must account for when a shot was

fired as well as where it was aimed to prevent situations

where dead men are able to keep shooting [24]. Here we

describe four key problems that highlight the importance of

time when implementing shared data in networked games.

2.1 Stale message problem

Because it takes time to transmit messages over a network,

state updates are necessarily out of date (or ‘‘stale’’) on

their arrival. Clients must make adjustments to account for

the untimeliness of the information; for example, a mes-

sage indicating that a remote avatar has moved is in reality

informing the local client where the remote avatar was at

some point in the past.

Due to variance in network delivery times, it is difficult

to estimate exactly when messages were sent (as required

to assess exactly how stale the information is.) Solving this

properly requires messages to be timestamped, and for the

difference in clocks between the local and remote clients to

be known [7]. In sum, the stale message problem requires

programmers to treat messages not just as values, but as

values that describe state at an earlier point in time.

2.2 Stale state problem

Some state within a game may be updated frequently; e.g., in

a game executing at 60 frames/second, a local avatar’s

position may be updated every 17 ms. To conserve band-

width, games typically transmit state updates less frequently,

e.g., every 50 ms [3]. Updates may be further deferred if the

local client can determine that the remote clients have

enough information to accurately predict the updated state.

Clients may therefore need to render several frames before

new state information arrives, and thus must be able to

estimate the present state of the remote client based on the

last state information available. This requires clients to keep

track of the age of local representations of remote state, and

have mechanisms for compensating for state updates that

have been suppressed by the remote client.
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2.3 Frame of reference problem

Some games deliberately choose to use a different temporal

frame of reference on each client. For example, in the Half-

Life series first-person shooter games, a constant time

delay is applied to the movements of other players’ avatars

[3]. This increases the predictability of the movement of

remote avatars, at the cost of increasing the divergence of

state between different players [31]. Thus, as shown in

Fig. 1, instead of there being a single global game state,

each player has his own personal view of the game world.

Hits are then based on what a player actually sees on his

screen instead of being based on the ‘‘true’’ location of the

other player’s avatar. This allows players to aim and shoot

directly at a target avatar without accounting for incorrect

positions caused by network delays. To provide consis-

tency, and to prevent cheating, a server must be able to take

into account what each player sees and reconstruct that

view. This requires the server to unwind time and recon-

struct the state of both the target and shooter clients at the

point in time when a shot was fired.

2.4 Multiple-times at-once problem

Some lag compensation techniques require that the client

be able to simultaneously access shared state in the past,

the present and the future. For example, this problem arises

in smooth correction algorithms, as shown in Fig. 2. When

clients use prediction (such as dead reckoning) to extrap-

olate the position of a remote entity, that prediction will be

incorrect whenever the entity has changed speed or direc-

tion. Once the error is detected, instead of immediately

warping the remote entity to the correct position, the

smooth corrections algorithm progressively moves the

avatar to the new position. This provides a less jarring

means of repairing this incorrect state. To implement

smooth corrections, the programmer must access the pre-

vious state to know where the entity was, access the current

state to know where the entity should be and calculate a

future state to be able to smoothly merge the two states

over time.

As we see from these examples, working with time is a

fundamental component of lag compensation algorithms.

The examples show how it is necessary for clients to

interpret state and state updates relative to times in the past,

and necessary for servers to reconstruct the differing tem-

poral frames of reference of different clients, and some-

times necessary for clients to simultaneously access past,

present and future values of the same state.

Traditional programming models treat state as having

only a single value, describing the current time. This is

the root cause of the difficulty of expressing lag com-

pensation algorithms, which fundamentally must deal with

different temporal frames of reference. We will show

Fig. 1 Using remote lag, each

player has his own view of the

game world. The view of

remote avatars is delayed by a

fixed time which is greater than

the network latency. This allows

players to aim where they see

other players’ avatars instead of

attempting to aim at the actual

current position of the avatar

Fig. 2 Smooth corrections

require access to (i) where the

avatar was in the past (as

reported by newly arrived

message), (ii) where the avatar

is now, and (iii) where we want

the avatar to be in the future
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that a programming model that explicitly incorporates

time dramatically simplifies the implementation of these

algorithms.

3 The timelines model

In distributed systems, shared data is typically stored as an

instantaneous value representing the data’s current state

[8]. As we have discussed, this leads to difficulties when

programming with time, as required in lag compensation

algorithms. In contrast, our timelines model represents

shared state variables as values indexable by time. Vari-

ables represent all the values they have held in the past and

all values they will hold in the future. Timelines provide:

• Get/set operations that access the timeline’s value at a

given time; and

• Interpolation and extrapolation functions that estimate

values for times when no value is known.

As we shall see, this simple model of shared data allows

the simple expression of a wide variety of lag compensa-

tion algorithms.

Figure 3 shows how the elements of the Timelines

model are combined. In the example timeline, v1, v2 and v3

represent values for times t1, t2 and t3, respectively. These

are known values, meaning that they have been explicitly

set in the timeline.

To illustrate this, consider fuel, an integer timeline

representing the amount of fuel in a spaceship. Storing

values in the fuel timeline is as simple as assigning those

values at a specific time. Thus,

fuelð�100Þ ¼ 230;

assigns 230 to the integer timeline at 100 ms in the past,

and

fuelð0Þ ¼ 200;

assigns 200 to the fuel timeline at the current time. (Time

references are expressed in milliseconds, may be positive

or negative, and are relative to the current time.)

When the value for a given time is not known, it is

interpolated or extrapolated from its neighboring known

values. The value of fuel(-50) is derived as 215 using

linear interpolation between the two known values of 200

and 230, and the value of fuel(100) is extrapolated to be

170. Thus, although our timeline currently contains only

two known values, any value from the past or future can be

determined through interpolation or extrapolation. As more

known values are added to the timeline, the interpolated

and extrapolated values may change.

The timelines model is fully replicated, with each client

storing a local timeline object for each portion of the

shared state in which it is interested. If two clients create

instances of the same timeline, the timelines are automat-

ically synchronized. Figure 4 shows two clients each with a

copy of the same timeline. When Client 2 inserts a new

value into the local timeline, the value is propagated over

the network and a remote update function on Client 1 is

invoked. The remote update function specifies how updates

arriving over the network are to be applied. By default, the

remote update function inserts the value into Client 1’s

timeline. However, as we will see, it is possible to override

this default behavior to implement techniques such as

smooth corrections.

To illustrate the model, we now discuss several lag

compensation techniques used in multiplayer games and

show how timelines can be used to implement them.

4 Using timelines

In this section, we illustrate the use of timelines to express

a canonical set of lag compensation algorithms. Through

these examples, we demonstrate the features of the model,

as well as illustrate its expressiveness.

Multiplayer games use a variety of techniques for lag

compensation. These techniques have generally been pro-

posed to enhance user experience or to combat cheating

Fig. 3 Elements of the timelines model: a timeline includes a set of

past and future values (v1, v2,…v3), along with the times at which they

hold (t1, t2,…t3). Values between these times are computed using an

interpolation function, and values after these times are estimated

using an extrapolation function

Fig. 4 Timelines are fully replicated. When a client sets a new value

into the local timeline, the remote update function inserts the value

into the same timeline on all other clients
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[13]. Lag compensation techniques used in games make

tradeoffs between the degree of consistency provided and

the responsiveness to player commands [31]. Based on

these tradeoffs, we can divide the mechanisms used for lag

compensation into three broad categories: predictive tech-

niques, delayed input techniques and time-offsetting tech-

niques. The algorithms used within each category are

described below:

• Predictive techniques estimate the current value of

remote state from state that is available locally. For

example, the dead reckoning [21] technique is widely

used to estimate the current positions of other players’

avatars based on earlier position and velocity informa-

tion that has been sent over the network. This helps to

solve the ‘‘stale state’’ problem described in Sect. 2, by

providing a means of estimating what has happened on

the remote client between state updates. Predictive

algorithms can be used to address the ‘‘stale update’’

problem. When a state update arrives over the network,

prediction can be used to estimate the state’s current

value, as opposed to the value at the time the message

was sent. To achieve this, state update messages must

be timestamped, and the clocks on the local and remote

clients must be synchronized [1]. Finally, if smooth

corrections [34] are used to repair incorrect predictions,

the programmer must be able to access states from the

past, present and future, as shown in Fig. 2.

• Delayed input techniques such as bucket synchroniza-

tion [4] and local lag [25] defer local actions to allow

simultaneous execution by all clients. Programming

local lag requires mechanisms for delaying inputs and

for estimating message delivery time between the

different nodes. It also requires a policy for handling

messages that take longer than the lag constant to

arrive. Bucket synchronization requires a mechanism

for pausing all clients at exactly the same point of

execution, applying all pending messages in the same

order, and resuming execution.

• Time-offsetting techniques such as remote lag [3] and

local perception filters [32] insert a delay in the

application of remote state updates. For example, as

shown in Fig. 1, a remote player’s avatar’s position is

lagged by a constant number of milliseconds. This

approach trades off the immediacy of positional

updates versus reducing the jitter caused by variance

in time to deliver updates over the network.

All of these techniques involve the manipulation of

time—either predicting the future, scheduling actions for

future execution, or providing divergent timelines for dif-

ferent players. In this section, we now show how the tim-

elines model simplifies the implementation of algorithms

from each of these styles of techniques.

4.1 Predictive techniques

Predictive techniques involve two components. First,

extrapolation functions are used to estimate the current

state of a remote entity based on previous known states. For

example, dead reckoning is widely used as a mechanism

for estimating the position of remote avatars [21]. Second,

a mechanism is required to correct the state of an entity

when the prediction is proven wrong. The following sec-

tions describe both of these components in more detail and

show how using timelines facilitates their implementation.

4.1.1 Example: dead reckoning

Dead reckoning is commonly used in distributed interac-

tive simulations to reduce the number of network messages

required to convey positional updates. Dead reckoning is

based on the assumption that entities rarely change direc-

tion or speed, and that therefore previous movement is an

accurate predictor of current movement. The IEEE dis-

tributed interactive simulation standard defines a protocol

for dead reckoning [20, 21] whereby an extrapolation

equation is used to estimate the position of an entity.

Instead of transmitting an update packet following each

movement of the entity, updates are only transmitted when

an error threshold is exceeded. When dead reckoning is

used in multiplayer games, the client controlling an entity

transmits position and velocity data to remote clients,

which then use this information to estimate current or

future positions of the entity.

Dead reckoning algorithms, however, frequently fail to

account for delays caused by network latency. Typically,

when a client receives a positional update, that position is

set as the entity location at the current local time, not at the

time the message was sent. Aggarwal et al. [1] have shown

that treating remote updates as past events (i.e., accounting

for network latency) improves the accuracy of dead reck-

oning. However, this approach requires the programming

complexities of timestamping positional update messages

and synchronizing the clocks on the local and remote

clients.

Dead reckoning with lag awareness is built into the

timelines model, requiring no extra programming by the

game developer. The model’s extrapolation function pro-

vides dead reckoning as the default behavior. When

updates are received from a remote client, they are auto-

matically inserted into the local timeline at the time they

were sent, not the time they were received.

The following example shows how easily dead reckon-

ing with lag awareness can be implemented using time-

lines. Consider that ‘‘Alice’’ and ‘‘Bob’’ each control

avatars in a game. Alice’s avatar’s position is represented

in a timeline of positions called alicePos. We assume the
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traditional game architecture where inputs are polled and

the frame is rendered asynchronously. Thus, when Alice

moves to a new position (x, y), the operation on Alice’s

client to process the movement is simply:

alicePos ð0Þ ¼ ðx; yÞ;

This operation inserts the value (x, y) into the alicePos

timeline at time 0, the current time. Then, on both Bob and

Alice’s clients, when the frame is rendered, Alice’s

position is drawn as:

DrawAvatar ðalicePosð0ÞÞ;

That is, the avatar is drawn at its position at the current

time.

On Bob’s client, as messages indicating Alice’s move-

ments arrive, they are automatically inserted into the

timeline taking into account the network latency. For

example, if the message containing Alice’s position

required 60 ms to travel over the network, then the position

is automatically inserted in the alicePos timeline on Bob’s

computer at time -60.

When Bob’s client uses the value of alicePos(0) to

render Alice’s position, it extrapolates from her last known

position. This example shows how the timelines model

provides lag-aware dead reckoning as default behavior,

requiring no special programming.

4.1.2 Example: smooth corrections

With dead reckoning, when a new positional update arrives

that is significantly different from the current predicted

location, the simplest solution is to immediately move the

entity to the new location. This results in jerky animation

and can be visually jarring for the player. Convergence

techniques [34] may be used to correct these errors in a

smooth, less surprising manner. We instead move the entity

progressively to its correct position. For example, we might

aim to have the entity in the correct position 200 ms in the

future. It is not sufficient to move the entity to its current

position 200 ms in the future; instead, we must estimate

where it will be in 200 ms, and progressively move it to

that location.

The first step in the algorithm is to select the location and

time of the entity’s corrected position (e.g., the new location

200 ms in the future.) The entity then moves at increased

speed until it reaches this correct location, as shown in

Fig. 5a. An even better correction can be accomplished by

following a curved path to the new location, as shown in

Fig. 5b. This progressive correction can be difficult to pro-

gram, as we need to simultaneously deal with entity’s current

position, its correct (but stale) position, and its future correct

position. Furthermore, the avatar’s position must be updated

over time until the correct position is attained.

Smooth positional corrections can be easily specified

using timelines. We do this by overriding the position

timeline’s default remote update function of Fig. 4. Nor-

mally, remote updates are handled by adding the incoming

value to the timeline at the appropriate time. This approach

replicates the timeline on all clients that have access to it.

For smooth corrections, however, we purposely wish the

timelines to diverge—when a local client receives a cor-

rection, the local timeline is modified to gradually move

toward a consistent state.

Figure 6 shows this approach. We use a timeline to rep-

resent the positions of a remote player’s avatar. The current

position of the avatar has been extrapolated, based on these

known positions. We identify this extrapolated location as

currentPos. Then, as seen in Fig. 6, the client receives a

message indicating that the avatar was actually at a position

fixupPos at some earlier time fixupTime. Extrapolating from

this position and time, we deduce that the avatar should in

fact currently be at position correctCurrentPos.

The simple solution to this error is to update the current

position to correctCurrentPos, and this is in fact what the

timelines model does by default.

Instead, we decide to smoothly move the avatar to the

correct position over the next 200 ms. The avatar’s target

position (targetPos) is determined by extrapolating 200 ms

into the future. The avatar will move quickly over the next

200 ms to that position.

We will now describe in more detail, how this is

accomplished using the timelines model. First, we need to

save the current position before the update is applied, i.e.,

the avatar position at time 0. (This is necessary because

inserting a new past value into the timeline will alter the

current position.)

currentPos ¼ avatarPos ð0Þ;

Next, we place the fixup position (the position contained

in the latest update message) into the timeline at the correct

time. This allows us to estimate a target position we want

to arrive at 200 ms in the future.

avatarPos ðfixupTimeÞ ¼ fixupPos;

targetPos ¼ avatarPos ð200Þ;

Finally, we insert both the current position, and the

target position into the timeline. (The assignment of the

target position is necessary as its extrapolated value

changes following the update of the current position.)

avatarPos ð0Þ ¼ currentPos;

avatarPos ð200Þ ¼ targetPos;

The correction may be either a straight path toward the

target position as shown in Fig. 5a, or if a nonlinear

interpolation function is used, the correction will follow a

curved path as in Fig. 5b.
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This example illustrates how smooth corrections can be

easily implemented using timelines. By default, the time-

line remote update function inserts values from remote

clients into the local copy of the timeline. This function

would contain just one step:

avatarPos ðfixupTimeÞ ¼ fixupPos;

With the simple addition of four lines of code, the

remote update function becomes:

currentPos ¼ avatarPos ð0Þ;
avatarPos ðfixupTimeÞ ¼ fixupPos;

targetPos ¼ avatarPos ð200Þ;
avatarPos ð0Þ ¼ currentPos;

avatarPos ð200Þ ¼ targetPos;

and we have implemented smooth corrections. Also,

depending upon the form of interpolation and extrapolation

functions used (linear or higher order) the correction may

follow either a straight line or a curved path.

The key concept illustrated in this example is that by

having the ability to modify a timeline, programmers are

able to explicitly control the divergence of timelines

between different clients. The remote client, where the

avatar is being controlled, sees neither the error nor the

correction.

4.2 Example: delayed input techniques

While dead reckoning is a predictive technique that can lead to

inconsistencies in the game state, delayed input techniques

such as local lag and bucket synchronization take the opposite

approach. With these techniques, the goal is to reduce or

eliminate inconsistencies by delaying local actions.

Players can often better coordinate their actions if they

see the same changes to game state at the same time.

Various algorithms have been developed that manipulate

time to help synchronize players’ actions. Notable among

these is local lag [25]. The key idea behind local lag is to

delay the execution of local commands long enough that

the commands have time to propagate to all remote sites

and can then be executed simultaneously at all locations.

Programming local lag is surprisingly tricky, requiring

mechanisms for delaying inputs and for estimating mes-

sage delivery time between the different nodes. It also

requires a policy for handling messages that take longer

than the lag constant to arrive.

Conversely, local lag is simple to implement using

timelines. Consider again ‘‘Alice’’ and ‘‘Bob’’ from our

Fig. 5 Corrections to incorrect

states predicted by dead

reckoning may be corrected by

a following a straight path to a

future point predicted by dead

reckoning, or b following a

curved path

Fig. 6 A timelines implementation of smooth corrections
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previous example for dead reckoning. As before, Alice’s

position is stored in the timeline alicePos. In this example,

however, Alice’s client uses local lag to set positions in

response to her movement commands. We will assume that

the local lag constant is DELAY. That is, if Alice presses a

key to move her avatar, there will be a delay of DELAY ms

before she observes the movement associated with that key

press. Bob should also observe the same movement DELAY

ms after Alice pressed the key.

Thus, if Alice moves to a new position (x, y), the

operation on Alice’s client to process the movement is

simply:

alicePos ðDELAYÞ ¼ ðx; yÞ;

That is, the position (x, y) is stored in the alicePos

timeline DELAY ms in the future. For example, if

DELAY = 100, then Alice’s position is set to (x, y),

100 ms in the future.

As before, Alice’s position is drawn on both clients as:

DrawAvatar ðalicePosð0ÞÞ;

That is, the avatar is drawn at its position at the current

time.

This very simple code has a range of interesting effects. On

Bob’s client, messages indicating Alice’s movements are

automatically inserted into the timeline when they arrive. If

the message took less than DELAY to arrive (hopefully the

normal case), then on Bob’s remote client, the new position is

inserted into the alicePos timeline in the future. For example,

if DELAY = 100 and the message took 60 ms to arrive, the

message is inserted into the alicePos timeline on Bob’s

computer at t = 40. This allows the present position of Alice’s

avatar to be interpolated (using previously recorded posi-

tions). Therefore, the local lag functionality supports smooth

movements on remote clients without annoying corrections.

Alternatively, if the message took more than DELAY to

arrive, say 130 ms, then the positional update is inserted

into the alicePos timeline in the past (t = -30), and cur-

rent positions are extrapolated from this (and possibly

other) past values.

This simple example illustrates the power of the time-

lines model. Merely changing the time at which Alice’s

position is set in the timeline allows a game developer to

switch from dead reckoning to local lag. Also, the prob-

lems of synchronizing lag between different clients and of

dealing with messages which take longer than the lag

constant to arrive are handled automatically, requiring no

code from the game programmer.

4.3 Time-offsetting techniques

Time-offsetting techniques render game entities at different

times on different clients, typically displaying a delayed (or

‘‘time-offsetted’’) version of remote players and objects.

This approach is useful when designers believe it is better

to provide an accurate representation of the timing of other

players’ activities, even if that representation is delayed.

4.3.1 Example: remote lag

One time-offsetting technique is the aiming mechanism

used in the Half-Life series of games [3]. In shooting

games, an authoritative central server is usually used to

arbitrate when a shooting player has hit another target

player. The simplest means to implement this is to have a

single canonical game state and after a shot is fired, the

server determines the location of the target player and

whether or not a hit occurred. This can make aiming dif-

ficult because the shooter must predict where the other

player’s avatar is going and aim ahead of it in order to get a

hit (Fig. 7a).

In the Half-Life series of games, each client applies a

constant lag to the actions of other players and the server

arbitrates hit decisions based on the state of the shooter’s

client at the time the shot was made (Fig. 7b). This means

that the shooter can aim directly at the target player.

However, implementing this mechanism can be complex as

it requires the server to be capable of unwinding time in

order to determine the position of the target avatar on the

shooter’s client at the time the shot was fired. Since the lag

is applied only to remote avatars, each client’s frame of

reference is different.

Figure 8 shows how timelines are used to solve this

targeting problem. First, we will look at how timelines are

used to easily render a current version of the local avatar

and a time-delayed version of the remote avatar. We

assume that we have two timelines avatar1 and avatar2.

These timelines will contain the position of the avatar, the

direction it is aiming and an indication of whether or not

the avatar is shooting. Without loss of generality, we

assume that avatar1 is currently shooting at avatar2. These

Fig. 7 Shooting often requires players to ‘‘lead’’, guessing where the

target actually is (a). The Half-Life algorithm allows players to shoot

at the target where they see it (b)
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two timelines are shared by two clients and a central server.

When players perform input actions, the appropriate tim-

elines are updated at time 0. Thus, if player 1’s avatar has

moved to position (x, y), is aiming in direction (aim_x,

aim_y) and is shooting, then the avatar state is set as

follows:

avatar1 ð0Þ ¼ ðx; y; aim x; aim y; TRUEÞ;
When rendering the avatars, we want to display the local

avatar at the current time, but display a delayed version of

the remote player’s avatar. Thus, assuming that the amount

of delay to be applied to the remote avatar is REMOTE_-

LAG, then, on player 1’s client, the avatars are drawn as:

DrawAvatar ðavatar1ð0ÞÞ;
DrawAvatar ðavatar2ð�REMOTE LAGÞÞ;

Now we will look at how timelines can be used to allow

the server to determine whether or not player 1 was aiming

at player 2 when he fired. First, we will need to know the

length of time required for a message to travel from the

client to the server. If we assume that a message takes L ms

to arrive at the server. Then, the server must make the hit

decision based on the state of the shooter (avatar1) at time

-L (when the message was sent) versus the state of the

target (avatar2) at time –L—REMOTE_LAG (where the

shooter believed the target was at time -L).

Periodically, the server checks the avatar1 timeline to

see whether a shot has been fired. The time of the last

known shooter status is queried and saved to t. The state of

the shooter at that time is retrieved, and used to determine

whether the shooter was firing his weapon at that time:

t ¼ LastKnownTime ðavatar1Þ;
shooter ¼ avatar1ðtÞ;
ifðshooter:IsShootingÞ. . .

If the player was shooting, the server then determines

the state of the target player at the time of firing, as viewed

by the shooter. This is done by subtracting the amount of

remote lag from the time the shot was fired, and retrieving

the target state at that time:

target ¼ avatar2 ðt� REMOTE LAGÞ;

Finally a TargetHit function uses the avatars’ positions

and shooter’s direction to determine whether the target

avatar was hit. If the target was hit, its health points are

decremented.

if ðTargetHitðshooter:Position; shooter:Heading;
target:PositionÞÞ
f

targetHealthð0Þ ¼ targetHealthð0Þ � 1;

g

Thus, the server needs to take account of the shooter’s

frame of reference when a shot was made to determine

whether or not the shot hit the target. To do this, the

server must reconstruct the state of the shooter’s client at

the time of the shot. This requires the server to access the

state of the shooter at the time the shot was fired and to

access the state of the target at the point in time prior to

the shot corresponding to what the shooter saw. The

timeline model’s ease of accessing these past states makes

this straightforward. A past state can be retrieved from a

timeline by simply specifying the time at which the data

is needed. Thus, for the server to determine if a hit

occurred all that is required is to know the time at which

the shot was fired and the time delay associated with the

target.

4.3.2 Example: local perception filters

Local perception filters [32] is another example of a lag

compensation algorithm based on time offsets. The key

idea is to continually adjust the amount of delay applied to

non-player controlled entities depending upon their posi-

tion relative to the local player’s avatar. Despite the

approach’s great promise, we are aware of no games using

local perception filters. We conjecture that this may be due

to the difficulty of implementing it using standard pro-

gramming tools, making it difficult to for developers to

quickly evaluate how well the approach works in their

game. As we shall show, the timelines model makes the

implementation of local perception filters tractable, open-

ing its application to distributed game physics.

We first describe the local perception filters algorithm,

and then show how it can be implemented using timelines.

We begin by looking at a single object whose motion is

determined by a physics engine, for example in the simple

soccer game as shown in Fig. 9. Through this example we

highlight some of the shortcomings of other more

Fig. 8 A timelines approach to implementing Half-Life’s hit deter-

mination code
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commonly used lag compensation techniques. In the soccer

game, two players kick a ball about in a 2-D world. The

players are free to move their avatars around the world, and

a physics simulation is used to determine the position of the

ball. Ideally, both players would see the ball in the same

position, and the ball would react instantly when it is kicked.

However, due to network latency, this is not possible.

Delayed input techniques such as local lag would provide

the desired consistent view, but the local player would

experience reduced responsiveness as local lag causes a

delay between kicking the ball and seeing it move. Predic-

tive techniques provide fast response times, but extrapolated

positions are often inaccurate, particularly when the avatar

changes direction or the ball is kicked. In the presence of

physics, such inaccuracies can be highly visible.

Remote lag (as described above) applies a delay to the

remote player’s avatar and renders the local avatar in real-

time. This provides immediate responsiveness for the local

player. Since the position of the remote avatar is time-

delayed, positional updates are treated as future values,

allowing positions to be interpolated on the local client,

providing smoother animation. Because the ball travels

between the two players’ avatars, when the remote avatar

kicks the ball, the ball’s motion must be delayed by the

same amount of time as the remote avatar. Otherwise, the

interactions between the player and the ball would appear

unrealistic. However, when the ball is near the local

player’s avatar, it must move in real-time, or again the

interactions would appear unrealistic. Local perception

filters balance this by adjusting the ball’s delay depending

upon its position relative to the two avatars. For example, if

the remote player’s avatar is delayed by 100 ms, the ball is

also delayed by 100 ms when it is next to the remote

player’s avatar, by 50 ms when it is halfway between the

two avatars and by 0 ms when it is near the local player’s

avatar. This provides the local player with fast response

times when he kicks the ball. It also allows him to view

realistic interactions when the remote avatar kicks the ball.

To implement this example, a developer, therefore,

needs to continually adjust the delay associated with the

ball as it moves relative to the positions of the avatars. As

an additional complication, the physics simulation for the

ball must be carried out on the client whose avatar is

closest to the ball. The delay in rendering the ball on the

other client provides sufficient time for the ball’s position

to be transmitted over the network. In sum, to implement

this simple game using local perception filters, the pro-

grammer must maintain different timeframes for both

players, to adjust these timeframes dynamically, and to

implement a distributed physics simulation with dynamic

change of simulation host.

Timelines make this implementation tractable because

they allow the programmer to easily access the state of an

object at any point in time. Specifically, we use timelines to:

• pass the right to calculate the position of the ball using

the physics simulation;

• determine the time delay for the ball; and

• determine the time delay for the other player’s avatar.

In our example, we assume a client–server architecture

with two clients each running a physics simulation to

determine the position of the ball. The server uses the ball

and player position information to arbitrate which player is

controlling the updates to the ball position.

To illustrate how timelines can be used to implement local

perception filters, we require three timelines: player1Pos,

player2Pos and ballPos representing the positions of the

three game entities. We also require one additional timeline,

ballControl, that indicates which player is controlling the

physics simulation for the ball and updating the ballPos

timeline. The ballControl timeline contains discrete values,

and thus uses stepping interpolation/extrapolation.

The server receives updates for the player and ball

positions from each client and then, based on the distances

of each player from the ball, determines which player

should be updating the ball position. The server then sets

this information in the ballControl timeline.

ballControlð0Þ ¼ Player1;

The following steps then occur on each player’s

computer. Here we describe the steps assuming that player

1 is the local player. Then, on player 1’s computer, the client

checks the value in the ballControl timeline. If player 1 is

controlling the ball, his client calculates the new ball

position and sets that value in the ballPos time-line. If player

2 is controlling the ball, player 1’s client does nothing as it

will be able to get values from the timeline that are set by

player 2’s client. Thus, assuming getUpdatedBallPos is a

method that updates the ball position and then returns that

updated position, the code for adding new values to the

timeline is:

Fig. 9 When using local perception filters, the time used to retrieve

the ball’s position changes relative to the local and the remote players
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if ðballControlð0Þ ¼¼ myPlayerNumberÞ
f

ballPosð0Þ ¼ getUpdatedBallPosðÞ;
g

Next, to draw the ball in the correct position, the players

must determine the delay to apply to the ball.

Assuming again that player 1 is the local player, then

player 2’s avatar is drawn at DELAY ms in the past. His

avatar’s position will be:

player2Pos ð�DELAYÞ;

and the local player’s avatar (player 1) is drawn at:

player1Posð0Þ;

To estimate the ball’s position, we use the position

where it was last drawn as a first approximation. We will

assume this value has been stored in a variable called

prevBall. Then, assuming that the lag applied to the ball is

linear depending upon the distance between it and the two

players’ avatars, we can calculate the ballDelay as follows:

d1 ¼ length ðplayer1Pos ð0Þ � prevBallÞ;
d2 ¼ length ðplayer2Pos ð�DELAYÞ � prevBallÞ;
ballDelay ¼ DELAY � d1=ðd1þ d2Þ;

Then the ball position to be rendered is:

ballPosð�ballDelayÞ;

This example illustrates how timelines’ ability to access

entity positions at any point in time has allowed us to easily

change the timeframe of the ball each time it is rendered. It

also shows how it is possible to allow multiple clients to

coordinate updates on shared state data. Given the ease

with which local perception filters can be implemented

with timelines, it becomes practical to assess their

suitability for games under development.

4.4 Using timelines: summing up

This section has argued that lag compensation algorithms

fall into the three classes of predictive, delayed input and

time-offsetting techniques. We have shown that timelines

can be used to express representative algorithms drawn

from all three of these techniques. We have shown that

complex algorithms can be expressed with very little code,

making it tractable for developers to experiment with

complex and novel lag compensation schemes.

5 Implementing timelines

The previous section showed how timelines’ explicit

treatment of time provides the necessary infrastructure for

implementing many of the lag compensation techniques

used in multiplayer games. We now discuss how timelines

are implemented within our Janus toolkit. Janus provides a

low-overhead implementation of timelines with a simple

API. The toolkit is named after Janus, the Roman god of

gates, doorways, beginnings and endings. Janus also had

the ability to see into both the past and the future, just as

users of the Janus toolkit are able to access previous and

future versions of the game’s state.

The Janus toolkit is written in C# and is compatible with

any .NET language. It is built on top of the Lidgren Networking

Library (http://code.google.com/p/lidgren-network-gen3),

which provides reliable UDP messaging.

5.1 Object model

Within Janus, timelines are implemented as objects des-

cended from the Timeline class. Each timeline has a base

type (the type of the timeline state) and methods imple-

menting interpolation, extrapolation and remote update

handling. The default values of these methods can be

overridden to create arbitrary timeline types. Timeline

objects also provide Get and Set methods for retrieving/

modifying the timeline’s state.

Each timeline object has a string identifier. If two clients

create timelines with the same identifier, those timelines

are automatically synchronized. As shown in Fig. 4,

whenever a new value is added to a timeline, an update is

sent over the network to the client’s remote peers. When

the remote update is received, it is applied to the timeline

via its remote update handling function. By default, this

function simply inserts the new state into the timeline at the

correct time and removes any later values in the timeline.

As we have seen, overriding this function can allow easy

programming of interesting behaviors, such as the smooth

corrections of Sect. 4.1.2.

Known timeline states (i.e., those that have been inser-

ted into the timeline with the Set method) are simply

organized into a doubly linked list, where each state is

tagged by its time. The shared state object may be as

simple as a single integer, or it may be any arbitrarily

complex object containing multiple properties. We have

created a variety of standard timeline objects including an

integer, a floating point number, 2-D and 3-D position

vectors and more complex objects combining position,

heading and velocity. Users of the toolkit can either use

these existing timeline objects or create a new type of

timeline object.

Although the time values stored in the linked list are real

times (measured in milliseconds since the epoch), the

programmer always accesses states using relative time,

where zero (0) means now, ?10 represents 10 ms in the

future, and -10 represents 10 ms in the past.
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5.2 Interpolation and extrapolation

A timeline’s Get method is used to retrieve its state at a

given time (past, present or future). The Get method uses

the timeline’s interpolation and extrapolation functions as

necessary to provide values at times when none is known.

Default implementations of linear and stepwise interpola-

tion/extrapolation are provided, and developers can create

additional functions to provide domain-specific behaviors.

For example, with the dead reckoning, the extrapolation

function may be either first order (based on position and

velocity) or second order (based on position, velocity and

change in either speed or direction). The function may also

be based upon only the most recent update, or it may be

based upon two or more previous states. Our timelines

implementation supports the use of a variety of extrapo-

lation (and interpolation) functions, and thus all these

options are possible merely by selecting a different

extrapolation function. Which form of extrapolation func-

tion is most suitable depends upon both the type of game

and the type of motion [27]. With timelines, the choice of

function can be modified at runtime, thus facilitating

adaptive techniques such as the use of position-based his-

tory [33] where the extrapolation function changes based

on the motion of the entity.

5.3 Distribution and networking

From the developer’s point of view, Janus has a peer-to-

peer architecture. That is, updates are automatically

broadcast to all peers that share the same timeline, and all

data is fully replicated. If a server is required (as with our

targeting and shooting example of Fig. 8), one of the peers

can be allocated a server role.

In the current implementation of Janus, we have

developed a centralized message router to implement this

peer-to-peer communication. The router is based on a

distributed publish and subscribe architecture [11]. As

indicated previously, a string identifier is associated with

each instance of a timeline object. When a client creates a

timeline object with a given identifier, the identifier is

passed to the message router and the client automatically

subscribes to updates for that object. When a client stores a

new value in a timeline object using its Set method, the

value and the time associated with it are sent to the mes-

sage router which forwards the data to all other clients who

have subscribed to that timeline object.

By default, the Janus Toolkit does little to minimize the

number and size of messages passed between clients.

However, several features are available that dramatically

reduce bandwidth requirements of applications using the

toolkit. First, the programmer can set a minimum time

interval between updates. Thus, not all changes to the local

timeline are propagated over the network. For example if

the local client updates positions every 20 ms and the

minimum time interval for sending updates is set to 60 ms,

then only one-third of the updates are sent. Second, each

client continually keeps track of which values have actually

been sent over the network. Then, prior to sending an

update, the client performs a check to determine whether or

not remote clients can accurately predict the new updated

state. Only if the remote client is unable to predict the new

state within a set error threshold will the new state be

transmitted. By setting the size of the error threshold, the

programmer can control the fraction of messages that are

sent. Auto-adaptive dead reckoning schemes [5] can also

be implemented by adjusting the error threshold depending

upon the game situation or factors such as network con-

gestion and bandwidth availability.

Finally, the programmer is able to optimize the size and

format of messages. By default, Janus uses object seriali-

zation to convert objects to a byte array for transmission

over the network. This has the advantage of making it

simple to create new timeline classes without the need to

worry about how the data is transmitted. However, the built

in object serialization can generate unnecessarily large

messages. Programmers can override the default seriali-

zation methods, and are thus able to optimally format the

messages passed.

To support synchronization, Janus uses a global clock.

Determining and maintaining a global clock on all clients

can be a daunting task due to clock drift, network latency

and jitter. We have implemented our global clock using the

Berkeley algorithm [16]. In our implementation, the mes-

sage router periodically sends timing messages to all cli-

ents. The message router analyzes the timing messages

returned from the client, discarding any outliers and then

sends updates to the global time back to the client.

5.4 Alternative architectures

The timeline model does not impose any specific archi-

tecture on the game. In the Janus toolkit, we chose to

implement a message broadcasting underlay with a peer-to-

peer overlay. The decision to use a central message router

was made purely for simplicity of implementation, and

could be replaced by true peer-to-peer message broad-

casting techniques. This implementation easily supports a

variety of overlay architectures. As shown in Fig. 10,

the message communication architecture is determined by

the topology of clients’ subscriptions to timeline objects.

Figure 10a shows a peer-to-peer overlay where each client

(C1 and C2) subscribes to updates for all timelines (TL1 and

TL2). In the client–server model shown in Fig. 10b, each

client shares a timeline only with the server. That is, client

C1 updates timeline TL1 and the message router only
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propagates those updates to the server S1. Similarly, client

C2 updates timeline TL2 and the message router only

propagates those updates to the server S1. Timelines TL3

and TL4 are both updated by the server and the updates for

these timelines are forwarded to both clients. In the hybrid

model in Fig. 10c, timelines TL1 and TL2 are shared only

between one client and the server, while timelines TL3 and

TL4 are shared between the two clients and timeline TL5 is

shared by all.

6 Background and related work

We have shown that by making time an integral part of the

programming model, timelines have simplified the imple-

mentation of lag compensation techniques used in multi-

player games. To place this work in context, we now look

at the support provided by existing game networking

libraries for time-based programming, and then review

other programming environments which incorporate time.

6.1 Networking support for multiplayer games

Existing game networking toolkits provide only limited

support for manipulating time, contributing to the difficulty

of implementing many lag compensation algorithms. Zoid-

Com (http://zoidcom.com) includes a special replicator that

implements client side prediction, dead reckoning/extrap-

olation, interpolation, movement correction and local

overrides. As we have seen, interpolation and extrapolation

are important to programming lag compensation algo-

rithms, but are not sufficient to fully solve the problems

discussed in Sect. 2, particularly the frame of reference or

multiple-times at-once problems.

OpenTNL (http://opentnl.org) also includes mechanisms

for interpolation and extrapolation of object positions. Net-

Z (http://quazal.com) provides two models for shared

objects: attribute propagation which uses data extrapolation

to reduce bandwidth requirements, and step-by-step syn-

chronization. Other game networking libraries such as

ClanLib (http://clanlib.org), Nevrax/NEL (http://opennel.

org), OpenSkies (http://openskies.net), RakNet (http://www.

raknet.net) and ReplicaNet (http://replicanet.com) provide

basic networking services and include object replication,

NAT punchthrough, message reliability and techniques for

reducing bandwidth requirements. However, they provide

little or no support for interpolation and extrapolation of

shared data objects.

As game networking libraries provide limited support

for programming with time, we look to other programming

environments that have integrated time into the program-

ming model.

6.2 Other programming environments for managing

time

A number of programming languages explicitly incorpo-

rate time. Dataflow programming languages (such as Lucid

[2]) represent variables and expressions as an infinite series

of data objects as opposed to single values. In dataflow

languages, variables move sequentially from one state to

the next; however, there is no mechanism for accessing an

arbitrary state in the past or future. Constraint imperative

languages extend dataflow languages to express temporal

constraints in user interfaces [14], but again do not permit

manipulation of past or future states.

The field of animation has a long history of managing

variables that evolve over time. Myers et al. [26] have

shown how constraints can be used to create animated

interfaces. However, this work provides no notion of

attributes existing as a continuous series of values and it

does not support extrapolation beyond the ending values.

A variety of commercial languages are available which

manage some notion of time. Quicktime (http://bit.ly/

cH6hVk) provides extensive support for time-based media.

Toolkits such as Adobe Flash (http://www.adobe.com),

Fig. 10 The Janus toolkit

allows for a variety of overlay

architectures including peer-to-

peer, client–server and a hybrid

model depending upon the

subscription list for each

timeline
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Core Animation (http://bit.ly/a3B1z3) and Windows Pre-

sentation Foundation (WPF) (http://bit.ly/kFqqE) provide

explicit access to time to help create animations. They

allow attributes of an object (such as position or color) to

be set at two points in time. It is then possible to access

interpolated values at any point in time between these start

and end points. However, the programmer is limited to

accessing data from one point in the animation at a time,

and there is no notion of sharing these animations between

participants connected by a network.

Spatio-temporal databases [28] capture spatial and tem-

poral aspects of data and deal with the position and/or

geometry of objects changing over time. Spatio-temporal

databases support queries about time, temporal properties,

and temporal relationships allowing data to be accessible at

any point in time. As well, data from multiple points in time

may be accessed within the same query. We were able to

draw from some of these concepts. However, the concept of

embedding a database is impractical for real-time games

where local replication and immediate access is required.

Calculating changes in shared state over time is a fun-

damental concept in distributed simulation [15]. Either a

time stepped or an event-driven execution model may be

used. Standards such as the IEEE standard for High Level

Architecture [19] provide a protocol for object model

interoperability which includes a time dimension and

specifications for extrapolation (dead reckoning).

Timelines are perhaps closest to the programming

abstractions offered by process historians such as OSI-

Soft’s PI System (http://osisoft.com) and AspenTech’s

InfoPlus.21 (http://aspentech.com). These are used in the

process control industry to store time series data and

events. The APIs for these systems implement many of the

principals required for programming with state and time

including the ability to set and get values for any arbitrary

time and automatically interpolate values between time

intervals. Data can be accessed using either absolute or

relative time. Process historians are tuned for the very

different domain of process control, and are not designed

for use in distributed systems.

These tools and programming languages introduce a

variety of concepts for manipulating data which changes

over time. Our work extends the temporal components found

in these environments by applying them to shared data in a

networking toolkit. Specifically, our timelines model com-

bines the ability of Flash and WPF to index variables by time,

and the ability of spatio-temporal databases and process

historians to set and query data at arbitrary times in the past

and future, and applies these concepts to shared state data of

the form used by networked games.

To the best of our knowledge, our timelines model and

its implementation in the Janus toolkit is unique. It is the

first programming model for shared state data that

integrates time and state. By making time an explicit

dimension of shared data objects, the timelines model

makes it considerably easier to express a wide range of lag

compensation algorithms used in multiplayer games.

7 Discussion

We now describe our experience using timelines, and the

strengths and limitations of this programming model.

7.1 Experience

Despite its status as a research prototype, the Janus toolkit

has been used by the authors and other developers to

experiment with a variety of lag compensation algorithms

and to create several multiplayer games based on Micro-

soft’s XNA game development library. The games include

the Balloon Burst, Truck Pull and Pedal Race exergames

[35], the Eliminate 3-D first-person shooter, the Speed

Demons racing game, the Growl Patrol ubiquitous game

[23], and the Liberi persistent world building game [18].

The toolkit has also been used to implement the OrMiS

tabletop military simulation tool [29].

These games were developed by ten developers, none of

whom were authors of Janus itself. All were students, rang-

ing from undergraduate to Ph.D. level, and most had only

passing experience with distributed systems programming.

Despite this, they all reported finding it straightforward to

implement networking using the Janus toolkit. For Balloon

Burst, Truck Pull, Pedal Race, Growl Patrol and OrMiS, the

time to incorporate networking was measured in hours.

Liberi had difficult performance requirements due to its basis

in a large, fully deformable world. For Liberi, Janus was used

to implement interest management and distributed physics

algorithms. Despite this, it was still just a matter of a few

weeks to implement multiplayer support.

The developers using the Janus toolkit were primarily

interested in creating simple networked games to be played

over a local area network. They have mainly relied on pre-

diction or local lag or a combination of these two techniques.

The one exception was a fourth year undergraduate student

who implemented three games for the purpose of evaluating

the effect of different lag compensation techniques on player

experience and performance. With each of these three games

it was possible to switch between local lag, remote lag and

prediction during game play. Also, the smooth correction

technique was implemented in each game.

Although smooth corrections are relatively simple to

implement with the Janus toolkit, most developers chose to

not incorporate this technique in their games. One possible

reason is that the games were only played over a local area

network and thus jarring corrections were not an issue.
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Incorporating smooth corrections as the default behavior

for the remote update function for the standard timeline

classes provided with Janus would increase the use of this

technique even for the most novice developers.

With Janus, we have largely focused on the develop-

ment of multiplayer games. However, timelines can readily

be applied to distributed simulation and to groupware

applications such as shared editors and drawing tools or

chat applications [30].

Our experience indicates that timelines can make it easy

to implement basic networking in multiplayer games. As

we have seen, timelines also make it tractable to implement

sophisticated algorithms. For example, we have experi-

mented with the combination of the local perception filters

[32] algorithm with smooth corrections [34] to provide a

novel solution to the distributed physics problem. Thus far,

we have created a credible simulation involving up to four

players interacting with tens of objects over networks with

up to 100 ms of latency. We are continuing to work on

increasing the number of players and objects.

From this experience, we anticipate that the largest benefit

of timelines is that they enable developers to quickly assess

the benefits of different algorithms, to create new algorithms,

and to combine existing algorithms in novel ways. While in

theory such work is possible with traditional techniques, it is

not always practical to do so given the hectic timeframes of

commercial game development.

7.2 Player experience

Advanced lag compensation techniques show great promise

for improving user experience while playing games. For

example, in the Half-Life series of games [3], remote lag

improves both player experience and performance by

allowing players to aim directly at their targets, and the

bucket synchronization algorithm was key to the imple-

mentation of Age of Empires [4]. However, it is not always

clear which techniques provide the best fit for which game

situations. As shown by work by Stuckel and Gutwin [36],

Pantel and Wolf [27], Zhao et al. [37] and ourselves [31], the

algorithms must be tested and then evaluated to determine

their effect. To do this, the developer must select an algo-

rithm, implement it and then evaluate its impact on player

performance and experience in a range of game situations. If

the technique is too difficult or cumbersome to implement,

this creates a significant barrier to doing such evaluations.

For example, local perception filters [32] first appeared in the

literature in 1998, but (prior to the efforts reported in this

paper) have never been implemented in any multiplayer

game. Timelines make the implementation of these tech-

niques tractable and thus can allow developers to experiment

with different techniques and tailor the techniques used to

specific situations within a game.

7.3 Strengths and limitations

The power of the timelines model lies in its explicit

treatment of time. Automatic interpolation and extrapola-

tion mechanisms allow programmers to easily access

shared state data from any point in the past or future. This

technique is powerful for manipulating shared data,

although it is not without limitations. In our example of

implementing local perception filters, we have shown how

two clients can coordinate updating a single timeline rep-

resenting the ball position. In general, however, the current

timeline implementation does not support multiple clients

updating the same timeline, as the updates from one client

by default can overwrite updates made by the other client.

Overriding the default remote update function can solve

this synchronization issue; however, to-date this has been

left to the developer using the toolkit to provide the

implementation. In future versions of the Janus toolkit, we

will provide a variety of options for remote update han-

dling that will support synchronization techniques such as

time warp [22], optimistic synchronization protocols [12],

conflict merging and/or operational transform [10].

By default, timelines require the entire shared object to

be sent over the network for each update. This makes them

unsuitable for large data structures. We have begun to

explore how timelines can be made more efficient by

sending only changes to the shared state, as opposed to

sending the entire object. Using customized serialization

methods we are able to transmit only the portions of the

data structure that have changed. Further work is required

to generalize this solution for all timelines objects.

We have shown how the timelines model makes it easy to

access shared state data at any point in time. However, the

same is not true for command type data, such as ‘‘shoot’’ or

‘‘crouch’’. There is no method to interpolate or extrapolate

these types of actions and thus each command must be

accessed individually. We have experimented with various

options for integrating commands into our timelines model.

Some options include, allowing the programmer to access a

list of commands that occurred over a time range, or using an

event-driven model for commands, possibly delaying events

based on the command timestamp.

Our implementation of the global clock has been used

successfully to synchronize clients on a variety of com-

puters. We have found that over the local area network we

are able to synchronize the clocks generally within a few

milliseconds. Testing over wide area networks indicates

that clock synchronization within the small tens of milli-

seconds is achievable. A more sophisticated algorithm

may be required under conditions involving higher

network latency and jitter. Also, we have not yet imple-

mented safeguards to ensure that changes to the clock

occur gradually and that the clock cannot move backward.
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We have not seen a need for such safeguards in our studies

to-date, but this may require consideration in the future.

The amount of memory used by our implementation

represents an area for future optimization. Currently all

values that are set are stored in the timeline, possibly

requiring large memory. Janus currently truncates history

to limit storage requirements. We plan to adapt algorithms

for compacting history developed for solving the group-

ware latecomer problem [6], and mechanisms for com-

pressing messages [17].

Timelines provide a novel programming model. For

programmers familiar with message passing techniques,

the shift to thinking about a shared state model indexable

by time can be significant, perhaps analogous to the shift

from procedural to object oriented programming. We have

found that developers who dive into the model without

carefully studying its documentation and examples make

the mistake of trying to treat it like a message passing

system. As with all novel programming models, developers

need to adjust to the model’s way of thinking.

8 Conclusion

In this paper we have presented the timelines programming

model for lag compensation in networked games. Timelines

facilitate the implementation of a variety of lag compensa-

tion techniques by making the treatment of time an integral

part of the programming model. Timelines allow program-

mers to manipulate past and future values and control how

state diverges over time for different players. Timelines have

been implemented within the Janus toolkit, and were used to

implement all examples presented in the paper. The Janus

toolkit and documentation are available for download at

http://equis.cs.queensu.ca/*equis/Janus.
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