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Abstract

This paper concerns fully nonlinear elliptic obstacle problems with oblique boundary con-
ditions. We investigate the existence, uniqueness and W2 ?-regularity results by finding
approximate non-obstacle problems with the same oblique boundary condition and then
making a suitable limiting process.
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1 Introduction and main results

This paper concerns the existence, uniqueness and regularity for viscosity solutions to the
following obstacle problem with oblique boundary data
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F(D?*u, Du,u,x) < f in Q,

(F(D?u, Du,u,x)— f)(u—v)=0 in$, (L
u>y in Q, ’
B-Du=0 on I

for a given obstacle ¥ € WP (Q) satisfying - Dy > 0 a.e. on 9. Here Q is a bounded
domain in R” with its boundary Q2 € C3, F is uniformly elliptic with constants A and A,
ie.,

MIXoll = F(X1+ X2,q9,r,x) — F(X1,4,r,x) = Al[X2]]

for any n x n symmetric matrices X1, X with Xo» > 0,9 € R",r e Rand x € @, and 8 is
a vector-valued function with [|B]| > @3q) = 1 and B - n > §y for some positive constant &y,
where n is the inner unit normal vector field of 9€2.

The main purpose of this paper is to find W2 ?-regularity theory for (1.1). More precisely,
we want to identify the minimal condition of F with respect to x-variable under which the
Hessian of a solution is as integrable as both the nonhomogeneous term f and the Hessian
of the obstacle v in the setting of L? spaces forn < p < oc.

Throughout this paper, we assume that F = F(X, g, r, x) is convex in X and satisfies

d(”2_"l)EF(qu,”hx)—F(qu,rz,x) (12)

forany X € S(n),q € R, r;,rp € Rwithr; < rp, x € Q, and some d > 0. We further
assume that
MT (A, Xy — X2) — blg1 — q2| —clri — 2|

< F(X1,q1,r,x) — F(X2,q2, 12, %) (1.3)

< MFT(A A, X1 — X2) + blg1 — @2l + clri — 1]
for X1, X, € S(n), q1,92 € R, r;,r» € Rand x € Q. These assumptions are essential in
order to derive our desired results for solutions of (1.1), such as the existence, uniqueness
and W7 -regularity.

With an oscillation function of F defined as
|[F(X,0,0,x1)— F(X,0,0,x2)|
OF(xy, x2) :=  sup
XeSn)/{0} [1X1]

alongside a small perturbation of ® ¢ from its integral average in the L"-sense, we shall prove
the W2 P-regularity for (1.1), as we now state the main result of the paper. We remark that
this approach to derive W2 ?-regularity was employed in [7].

Theorem 1.1 Letn < p < oo. Assume that F = F(X, q, r, x) is convex in X, satisfies (1.2)-
(1.3) and F(0,0,0,x) =0, 02 € 3, felLP(Q),B e C2(9) with B -m > &g for some

8o > 0 and € W2P(Q). Then there exists a small € = €(n, A, A, p, 8, [1Bllc290)) > 0
such that if

1/n
sup <][ OFr(x, xp)" dx) <e (1.4)
x0€RQ,0<p<pp By (xo)N$2
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for some py > 0, then there is a unique viscosity solution u € WZP(Q) of (1.1) with the
following estimate

||“||W2v11(g2) = C(||f||LP(Q) + ||W||W2,p(g))
for some constant ¢ = c¢(n, A, A, p, 8o, b, c, ||,3||C2(3Q), [10€2]| -3, diam(£2), po).
Remark 1.2 We assumed F (0, 0, 0, x) = 0 to derive Theorem 1.1. This allows us to neglect

the oscillation of F when X = 0. We note that one can also obtain W?”-regularity by
introducing the following oscillation function

~ |F(X,0,0,x1) — F(X,0,0, x2)|
OF(x1,x2) (= sup
XeSn) [1X]]+ 1

without the condition F (0, 0, 0, x) = 0 (see also [35, Section 5] for the parabolic case).

)

One of the important issues regarding the obstacle problem is to study solutions near
the boundary of the contact surface with the obstacle. To this end, suitable approximation
methods have been used. In this regard, we revisit the argument made in [4] where the Dirichlet
boundary problem was studied instead. Our main difficulty in using such an argument comes
from the situation that we are treating here the oblique boundary condition. Thus, we need to
modify the tools used in [4] properly to derive the desired boundary estimates in the present
paper. To do this, we verify several uniform properties of a solution for the corresponding
non-obstacle problem such as W2 -regularity and comparison principle.

As a generalization of Neumann boundary problems, researches on oblique derivative
problems have been extensively made as in [14, 24, 25, 28, 31, 33]. In particular, several
notable results for fully nonlinear elliptic equations were obtained in the notion of viscosity
solutions. The existence and uniqueness of fully nonlinear oblique derivative problems were
proved in [15, 16, 22]. For the regularity of the associated limiting problem, there have been
established W2*-estimates (indeed, C%?-estimates), see [30] for the Neumann boundary
condition and [29] for the oblique boundary condition, respectively. In [3] a global W2 P-
regularity for the elliptic oblique derivative problem was proved.

On the other hand, the obstacle problem has been studied along with the free boundary
problem. We refer the reader to [17, 32] for a general theory of the obstacle problem. For
free boundary problems of the classical Poisson equation, we can find results about the
minimal conditions to obtain regularity in [1, 20]. Meanwhile, for fully nonlinear elliptic
equations, there have been a number of noteworthy preceding results, for example, [6, 23,
34]. And Indrei’s recent study [21] provided C!-regularity of the free boundary without
density assumptions. Regularity results for the elliptic obstacle problem can be found in
[2, 5, 18, 19]. We would like to point out that C'-regularity for the obstacle problem with
the oblique boundary condition was shown in [26], while W2 P-regularity for the Dirichlet
obstacle problem was given in [4]. Free boundary problems with oblique derivative conditions
are studied in [10, 11], including applications to transonic shocks. The main purpose of this
paper is to derive a W2 ?-estimate for the oblique derivative problem with a W2 ?-obstacle.
We used the interior estimate [7, Theorem 7.1] and boundary estimate [3, Theorem 3.1] to
derive our result.

The remaining part of the paper is organized in the following way. In the next section we
introduce basic notation and give a brief exposition of viscosity solutions. Section 3 deals
with the associated oblique derivative problem without obstacles. In particular we discuss the
existence, uniqueness and W2 ?-regularity for the non-obstacle problem. In the last section
we finally give the proof of Theorem 1.1.
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2 Preliminaries
2.1 Notations

We first introduce some notations which will be used in this paper.

e B, (x0) :={x e R": |x — xo| <r}forxg e R",r > 0. B, = B,(0).

o S(n)isthe setof n x n symmetric matrices and || M || = sup,<; IMx|forany M € S(n).

e We denote the gradient and Hessian of u by Du = (D1u, - - - , Dyu) and D%y = (Djju),
respectively. Here D;u = E% and D;ju = af,% forl <i,j<n.

e For any measurable set A with [A| # 0 and measurable function f, to mean the integral

average of f over A,
1
fdx = —/ fdx.
][A [Al Ja

2.2 Basic concepts

In this subsection, we briefly present some background knowledge for our discussion. As
usual, we are treating a viscosity solution. To do this, we consider the following problem
with oblique boundary data

{ F(D*u, Du,u,x)=f ing, 2.1)

B-Du=0 on 0€2,

where Q@ C R” is a bounded domain. There are several ways to define a viscosity solution
depending on the choice of a test function. In this paper, we take a test function ¢ in W27 ().
The solution defined in this way is called an L”-viscosity solution.

Definition 2.1 Let F be continuousin X and measurablein x. Supposeg > nand f € LY ().
A continuous function « is called an L?-viscosity solution for (2.1) if the following conditions
hold:

(a) (subsolution) For each ¢ € W24($2), whenever € > 0, O is relatively open in  and
F(D?p(x), Dp(x), p(x), x) < f(x) —€¢ ae.in O
and
B-Dp(x) < —€ ae.onONIRQ,

u — ¢ cannot attain a local maximum in O. -
(b) (supersolution) For each ¢ € W24 (), whenever € > 0, O is relatively open in €2 and

F(D*¢(x), Dp(x), p(x),x) = f(x)+€ ae.inO
and
B-Dp(x) >¢€¢ ae.onONaIQ,

u — ¢ cannot attain a local minimum in O.

We remark that it is also possible to take a C2-function as a test function if F is continuous
in each variable. In this case, the solution is called a C-viscosity solution. For a further
discussion of a C-viscosity solution, we refer the reader to [8].
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Next we give some tools to treat viscosity solutions. To do this, we introduce Pucci
extremal operators.

Definition2.2 Let 0 < A < A. For any M € S(n), the Pucci extremal operator M and
M~ are defined as follows:

M‘L(A,A,X):AZei-l-kZei

e; >0 e; <0

and

M*(A,A,X)zxze,-JrAZe,-,

e;>0 e; <0
where ¢; are eigenvalues of X. Moreover, for b > 0, we write
L, A u) = ME(A, A, D*u) £ b|Dul,

respectively.

This definition allows us to introduce the class S. These classes can be considered as
classes of viscosity solutions.

Definition 2.3 Let0 < A < A.Wedefinetheclass S(A, A, b, f) (E()L, A, b, f), respectively)
consisting of all functions u such that

LZF()\, Au)y>f (L;(A, A,u) < f, respectively)
in the viscosity sense in 2. We also define
SO A b, f) =SSO, A b, /YNSO, A, b, f)
and
S*h, A b, f) =S, A b )N SGL AL b, = f]).
Remark 2.4 Let u be a viscosity subsolution (supersolution, respectively) of
F(D*u, Du,u,x)= f ing,

where F = F(X, g, r, x) is uniformly elliptic with constants A, A satisfying the structure
condition (1.3). Then we can observe that u satisfies

LG, Au)+ F0,0,u,x) > f inQ
(L, (A, A,u) 4+ F(0,0,u,x) < f in L, respectively)

in the viscosity sense.

3 Oblique derivative problems

Before establishing W2?-regularity (p > n) for the obstacle problem (1.1), we first discuss
some issues concerning the existence, uniqueness and regularity for the oblique derivative
problem (2.1).

We recall Definition 2.3 to start with an Alexandroff-Bakelman-Pucci (ABP) maximum
principle for the oblique boundary problem. See [29, Theorem 2.1] for the proof.
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Lemma 3.1 Let u satisfy

ueSHh, A b, f) inQ,

B-Du<g onI" C 02
in the viscosity sense for f € L"(Q2) and g € L*°(I"). Suppose that there exist & € d By and
81 > 0 such that B(x) - & > 81 for any x € I'. Then

supu” < sup u” + C(|[f||Lr (o) + max g™,
Q Q)T r

where C only depends on n, \, A, b, §1 and diam(S2).
We also give a weak Harnack’s inequality for supersolutions. The proof can be found in
[36, Proposition 1.8].

Lemma3.2 Let p > nand f € LP(By). Suppose that u € S(A, A, b, f) in the viscosity
sense and u > 0 in By. Then there exist pg, C > 0 depending only on n, ), A and b such
that

lullLro sy ) < C(énf u+ | fllzrs))-
12

The following stability lemma, which can be found in [36, Proposition 1.5], will be used
later (see also [9, Theorem 3.8]).

Proposition 3.3 Fork € N, let Q. C Q41 be an increasing sequence of bounded domains
and Q 1= Ug>1%2. Let F and Fy be measurable in x and satisfy the structure condition (1.3).
Assume that for p > n, f € LP(Q) and f, € LP (), and that uy € C () are LP-viscosity
subsolutions (supersolutions, respectively) of Fi(D?ux, Duy, ux, x) = fi in Q. Suppose
that uy — u locally uniformly in Q, and for B, (x9) C Q and ¢ € W2P(B,(x0))

11(s = se) T llLe B, ) — O (116 = 507 1 Lr (B, (xop) — 0). 3.1

where s(x) = F(D*p, Do, u,x) — f(x) and s¢(x) = F(D*@, Doy, ug, x) — fi(x). Then
u is an LP-viscosity subsolution (supersolution) of

F(Dzu, Du,u,x) = f(x) in Q.

Moreover, if F and f are continuous, then u is a C-viscosity subsolution (supersolution)
provided that (3.1) holds for ¢ € C%(B,(x0)).

Now we return to (2.1). Here we assume that there is a continuous increasing function w,
defined on [0, co) with w(0) = 0, such that
F(X2,q.r,0) = F(X1,q,r,x1) < o(x1 —x2l(gl+ D + el —x) (G2

holds for any x1,x2 € Q2,9 € R",r e R, ¢ > 0 and X, X, € S(n) satisfying

10 X, O I -1
(1) =20 Y= 1), o

One can find the following existence and uniqueness for the problem (2.1) in [27, Theorem
7.19]. We remark that the condition (3.2) is needed to ensure this lemma.

Lemma 3.4 Assume that F = F(X,q,r, x) is convex in X and continuousfin X, satisfies
(1.2)-(1.3) and (3.2), and F(0,0,0,x) = 0, 9Q € C3, f € LP(Q) N C(Q) for p > n,
B € C2(dQ) with B -n > 8 for some 8y > 0. Then there exists a unique viscosity solution

u of (2.1).
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We now have the following W2 P-estimate for the viscosity solution to (2.1).

Lemma 3.5 Under the assumptions and conclusion in Lemma 3.4, there exists a small € =
e€(n, A, A, p,80) such that if

1/n
sup (][ OFr(x, xp)" dx) <e (3.4)
x0€RQ,0<p<pp By (xo)NS2

for some py > 0, then the unique solution u belongs to WP () with the following estimate

lullwzrgy < ClIfllLr @) (3.5)
for some C = C(n, &, A, p, 80, b, c, ||Bllc25), diam(£2), po).

Proof According to [3, Theorem 4.6], u belongs to W2P(Q) with

lullw2r@) = ClullLo@ + 11 f1lLr@) (3.6)

forsome C = C(n, A, A, p, do, b, ¢, ||1Bllc29q), diam(£2), po).

Therefore, it suffices to obtain the estimate (3.5). To prove this, we argue by contradiction.
Suppose not. Then there exist sequences {ux} and { fi} such that u is the viscosity solution
of

{F(D2uk,Duk,uk,x)=fk in €2, (3.7)
B - Duy =0 on 082
with
llullw2o > Kllfellri)  foreachk = 1. 3:8)
Consider iy = %, fi = {Tf and Fi(X,q,r,x) = W’ where 4 =

[lukllw2p () Then iy 18 a viscosity solution of
{ Fy(D%iiy, Diiy, iix, x) = fy in €,
B-Dip =0 on 0<2.
We also see that Fy satisfies the assumptions of Lemma 3.4 and
Nkl lwzr @) = 1.

By (3.8), | |fk [lLr(q) < 1/k and this tends to zero as k — oo. Moreover, by weak compactness
theorem, we can extract a proper subsequence {iiy ].} C {1y} such that

iy, =0 in WHP(Q),
iix; > v in Whr(Q)

for some 7 € W2P(Q). Since p > n, we also observe that whr(Q) cc C(Q) and this
yields ﬁkj — ¥ in C (). Moreover, we also observe that for each j, ftkj e Cle Q) for
some 0 < o9 < 1 —n/p and ||Dﬁkj||Loo(3g) < C for some C = C(n, p, 2) > 0. Then,
from Arzeld-Ascoli criterion, we get

Dﬁkj — Dv ond2.
Hence, by using Proposition 3.3, we see that v is a viscosity solution of

o
{F(D 0, D0, 0,x) =0 inQ, (3.9)

B-Dv=0 on I
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for some F = ﬁ(X, q,r, x). Here we can check that F also satisfies (1.2)-(1.3) and (3.2).
Now we deduce that v = 0 solves (3.9). Then v is the unique solution of (3.9) by Lemma
3.4. But, in this case, we get

1= lliik; llwercey < Clig, e + |1 fi llLr@) — 0 as j — oo,

which is a contradiction. O

In the above lemma, we have assumed (3.2), which says that F and f are atleast continuous
in x. By using mollification, we can relax this assumption.

Lemma 3.6 Assume that F = F(X, q,r, x) is convex in X and measurable in x, satisfies
(1.2)-(1.3) and F(0,0,0,x) = 0, 9Q € C3, f € LP(Q) for p > n, B € C>(dQ) with
B -m > &g for some 5o > 0. Then there exists a unique viscosity solution u of (2.1) with the
estimate (3.5).

Proof Fix € > 0. With a standard mollifier ¢ having suppp C Bj, we define ¢ (x) =
€ "p(x/e). Then we set f€(x) = (f * ¢¢)(x) and

FG(X’q’rsx)=FE(X!q7r7x)=(F(quvr’ )*(pé)(x)

Note that we extended F and f to zero outside €2 here. Then one can check that f€ €
LP(R™")NC*®R™), F€ is convex in X and F€(0, 0, 0, x) = 0. Furthermore, we observe that
F€ satisfies (1.2)-(1.3) and (3.2). By using similar arguments in the proofs of Theorem 4.3
and Theorem 4.6 in [36], we can also show that F€ satisfies (3.4). Consider the following
problem

€ N2 = f€ i
=F (D*uc, Due, ue, x) = € inQ, (3.10)

B-Duc=0 on 9L2.
Then applying Lemma 3.5 to u., there exists the unique solution u. of (3.10) with
luellw2r) < CIfElLr o)

for some C = C(n, A, A, p, 8o, b, c, ||/3||Cz(m), diam($2), pg) (for the existence issue, see
also [36, Proposition 1.11]).

Since W2P(Q) cc CL¥(Q) with0 < o« < 1 — n/p by Sobolev imbedding, we have
{ue}e=0 is uniformly bounded in CLo(Q) for any small € > Oandsome 0 < g < 1 —n/p.
Thus, by using Arzela-Ascoli criterion, we can obtain that there exists a function v with

Ue; — v uniformly in £

for some subsequence {u; } C {uc}. Again, applying Proposition 3.3 to v, we can derive that
v is a viscosity solution of (2.1) with

Ivllw2ray < ClIfllLr@)

for some C = C(n, A, A, p, 30, b, c, ||1Bllc2p)> diam(2), po). The uniqueness can be
deduced by Lemma 3.7 below. O

Meanwhile, a comparison principle for (2.1) can be also obtained as in the case of Dirichlet
problems, see [9, Theorem 2.10]. This will be used to prove Theorem 1.1 in the next section.
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Lemma3.7 Let Q9 C S, and let T € C? be relatively open in 9S2. Suppose that F =
F(X, q,r,x) is convex in X and continuous in x, satisfies (1.2)-(3.2) and F (0, 0,0, x) =0,
B € C*(T) with B -m > 8 for some 8y > 0, v € C(3Q/T) and f € LP(Q) for
n<p<oo.

Letuy, up € W»P(2) N C(Q) satisfy

F(D?uy, Duy,uy,x) < f in Qq,
uy >y on 02/T,
B-Du; <0 onT

and

F(D*uz, Duz, uz,x) > f in Qo,
ury <Y on 920/ T,
B-Duy >0 onI"

in the viscosity sense. Then we have uy > us in Q.

Proof First we set
GX,q,r,x)=F(X+ D%us, q+ Dusz,r +uz, x) — F(Dzuz, Dus, us, x).

One can see that G satisfies (1.2)-(3.2), w := u| — us solves

G(D*w, Dw, w, x) = F(D*uy, Duy, u1, x) — F(D*us, Duz, ua, x) <0
in the viscosity sense, and that w € S(h, A, b, —g) for

g(x)=G(0,0,w,x) = F(D*u3, Dus, uy, x) — F(D*uy, Duy, us, x).

Set
Vi={xeQ:wkx) <0} ={xeQo:u(x)<u(x)).

We want to claim that V = &. Suppose not. Then we have infy w < 0. Since

g(x)>duy —up)(x) =—dw(x) >0 forxeV,

w satisfies
weSK, A, b0 inV,
w>0 ondV/T,
B-Dw <0 onT

in the viscosity sense, according to [29, Theorem 3.1].

We first consider the case 0V /I" # &. Observe that w = 0 on 9V N Qp and w > 0 on
0V N ap)/ . From ABP maximum principle (see [9, Proposition 3.3]), we can deduce
that

supw  =supw .
1% £)%

Thus, w attains a minimum point xo on aV N .

Now define w(x) = w(x) — infy w for x € V. Then we see that @ > 0 in V with
w(xg) = 0. Consider a small neighborhood N(xp) C 2 U T of xg. According to [12,
Proposition 11], we can deduce that there exists a point x; € N(xg) N Q2 with w(x;) = 0
since 8- Dw < 0.Then, by Lemma 3.2, there exists a small number p > 0 with B, (x;) CC Q2
such that

NWllLro (B, 1)) = 0.
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That is,
w=0 in Bp/z(xl).
Repeating the above procedure, we can deduce that

w=0 in V.

Since w is continuous in V, we have

=0 in V,

IS

and this implies w = w. However, it is a contradiction, as we have assumed that infy w < 0.
Hence, V = @ and we conclude that

w>0 in Qo,
and this implies
up >uy in Q.
On the other hand, if I’ = 9V, we have

weSh, A b0 inV,
B-Dw <0 onT.

Again, by ABP maximum principle, we also have

supw” =supw < 0.
v v

Set w = w —infy w in V. Then there is a point yy € dV with w(yp) = 0. From Lemma 3.1,

we can see that there is an interior point y; such that w(y;) = 0. Now we derive that w = 0

in V by using a similar argument as above. This yields that w = ¢y in V for some c¢; < 0.
By the definition of w, we have u; = us + ¢ in V. Then we can observe that

F(D*uy, Duy,uy, x) = F(D*(uz + ¢1), D(ua + c1), uz + c1, x)
= F(D*uy, Duy, up + c1, x)

> F(D*uz, Dua, uz, x) — dc;

> f
in V. But it is a contradiction because F(Dzul, Duy,uy,x) < f. Therefore, we conclude
that V = @. This completes the proof. O

4 Proof of Theorem 1.1

In this section we establish our main result, Theorem 1.1. Our strategy is to construct a
sequence of approximating oblique derivative problems to (1.1). This construction makes it
possible to utilize those results obtained in the previous section for (2.1).

In the process of the proof, we are going to use the following Schauder’s fixed point
theorem (see [13, Theorem V.9.5]).

Lemma 4.1 (Schauder’s fixed point theorem) Assume that X is a Banach space, K C X is
closed, bounded and convex, and suppose that § : K — K is compact. Then § has a fixed
point in K.
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We now prove the main result of this paper.

Proof of Theorem 1.1 Fix ¢ > 0 and choose a non-decreasing function ®. € C*°(R) such
that

P (s) =0 if s <0; P (s)=1 if s>k, 4.1)
and
0<d(s) <1 forany s € R. 4.2)
Set
g(x) = f(x) = F(D*y, DY, x).
Then we have g € L”(Q2) with the estimate

lglLr < IIfllLe) + IIF (D>, DY, ¥, X)Ly

4.3)
= CllfNer@ + ¥ lw2r ()
for some C = C(n, A, A, b, ¢) > 0, since f, Dzw € LP(2) and F satisfies (1.3).
We now consider the following oblique derivative problem without obstacles
F(Dzue, Duea“s,x):g+¢‘e(“s_‘/’)+f_g+ in Q, (4.4)
B-Du.=0 on 0%2. ’

We want to show that (4.4) has a unique viscosity solution. For this, fix a function vy €
L?(L2). Then according to Lemma 3.6, we know that there exists a unique viscosity solution
ve € WHP(Q) of

F(D?ve, Dve, ve,x) = g7 ®c(vo—¥) + f — g inQ,
B-Dv.=0 on 92

with the estimate
[vellw2riqy < ClIgT ®e(vo —¥) + f — gTllLr @

<CUlfllLry + l1gllLr@)
< CUlSfNer + ¥ lw2r )

for some C = C(n, A, A, p, do, b, c, 1Bllc2ea) PO, diam(2)) > 0, where we have used
(4.1) and (4.2). Thus,

||v€||W2<P(Q) < Co

for some

Co = Co(n, A, A, p, b0, b, c, l|1Bllc2 gy diam(€2), || fllzr ). ¥ 1ILr (), PO)-
Note that Cy is independent of vg. Now we can define a nonlinear operator S : LP(2) —
W2P(Q2) c LP() such that S.vg = v, with (4.4). Write
K :={h e L?(Q) : [|hllLr@) < Co}.

Note that K is a closed convex subset of L”(£2). On the other hand, by Rellich-Kondrachov
compactness theorem, we observe that W27 (2) is compactly imbedded in W7 () and
so is in L?(2). Hence, the closure of S¢(A) is compact for every A C K. Meanwhile, by
Proposition 3.3, we can also conclude that S¢ is a continuous operator.
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Therefore, by Lemma 4.1, there exists a function u, € K satisfying Scu. = uc, and this
implies that u, is a viscosity solution of (4.4). Furthermore, from (4.3) and Lemma 3.6, we
also observe that

uellwzr@ < CULfllLr + 1V Iwar @) 4.5)

for some C = C(n, A, A, p, 80, b, ¢, ||Bllc2 (3> diam(€2), po). This shows that {uc}e=o is
uniformly bounded in W27 ().

Recall that p > n. Then we observe that W2P(Q) cc Ch*(Q) for some 0 < g <
1 —n/p by Morrey imbedding. Therefore, we can find a subsequence {ue, } with €; 0 and
a function u € WP (2) such that

{uef—\u in W2r(Q),

e, > u in Whr(Q) c € (Q) 4.6)

as j — oo.

Now we claim that u is indeed the unique viscosity solution of (1.1). We first see that u
is uniformly bounded and equicontiuous on d€2 from (4.5) and Morrey imbedding. Thus, by
using Arzeld-Ascoli criterion, we have

B-Du=0 ondf2.
On the other hand, from (4.4), we observe that
F(Dzué_is Duejv ué_,'sx) = g+q)€_,'(u€j - 11[,) + f - g+ = f in

in the viscosity sense for each j. Recall again (4.6). We see that ue; — u uniformly, and
then we can use the result of [9, Theorem 3.8]. Thus, we have F(D2u, Du,u,x) < fin Q
in the viscosity sense.

Next, we show that

u>1vy in Q.
We first see that @, (”‘fi — ) = 0 on the set
Vi=1{reQ:u,x) <y}
If V; = @, we have Ue; > ¥ in Q, and so we are done. Now suppose that V; # @. Then,
F(Dzuej, Duc;, usj,x) = f(x)— g+(x) forx € V;.

We note that V; is relatively open in Q for each j since ue; €C (Q).
Recall that

F(D*y, DY, Y, x) = f — g > F(D*uc,, Duc, . uc;,x) inV;.

And we also have ue; =y on 9V; /0.
Now we can apply Lemma 3.7 to obtain u¢; > ¥ in Vj, which is a contradiction to the

definition of V; and thus V; = & for each j. Therefore, we can obtain # > ¥ in Q.
‘We next claim that

F(D*u,Du,u,x)=f inV:={xeQ:ukx) > yx).

For each m € N, we have

@ej(ugj —¢)— 1 ae.in {x e :ulx)>vkx) + %}
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as j — oo. Thus, for

V={xeQ:ukx)>vyvx)}= U {er:u(x)>1/f(x)+i},
m=1 m

we derive
g e e, —¥)+ f—gt — f ae inV
as j — oo. Thus, we deduce that
F(D*ut, Du,u,x)=g"+f—gt=f inV

in the viscosity sense.
Therefore, we can conclude that u is a viscosity solution of (1.1). Moreover, from (4.5)
and (4.6), we have

Nullw2.r ) < lim inf ||Mej Nwar) < CUlfNlLr () + Y lwer (o)
]

for some constant C = C(n, &, A, p, 8o, b, ¢, ||Bllc2 5 diam(£2), po).
For the uniqueness, let 111 and u; be two viscosity solutions of (1.1). Suppose that u| # u5.
Then we can assume without loss of generality that

G={uy>u} #9.

Since uy > u; > ¥ in G, we see that F(D?us, Dus, up, x) = f in G in the viscosity sense.
Then we have

F(D*uy, Duy,uy,x) < F(D*uz, Dup,uz,x) = f inG,
Uy = un on 3G/3Q,
B-Duy=p-Duy =0 on 3G N IQ.

Now applying [9, Theorem 2.10] or Lemma 3.7 to u; — u;, we deduce that u; > up in G
whether G N9JQ2 = @ or not. This contradicts the definition of the set G, and hence u| = u,.
O
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