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Abstract
As a generalization of the Yamabe problem, Hebey and Vaugon considered the equivariant
Yamabe problem: for a subgroup G of the isometry group, find a G-invariant metric whose
scalar curvature is constant in a given conformal class. In this paper, we study the equivariant
Yamabe problem with boundary.

Mathematics Subject Classification Primary 53C18 · 53C21 · Secondary 35R01 · 58J32

1 Introduction

Let M be a closed (that is, compact without boundary) n-dimensional manifold with n ≥ 3,
and g a Riemannian metric on M . As a generalization of the Uniformization Theorem for
surfaces, the Yamabe problem [22] is to find a metric conformal to g such that its scalar
curvature is constant. This was solved by Trudinger [20], Aubin [2], and Schoen [17].

In 1993, a question was raised by Hebey and Vaugon in [10] as to whether the Yam-
abe problem could be extended under the control of its isometry group. This problem is
called the equivariant Yamabe problem (or Hebey-Vaugon Conjecture). To state it, we need
the following definitions. Denote [g] the conformal class of g. The group of all conformal
transformations of (M, g), C(M, g), is defined as

{
f : M → M is diffeomorphism

∣∣ f ∗g ∈ [g]}. (1.1)

The group of all isometries in (M, g), I (M, g), is defined as
{
f : M → M is diffeomorphism

∣∣ f ∗g = g
}
. (1.2)

It is clear that I (M, g) ⊆ C(M, g). Then we have the following:
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Conjecture 1.1 (Equivariant Yamabe problem) Given a compact subgroup G of I (M, g),
there exists a G-invariant metric conformal to g such that its scalar curvature is constant.

We say that a metric g̃ is G-invariant if f ∗g̃ = g̃ for all f ∈ G. We remark that the Yamabe
problem is the special case of Conjecture 1.1 when G = {idM }.

Recall that the Yamabe constant of (M, g) is defined as

Y (M, g) = inf{E(u) : 0 < u ∈ C∞(M)},
where

E(u) =
∫
M (

4(n−1)
n−2 |∇gu|2 + Rgu2)dVg

(
∫
M u

2n
n−2 dVg)

n−2
n

.

In [10], Hebey and Vaugon proved the following:

Theorem 1.2 (Theorem B in [10]) There always holds

inf
{
E(u) : u is G-invariant

} ≤ Y (Sn, gSn )

(
inf
x∈M card OG(x)

) 2
n

, (1.3)

where OG(x) denotes the orbit of x ∈ M under G, i.e. OG(x) = {σ(x) : σ ∈ G}, and
Y (Sn, gSn ) is the Yamabe constant of the standard n-dimensional unit sphere (Sn, gSn ).

Theorem 1.3 (Theorem C in [10]) If the strict inequality holds in (1.3), then the infimum on
the left hand side is achieved and the equivariant Yamabe problem is solvable.

On the other hand, Hebey and Vaugon proved in [10, Theorem B] that the strict inequality
holds in (1.3), and as a result the Conjecture 1.1 holds, if one of the following conditions is
satisfied:

(i) The action of G on M is free.
(ii) 3 ≤ dim M ≤ 11.
(iii) There exists a point p ∈ M with finite minimal orbit underG such thatω(p) := inf{i ∈

N : ‖∇ iWg(p)‖ �= 0} > (n − 6)/2 or ω(p) ∈ {0, 1, 2}.
See also [11,14,15,19] for results related to the equivariant Yamabe problem.

TheYamabe problem can be formulated for manifolds with boundary. LetM be a compact
n-dimensional manifold with smooth boundary ∂M , where n ≥ 3, and g is a Riemannian
metric on M . There are two types for the Yamabe problem with boundary:
The Yamabe problem with boundary (I). Find a conformal metric g̃ such that its scalar
curvature Rg̃ is constant in M and its mean curvature Hg̃ is zero on ∂M .
The Yamabe problem with boundary (II). Find a conformal metric g̃ such that its scalar
curvature Rg̃ is zero in M and its mean curvature Hg̃ is constant on ∂M .

These problems have been studied by many authors. See [1,5,7–9,16] and the references
therein.

Inspired by Conjecture 1.1, we study in this paper the equivariant Yamabe problem
with boundary. For a compact Riemannian manifold with boundary (M, ∂M, g), the group
of conformal transformations C(M, ∂M, g) and the group of isometries I (M, ∂M, g) are
respectively defined as

C(M, ∂M, g) = {
f : M → M is diffeomorphism

∣∣ f ∗g ∈ [g]},
I (M, ∂M, g) = {

f : M → M is diffeomorphism
∣∣ f ∗g = g

}
.
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Note that if f : M → M is diffeomorphism, then f maps ∂M diffeomorphically to ∂M ,
i.e. f |∂M : ∂M → ∂M is diffeomorphism. Therefore, if f ∈ C(M, ∂M, g), then f |∂M ∈
C(∂M, g|∂M ). Similarly, if f ∈ I (M, ∂M, g), then f |∂M ∈ I (∂M, g|∂M ).

We are interested in the following two conjectures which are the corresponding versions
of the Hebey-Vaugon Conjecture on manifolds with boundary:

Conjecture 1.4 (Equivariant Yamabe problem with boundary (I)) Given a compact subgroup
G of I (M, ∂M, g), there exists a G-invariant metric conformal to g such that its scalar
curvature is constant and its mean curvature vanishes.

Conjecture 1.5 (Equivariant Yamabe problemwith boundary (II)) Given a compact subgroup
G of I (∂M, g|∂M ), there exists a G-invariant metric conformal to g such that its scalar
curvature vanishes and its mean curvature is constant.

We remark that the Yamabe problem with boundary (I) is the special case of Conjecture
1.4 when G = {idM } and the Yamabe problem with boundary (II) is the special case of
Conjecture 1.5 when G = {id∂M }. We also remark that one may modify Conjecture 1.5 as
follows:

Conjecture 1.6 Given a compact subgroup G of I (M, ∂M, g), there exists a G-invariant
metric conformal to g such that its scalar curvature vanishes and its mean curvature is
constant.

Since f ∈ I (M, ∂M, g) implies that f |∂M ∈ I (∂M, g|∂M ), Conjecture 1.6 in fact implies
Conjecture 1.5. But we find that it is easier to consider Conjecture 1.5 than themore restrictive
Conjecture 1.6.

In this paper, we prove some results related to the equivariant Yamabe problem with
boundary (I). To state our results, we define

E(u) =
∫
M (

4(n−1)
n−2 |∇gu|2 + Rgu2)dVg + 2

∫
∂M Hgu2d Ag

(
∫
M u

2n
n−2 dVg)

n−2
n

. (1.4)

The Yamabe constant with boundary of (M, ∂M, g) is defined as

Y (M, ∂M, g) = inf{E(u) : 0 < u ∈ C∞(M)}. (1.5)

Let Sn+ be the n-dimensional upper hemisphere i.e.

Sn+ = {x ∈ R
n+1 : |x |2 = 1, xn+1 ≥ 0}.

Let gSn+ be the standard metric in Sn+, and the boundary of Sn+ is given by

∂Sn+ = {x ∈ R
n+1 : |x |2 = 1, xn+1 = 0}.

The following is the corresponding version of Theorem 1.2:

Theorem 1.7 There always holds

inf
{
E(u) : u is G -invariant

} ≤ Y (Sn+, ∂Sn+, gSn+)

(
inf
x∈M

card OG(x)

) 2
n

, (1.6)

where OG(x) denotes the orbit of x ∈ M under G, i.e. OG(x) = {σ(x) : σ ∈ G}.
The following is the corresponding version of Theorem 1.3:
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Theorem 1.8 If the strict inequality holds in (1.6), then the infimum on the left hand side is
achieved and the equivariant Yamabe problem with boundary (I) is solvable.

We are able to prove that the inequality in (1.6) is strict for some cases. More precisely,
we have the following:

Theorem 1.9 Let (M, g) be a compact n-dimensional Riemannian manifold with boundary
∂M. Assume that ∂M is umbilic and that M is not conformally diffeomorphic to Sn+. If either
M is locally conformally flat or 3 ≤ n ≤ 5, then the strict inequality holds in (1.6). In
particular, equivariant Yamabe problem with boundary (I) is solvable for such (M, ∂M, g).

Similar results are also obtained for the equivariant Yamabe problem with boundary (II).
Define

Q(u) =
∫
M (

4(n−1)
n−2 |∇gu|2 + Rgu2)dVg + 2

∫
∂M Hgu2d Ag

(
∫
∂M u

2(n−1)
n−2 d Ag)

n−2
n−1

. (1.7)

The generalized Yamabe constant of (M, ∂M, g) is defined as

Q(M, ∂M, g) = inf{Q(u) : 0 < u ∈ C∞(M)}. (1.8)

Let Dn be the n-dimensional unit disk, i.e.

Dn = {x ∈ R
n+1 : |x |2 ≤ 1}.

Then Dn equippedwith the standardflatmetric gDn is ann-dimensionalRiemannianmanifold
with boundary

∂Dn = {x ∈ R
n+1 : |x |2 = 1}.

Similar to Theorem 1.7, we have the following:

Theorem 1.10 There always holds

inf
{
Q(u) : u|∂M is G-invariant

} ≤ Q(Dn, ∂Dn, gDn )

(
inf

x∈∂M
card OG(x)

) 1
n−1

. (1.9)

On the other hand, we can prove the following theorem similar to Theorem 1.8.

Theorem 1.11 If the strict inequality holds in (1.9), then the infimum on the left hand side is
achieved and the equivariant Yamabe problem with boundary (II) is solvable.

Similar to Theorem 1.9, we are able to prove that the inequality (1.9) is strict for some
cases.

Theorem 1.12 Let (Mn, g) be a compact Riemannian manifold with boundary. Assume that
∂M is umbilic and that M is not conformally diffeomorphic to Dn. Then the strict inequality
holds in (1.9), if either M is locally conformally flat or 3 ≤ n ≤ 5. In particular, equivariant
Yamabe problem with boundary (II) is solvable for such (M, ∂M, g).

Note that in both Theorem 1.9 and Theorem 1.12, we only considered the case when the
boundary ∂M is umbilic. It would be very interesting to consider the equivariant Yamabe
problem with boundary in the nonumbilic case, in view of the fact that, for the Escobar’s
Yamabe problem with boundary, the nonumbilic case is considered to be easier that the
umbilic case. We hope that we could return to this in future.
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The plan of this paper is as follows: In Sect. 2, we prove some basic facts related to the
equivariant Yamabe problem with boundary (I), and then prove Theorem 1.7 and Theorem
1.8. In Sect. 3, we study the locally conformally flat case of Theorem 1.9. In Sect. 4, we
prove the remaining cases of Theorem 1.9, namely, when 3 ≤ dim M ≤ 5. In Sect. 5, after
proving some basic facts related to the equivariant Yamabe problem with boundary (II), we
then prove Theorem 1.10 and Theorem 1.11. The locally conformally flat case of Theorem
1.12 is proved in Sect. 6, while the case of Theorem 1.12 when 3 ≤ dim M ≤ 5 is proved in
Sect. 7.

2 Notations and preliminary results for type (I)

Let (M, ∂M, g) be a compact n-dimensional Riemannian manifold with smooth boundary
∂M . By conformal change of g, we may assume that Hg = 0 on ∂M (see Lemma 1.1 in [9]).
It is known that if Y (M, ∂M, g) ≤ 0, then the Equivariant Yamabe problem with boundary
(I) is always solvable; for one can seek the solution to the subcritical case, pass to the limit and
get the solution to the critical case, as done by Trudinger for the classical Yamabe problem.

More precisely, for all 2 < q ≤ 2n

n − 2
, there exists uq > 0 such that uq is G-invariant and

satisfies

4(n − 1)

n − 2
�guq + Rguq = μq(G)uq−1

q in M,
∂uq
∂νg

= 0 on ∂M,

where μq(G) is defined below. By the assumption Y (M, ∂M, g) ≤ 0, uq converges to u as

q → 2n

n − 2
, where u is a solution to the Equivariant Yamabe problem with boundary (I).

Hence, we assume that Y (M, ∂M, g) > 0. By conformal change of g, we may assume
without loss of generality (see Lemma 1.1 in [9]), i.e.

Rg > 0 in M and Hg = 0 on ∂M . (2.1)

Let

�(M) =
{
u ∈ H2

1 (M) : ∂u

∂νg
= 0 on ∂M

}
.

It follows from Sobolev embedding that �(M) ⊆ Lq(M) for 2 ≤ q ≤ 2n

n − 2
.

For 2 ≤ q ≤ 2n

n − 2
, we define

Eq(u) =
∫
M (

4(n−1)
n−2 |∇gu|2 + Rgu2)dVg

(
∫
M uqdVg)

2
q

for 0 �≡ u ∈ �(M). In view of (2.1), we have E 2n
n−2

(u) = E(u) defined in (1.4). For

G ⊂ I (M, ∂M, g) and 2 ≤ q ≤ 2n

n − 2
, we define

μq(G) = inf
{
Eq(u) : 0 �≡ u ∈ �(M) and u is G-invariant

}
,

which is well-defined, since �(M) ⊆ Lq(M) for any 2 ≤ q ≤ 2n

n − 2
(see Theorem 2.30 in

[3] for example).
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Lemma 2.1 For all 2 ≤ q <
2n

n − 2
and all G ⊆ I (M, ∂M, g), μq(G) is attained. Thus

there exists 0 < uq ∈ C∞(M) which is G-invariant such that

4(n − 1)

n − 2
�guq + Rguq = μq(G)uq−1

q in M,
∂uq
∂νg

= 0 on ∂M,

∫

M
uqqdVg = 1.

Proof Consider a sequence {ui } of positive functions in �(M) which is G-invariant and
satisfies

lim
i→∞ Eq(ui ) = μq(G) and

∫

M
uqi dVg = 1. (2.2)

Since the embedding �(M) ↪→ Lq(M) is compact for all 2 ≤ q <
2n

n − 2
(c.f. Theorem

2.34 in [3]), by passing to a subsequence, we can suppose

lim
i→∞ ui = uq strongly in L2(M) ∩ Lq(M), (2.3)

lim
i→∞ ui = uq weakly in H2

1 (M), and (2.4)

lim
i→∞ ui = uq almost everywhere. (2.5)

By (2.5), uq is positive almost everywhere. Since ui is G-invariant, we have ui (γ x) =
ui (x) for all γ ∈ G and all x ∈ M , which together with (2.5) implies that uq(γ x) =
limi→∞ ui (γ x) = limi→∞ ui (x) = uq(x), i.e. uq is G-invariant. By (2.2) and (2.3), we
have

1 = lim
i→∞

∫

M
uqi dVg =

∫

M
uqqdVg and lim

i→∞

∫

M
Rgu

2
i dVg =

∫

M
Rgu

2
qdVg. (2.6)

We compute

0 ≤
∫

M
|∇gui − ∇guq |2dVg

=
∫

M
|∇gui |2dVg +

∫

M
|∇guq |2dVg − 2

∫

M
〈∇gui ,∇guq〉dVg.

(2.7)

It follows from (2.4) that

lim
i→∞

∫

M
〈∇gui ,∇guq〉dVg =

∫

M
|∇guq |2dVg.

Combining this with (2.7), we obtain

lim
i→∞

∫

M
|∇gui |2dVg ≥

∫

M
|∇guq |2dVg. (2.8)

By (2.1), (2.2), (2.6) and (2.8), we have

Eq(uq) =
∫

M

(
4(n − 1)

n − 2
|∇guq |2 + Rgu

2
q

)
dVg

≤ lim
i→∞

∫

M

(
4(n − 1)

n − 2
|∇gui |2 + Rgu

2
i

)
dVg

= lim
i→∞ Eq(ui ) = μq(G).
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This implies that uq realizes the minimum of Eq(u) in the space of u ∈ �(M) which are
G-invariant. The Euler-Lagrange equation then implies that

∫

M

(
4(n − 1)

n − 2
〈∇guq ,∇gv〉 + Rguqv

)
dVg = μq(G)

∫

M
uq−1
q vdVg (2.9)

for all G-invariant functions v ∈ �(M). It also follows from (2.4) that

∂uq
∂νg

= lim
i→∞

∂ui
∂νg

= 0 on ∂M . (2.10)

Let Lg be the conformal Laplacian of g:

Lg(u) = 4(n − 1)

n − 2
�gu + Rgu for u ∈ �(M).

Since Rg > 0 by (2.1), the conformal Laplacian Lg defined in �(M) is invertible. Hence,
let w ∈ �(M) be the unique solution of the equation

Lg(w) = μq(G)uq−1
q . (2.11)

Since uq is G-invariant, the uniqueness of w implies that w is also G-invariant. On the other
hand, it follows from (2.9) and (2.11) that

∫

M

(
4(n − 1)

n − 2
〈∇g(uq − w),∇gv〉 + Rg(uq − w)v

)
dVg = 0

for all G-invariant functions v in �(M). Since uq − w is G-invariant, we have

0 =
∫

M

(
4(n − 1)

n − 2
|∇g(uq − w)|2 + Rg(uq − w)2

)
dVg

=
∫

M
(uq − w)Lg(uq − w)dVg

where we have used (2.10) and integration by parts. Since Lg is invertible, uq = w, i.e. uq
is a weak solution of

Lg(uq) = μq(G)uq−1
q in M and

∂uq
∂νg

= 0 on ∂M .

A regularity theorem of Cherrier [6] asserts that uq ∈ C∞(M). This proves the assertion. ��
Lemma 2.2 If a subsequence of the sequence {uq}2≤q< 2n

n−2
converges strongly in L2(M) to

a function 0 �≡ u ∈ �(M), then u realizes the minimum of E 2n
n−2

in the space of functions in

�(M) which are G-invariant. In particular,

(i) u is a positive smooth G-invariant function in M,

(ii)
∂u

∂νg
= 0 on ∂M and

4(n − 1)

n − 2
�gu + Rgu = μ 2n

n−2
(G)u

n+2
n−2 in M, and

(iii)
∫

M
u

2n
n−2 dVg = 1.

Proof First of all, we note that

lim sup
q→ 2n

n−2

μq(G) ≤ μ 2n
n−2

(G).
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To see this, it suffices to consider 0 < v ∈ C∞(M) which is G-invariant and satisfies
E 2n

n−2
(v) ≤ μ 2n

n−2
(G) + ε. As μq(G) ≤ Eq(v) with lim

q→ 2n
n−2

Eq(v) = E 2n
n−2

(v), we get

lim
q→ 2n

n−2

μq(G) ≤ lim
q→ 2n

n−2

Eq(v) = E 2n
n−2

(v) ≤ μ 2n
n−2

(G) + ε.

Without loss of generality, we suppose now that the subsequence {uq} satisfies lim uq = u

strongly in L2(M) ∩ L
2n
n−2 (M), weakly in �(M) and almost everywhere with

μ = limμq(G) ≤ μ 2n
n−2

(G). (2.12)

By reasoning as in the proof of Lemma 2.1, we see that 0 < u ∈ C∞(M) is G-invariant and

∂u

∂νg
= 0 on ∂M and

4(n − 1)

n − 2
�gu + Rgu = μu

n+2
n−2 in M . (2.13)

It remains to show that μ = μ 2n
n−2

(G) and
∫

M
u

2n
n−2 dVg = 1. We find

∫

M
u

2n
n−2 dVg = lim

q→ 2n
n−2

∫

M
u

n+2
n−2
q u dVg

≤ lim
q→ 2n

n−2

(∫

M
uqqdVg

) n+2
(n−2)q

(∫

M
u

(n−2)q
(n−2)q−(n+2) dVg

)1− n+2
(n−2)q

≤
(∫

M
u

2n
n−2 dVg

) n−2
2n

,

where the second inequality follows from
∫
M uqqdVg = 1, which implies that

∫

M
u

2n
n−2 dVg ≤ 1. (2.14)

Multiplying the second equation in (2.13) by u, integrating overM and using the first equation
in (2.13), we get

μ 2n
n−2

(G) ≤ E 2n
n−2

(u) = μ

(∫

M
u

2n
n−2 dVg

) 2
n ≤ μ, (2.15)

where the last inequality follows from (2.14). Combining (2.12), (2.14) and (2.15), we can

conclude that μ = μ 2n
n−2

(G) and
∫

M
u

2n
n−2 dVg = 1, as required. ��

It now remains to study the casewhenLemma2.2 does not happen. So for any subsequence

of {uq}2≤q< 2n
n−2

, which converges in L p(M) with 2 ≤ p ≤ 2n

n − 2
, converges to zero. This

phenomena occurs when {uq} has concentration points.
For r > 0 and x ∈ M , set Br (x) = {y ∈ M : dg(x, y) < r}. Here, dg(x, y) is the distance

between x and y in M with respect to the Riemannian metric g.

Lemma 2.3 In the situation described above, there exists a finite number of points
{x1, · · · , xk} in M for which
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inf
G

E(u)

⎛

⎝lim sup
q→ 2n

n−2

∫

Bδ(xi )∩M
uqqdVg

⎞

⎠

2/n

≥ Y (Sn+, ∂Sn+, gSn+)

for all δ > 0 and for each i = 1, 2..., k.

The proof of Lemma 2.3 will be given in Appendix. Now we are ready to prove Theorem
1.8.

Proof of Theorem 1.8 By the assumption in Theorem 1.8, μ 2n
n−2

(G) is strictly smaller than

Y (Sn+, ∂Sn+, gSn+)

(
inf
x∈M

card OG(x)

) 2
n

and it is about to show that the situation described

above cannot occur (so that Lemma 2.2 applies).
Suppose for any subsequence of {uq}2≤q< 2n

n−2
, which converges in L p(M) with 2 ≤ p ≤

2n

n − 2
, converges to zero. By Lemma 2.3, there exist a finite numbers of points {x1, · · · , xk}

for which for all δ > 0

μ 2n
n−2

(G)

⎛

⎝lim sup
q→ 2n

n−2

∫

Bδ(xi )∩M
uqqdVg

⎞

⎠

2
n

≥ Y (Sn+, ∂Sn+, gSn+). (2.16)

We now use the invariance of uq under G and the property
∫

M
uqqdVg = 1. (2.17)

Two cases arise. In the first case, the orbit of xi in G is finite, i.e. card OG(xi ) is finite.

It follows from (2.17) that we can choose δ > 0 small enough to get
∫

Bδ(xi )∩M
uqqdVg ≤

(
card OG(xi )

)−1
, which gives

lim sup
q→ 2n

n−2

∫

Bδ(xi )∩M
uqqdVg ≤

(
card OG(xi )

)−1
. (2.18)

In the second case, card OG(xi ) = ∞. It is then easy to see that, for all ε > 0, there exists

0 < δ � 1 with lim sup
q→ 2n

n−2

∫

Bδ(xi )∩M
uqqdVg ≤ ε. But if ε is sufficiently small, this equality

contradicts (2.16).
Therefore, for all i = 1, ..., k, the orbit of xi in G is finite and

μ 2n
n−2

(G) ≥ Y (Sn+, ∂Sn+, gSn+)
(
card OG(xi )

) 2
n

(2.19)

by (2.16) and (2.18). The hypothesis that the strict inequality holds in (1.6), i.e.

μ 2n
n−2

(G) < Y (Sn+, ∂Sn+, gSn+)

(
inf
x∈M

card OG(x)

) 2
n

contradicts to (2.19). Therefore, xi in fact does not exist, and {uq}2≤q< 2n
n−2

satisfies the

conditions in Lemma 2.2. This proves Theorem 1.8. ��
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We remark that we just showed that if the orbit of any point in G is infinite, then μ 2n
n−2

(G)

is attained.

Proof of Theorem 1.7 If the orbit of any point in G is infinite, there is nothing to prove.
Suppose that G ⊆ I (M, ∂M, g) possesses a finite orbit. Let x1 be a point of minimal orbit.

Consider the case when x1 ∈ M . If x1 ∈ M , then by conformally changing g, we may
assume that the mean curvature of g vanishes and the scalar curvature of g at x1 is zero,
i.e. Hg = 0 on ∂M and Rg(x1) = 0. To see this, suppose that f ∈ C∞(M) such that f
is G-invariant and is strictly positive in at least one point of M which satisfies f (x1) = 0.
Since the orbit of x1 in G is finite, it is always possible to construct such a function f . Let
0 < u ∈ C∞(M) be the unique solution of

∂u

∂νg
= 0 on ∂M and Lg(u) = f uq in M (2.20)

where 2 ≤ q <
2n

n − 2
. Since f is G-invariant, u is also G-invariant. Then the conformal

metric g̃ = u
4

n−2 g satisfies

Hg̃ = u− n
n−2

(
∂u

∂νg
+ Hgu

)
= 0 on ∂M,

Rg̃ = u− n+2
n−2 Lgu = f uq− n+2

n−2 in M

by (2.1) and (2.20). In particular, we have Rg̃(x1) = f (x1)u(x1)
q− n+2

n−2 = 0, as required.
Now let OG(x1) = {x1, ..., xk}. Let δ > 0 be chosen such that B(xi , δ) ∩ B(x j , δ) = ∅

if i �= j and B(xi , δ) ∩ ∂M = ∅. For i = 1, ..., k, we define

ui,ε(x) =
{

(ε + d(xi , x)2)1−n/2 − (ε + δ2)1−n/2, if d(xi , x) ≤ δ;
0, otherwise.

and let uε =
∑k

i=1
ui,ε . The function uε is therefore G-invariant and since E 2n

n−2
(uε) =

k
2
n E 2n

n−2
(u1,ε), we can deduce that

lim
ε→0

E 2n
n−2

(uε) = k
2
n Y (Sn+, ∂Sn+, gSn+),

which implies (1.6) since k = card OG(x1) = inf
x∈M

card OG(x).

Let x1 ∈ ∂M be the point of minimal orbit of ∂M under G, i.e. k := card OG(x1) =
inf
x∈M

card OG(x). Then we can construct a Riemannian metric g′ conformal to g and G-

invariant which satisfies Rc(g′) = 0 and H(g′) = 0 at any point of a minimal orbit under G
(See Lemma 4.1).

Let (y11 , · · · , y1n ) be normal coordinates around x1 ∈ ∂M , such that νg(x1) = − ∂
∂ y1n

and

the second fundamental form of ∂M at x1 has a diagonal form. By the invariance under
G, we have normal coordinates (yi1, · · · , yin) around each xi ∈ OG(x1) which satisfy the
properties described above. Let δ > 0 be chosen such that B(xi , δ) ∩ B(x j , δ) = ∅ if
i �= j . Let si (x) = max{|yi |, |yin |}, where |yi |2 = (yi1)

2 + · · · + (yin−1)
2, and ψ(s) be a

piecewise smooth function which satisfies ψ(s) = 1 for |s| ≤ δ, ψ(s) = 0 for |s| ≥ 2δ, and
|ψ ′(s)| ≤ 2δ−1 for δ ≤ |s| ≤ 2δ. For i = 1, ..., k, we define

ui,ε = vi (ψ ◦ si )
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where

vi =
(

ε

ε2 + |yi |2 − δ(yin)
2

) n−2
2

and let uε =
∑k

i=1
ui,ε . The function uε is therefore G-invariant and since E 2n

n−2
(uε) =

k
2
n E 2n

n−2
(u1,ε), we can deduce that (see P. 32–33 in [9])

lim
ε→0

E 2n
n−2

(uε) = k
2
n lim

ε→0
E 2n

n−2
(u1,ε) ≤ k

2
n Y (Sn+, ∂Sn+, gSn+),

which implies (1.6) since k = card OG(x1) = inf
x∈M

card OG(x). ��

Corollary 2.4 The xi of Lemma 2.3 are necessarily points of minimal orbits under G. And in
fact we can show that they constitute exactly a minimal orbit of M under G.

Lemma 2.5 If x is a point of Sn+, we denote by

Cx (S
n+, ∂Sn+, gSn+) = {σ ∈ C(Sn+, ∂Sn+, gSn+) : σ(x) = x}

and

Ix (S
n+, ∂Sn+, gSn+) = {σ ∈ I (Sn+, ∂Sn+, gSn+) : σ(x) = x}.

We now consider g a metric on Sn+ conformal to gSn+ , and Ix (Sn+, ∂Sn+, g) = {σ ∈
I (Sn+, ∂Sn+, g) : σ(x) = x}. Then there exists τ ∈ Cx (Sn+, ∂Sn+, gSn+) such that

τ−1 Ix (S
n+, ∂Sn+, g)τ ⊂ Ix (S

n+, ∂Sn+, gSn+).

Proof Note that Ix (Sn+, ∂Sn+, g) is a compact subgroup of conformal transformation of Sn+.
We only deal with the case of x ∈ ∂Sn+ here, and the case of x ∈ Sn+ can be proved in the
same way. Suppose x ∈ ∂Sn+. If ϕ : Sn+ − {x} → R

n+ is the stereographic projection of pole
x , then ϕ|∂Sn+−{x} is a map from ∂Sn+ to R

n−1. Then ϕ|∂Sn+−{x} Ix (Sn+, ∂Sn+, g)(ϕ|∂Sn+−{x})−1

becomes a compact group of conformal transformations of R
n−1, a subgroup of the group

of isometries of a metric conformal to the Euclidean metric, and thus makes it a subcompact
group of the affine group. Consequently, ϕ|∂Sn+−{x} Ix (Sn+, ∂Sn+, g)(ϕ|∂Sn+−{x})−1 necessarily

admits a fixed point (which we denote by y ∈ R
n−1 = ∂R

n+). Now, if ty, t−y : R
n+ → R

n+
represent the translations of respective vectors y and −y, then t−y(ϕ Ix (Sn+, ∂Sn+, g)ϕ−1)ty
becomes a group of vector isometries ofRn+. So, one can see that the conformal transformation
τ we want is given by τ = ϕ−1tyϕ. ��

3 Locally conformally flat case for type (I)

In this section, we prove the first case of Theorem 1.9, i.e. we will show that if the manifold is
locally conformally flat, then the strict inequality holds in (1.6). Let (M, ∂M, g) be a compact
Riemannian manifold with boundary and G ⊂ I (M, ∂M, g) be a subgroup of the group of
isometries of g. Assume that ∂M is umbilic and that M is not conformally diffeomorphic to
Sn+. We suppose thatG has finite orbits, and we denote by OG(x1) = {x1, · · · , xk} a minimal
orbit under G. First, we consider the case of x1 ∈ ∂M .

Suppose that (M, ∂M, g) is locally conformally flat. By conformal change of g if nec-
essary, we can assume that ∂M is minimal with respect to g (see Lemma 2.1 in [4]), i.e.
Hg = 0. Since ∂M is minimal and umbilic, ∂M is totally geodesic. We have the following:

123



38 Page 12 of 37 P. T. Ho, J. Shin

Lemma 3.1 If (M, ∂M, g) is locally conformally flat, then for all x ∈ ∂M, there exits ametric
g′
x conformal to g and Ix (M, ∂M, g)-invariant which is Euclidean in the neighborhood of

x.

Proof Let� be an open neighborhood of x . Since (M, ∂M, g) is locally conformally flat and
∂M is totally geodesic, we can double M along ∂M to obtain M̃ , which is locally conformal
flat, closed manifold. Then we can a conformal immersion ϕ̃ from a neighborhood of x ∈ M̃
to Sn (c.f. [12]), which gives a conformal immersion ϕ : (�, g) → (Sn+, gSn+).

We denote by p = ϕ(x). With Liouville’s theorem, ϕ Ix (M, ∂M, g)ϕ−1 is a compact
subgroup of Cp(Sn+, ∂Sn+, gSn+). Therefore it is also a subgroup of Ip(Sn+, ∂Sn+, g′) for a
metric g′ conformal to gSn+ . Then, by Lemma 2.5, there exists τ ∈ Cp(Sn+, ∂Sn+, gSn+) so

that ϕ Ix (M, ∂M, g)ϕ−1 ⊂ τ−1 Ip(Sn+, ∂Sn+, gSn+)τ . We set ψ = τ ◦ ϕ and let g0 be the
Euclidean metric on Sn+ − {p} conformal to gSn+ , which is obtained by reciprocal image of
the Euclidean metric of R

n+ under the stereographic projection of pole −p. It is easy to see
that g0 is Ip(Sn+, ∂Sn+, gSn+)-invariant.

We now consider gx = ψ∗g0. By construction, g0 is indeed Euclidean in the neighborhood
of x . If σ ∈ Ix (M, ∂M, g), we have

σ ∗gx =σ ∗(ψ∗g0)
=(τ ◦ ϕ ◦ σ)∗g0
=ψ∗((τ ◦ ϕ ◦ σ ◦ ϕ−1 ◦ τ−1)∗g0),

and, since τ ◦ ϕ ◦ τ ◦ ϕ−1 ◦ τ−1 ∈ Ip(Sn+, ∂Sn+, gSn+), we have σ ∗gx = gx . So gx is
Ix (M, ∂M, g)-invariant, and setting g′

x = ηgx + (1 − η)g proves the lemma. ��

Now we consider the metric

g′ =
k∑

i=1

(σ−1
i )∗(ηgx1) +

[
k∏

i=1

(1 − η ◦ σ−1
i )

]

g

where OG(x1) = {σ1(x1), · · · , σk(x1)}. Thenwe can see that themetric g′ isG-invariant and
Euclidean in the neighborhood of each point of aminimal orbit underG. Then, we can assume
that near each xi ∈ ∂M the metric is flat and the boundary is minimal. Let (yi1, · · · , yin) be
rectangular coordinates around xi ∈ ∂M . Since ∂M is umbilic andminimal, it is a hyperplane.
So we can assume that ∂M is given by yin = 0 in the coordinates (yi1, · · · , yin). Let Gi be

the positive solution of LgGi = 0 on M and
∂Gi

∂νg
= 0 on ∂M − {xi } where

L(u) = −4(n − 1)

n − 2
�gu + Rgu.

In the neighborhood of xi , Gi admits an expansion of the type

Gi (x) = r2−n
i + A + αi (x)

where A is a constant, αi (x) is a smooth harmonic function near xi with α(xi ) = 0, and
ri = d(xi , x).
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If σ(xi ) = x j , G j ◦ σ = Gi , so that
∑k

i=1
Gi is G-invariant. For each xi , we now

consider the function uiδ,ε (like [9]) defined by

uiδ,ε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ε

ε2 + r2i

)(n−2)/2

, for x ∈ M ∩ Bδ(xi );
ε0(Gi (x) − ηi (x)αi (x)), for x ∈ M ∩ (B2δ(xi ) − Bδ(xi ));
ε0Gi (x), for x ∈ M − B2δ(xi )

(3.1)

where δ is chosen small enough so that g is Euclidean on B2δ(xi )with B2δ(xi )∩B2δ(x j ) = ∅

if i �= j , and ηi (x) is a smooth cut-off function such that 0 ≤ ηi ≤ 1, ηi (x) = 1 if ri ≤ δ,
ηi (x) = 0 if ri ≥ 2δ and |∇gηi | ≤ 2/δ. In order for the function uiδ,ε to be continuous across
∂Bδ(xi ) we must require ε0 to satisfy

(
ε

ε2 + δ2

)(n−2)/2

= ε0(δ
2−n + A). (3.2)

We setuδ,ε =
∑k

i=1
uiδ,ε so that the functionuδ,ε isG-invariant. To simplify the notations,

we will write u = uδ,ε and ui = uiδ,ε . We have

4(n − 1)

n − 2

∫

M
|∇gu|2dVg +

∫

M
Rgu

2dVg

=
k∑

i=1

(
4(n − 1)

n − 2

∫

M
|∇gui |2dVg +

∫

M
Rgu

2
i dVg

)

+
∑

i �= j

(
4(n − 1)

n − 2

∫

M
〈∇gui ,∇gu j 〉dVg +

∫

M
Rguiu j dVg

)
,

and with the invariant under G, we find

4(n − 1)

n − 2

∫

M
|∇gu|2dVg +

∫

M
Rgu

2dVg

= k

(
4(n − 1)

n − 2

∫

M
|∇gu1|2dVg +

∫

M
Rgu

2
1dVg

)

+ k
k∑

i=2

(
4(n − 1)

n − 2

∫

M
〈∇gu1,∇gui 〉dVg +

∫

M
Rgu1uidVg

)
.

By (4.12) in [9], we have

4(n − 1)

n − 2

∫

M
|∇u1|2dVg +

∫

M
Rgu

2
1dVg

≤ Y (Sn+, ∂Sn+, gSn+)‖u1‖2
L

2n
n−2 (M,g)

− (n − 2)Aσ+
n−1ε

2
0 + cε20ε

2δ−n + cε20δ,
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where σ+
n−1 is the volume of Sn−1+ with respect to gSn−1+

. Moreover, we have

4(n − 1)

n − 2

∫

M
〈∇gu1,∇gui 〉dVg +

∫

M
Rgu1uidVg

=
∫

M−B2δ(x1)∪B2δ(xi )

(
4(n − 1)

n − 2
〈∇gu1,∇gui 〉 + Rgu1uidVg

)

+ 4(n − 1)

n − 2

(∫

B2δ(x1)
〈∇gu1,∇gui 〉dVg +

∫

B2δ(xi )
〈∇gu1,∇gui 〉dVg

)

where we have used the fact that g is flat in B2δ(xi ). Since LgGi = 0 in M , and
∂Gi

∂νg
= 0

on ∂M − {xi }, we infer
∫

M−(B2δ(x1)∪B2δ(xi ))

(
4(n − 1)

n − 2
〈∇gu1,∇gui 〉 + Rgu1ui

)
dVg

= ε20

∫

M∩∂B2δ(xi )

∂G1

∂νi
Gi d Ag + ε20

∫

M∩∂B2δ(x1)

∂G1

∂ν1
Gid Ag

+ ε20

∫

∂M−B2δ(x1)−B2δ(xi )

∂G1

∂νg
Gid Ag

= ε20

∫

M∩∂B2δ(xi )

∂G1

∂νi
Gi d Ag + ε20

∫

M∩∂B2δ(x1)

∂G1

∂ν1
Gid Ag

where νi represents the unit normal vector to B2δ(xi ). On ∂B2δ(xi ), we have

∣∣∣∣
∂G1

∂νi

∣∣∣∣ ≤ C

and |Gi | ≤ Cδ2−n , which gives

ε20

∣∣∣∣

∫

M∩∂B2δ(xi )

∂G1

∂νi
Gi d Ag

∣∣∣∣ ≤ Cδε20 .

On the other hand, on ∂B2δ(x1), we have
∂G1

∂ν1
= r1−n

1 + O(1), and Gi = Gi (x1) + O(r1),

which yields

ε20

∣∣∣∣

∫

M∩∂B2δ(x1)

∂G1

∂ν1
Gid Ag

∣∣∣∣ = ε20 |Gi (x1)| + O(ε20δ).

Moreover, for i �= j , since �gu j = 0 in B2δ(xi ) and
∂u j

∂νg
= 0 on ∂M − {x j }, we get

∫

B2δ(xi )
〈∇gui ,∇gu j 〉dVg =

∫

M∩∂B2δ(xi )
ui

∂u j

∂νi
d Ag +

∫

∂M∩B2δ(xi )
ui

∂u j

∂νg
d Ag

=
∫

M∩∂B2δ(xi )
ui

∂u j

∂νi
d Ag,

and with the definition of ui , we see that
∣∣∣∣
∂u j

∂νi

∣∣∣∣ ≤ Cε0 and |ui | ≤ Cε0δ
2−n on M ∩ ∂B2δ(xi ).

We therefore obtain
∣∣∣∣

∫

B2δ(xi )
〈∇gui ,∇gu j 〉dVg

∣∣∣∣ ≤ Cδε20 .
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Combining all these estimates , we can conclude that

4(n − 1)

n − 2

∫

M
|∇u|2dVg +

∫

M
Rgu

2dVg

≤ kY (Sn+, ∂Sn+, gSn+)‖u1‖2
L

2n
n−2 (M,g)

− k(n − 2)Aσ+
n−1ε

2
0

+ cε20ε
2δ−n + cδε20 + kε20

(
k∑

i=2

Gi (x1)

)

.

It now remains to evaluate ‖u‖2
L

2n
n−2 (M,g)

. To this end, we compute

∫

M
u

2n
n−2 dVg ≥

k∑

i=1

∫

Bδ(xi )

(
ui +

∑

j �=i

u j

) 2n
n−2

dVg

≥
k∑

i=1

∫

Bδ(xi )
u

2n
n−2
i dVg + 2n

n − 2

k∑

i=1

∑

j �=i

∫

Bδ(xi )
u

n+2
n−2
i u j dVg

≥ k
∫

Bδ(x1)
u

2n
n−2
1 dVg + 2nk

n − 2

k∑

i=2

∫

Bδ(x1)
u

n+2
n−2
1 uidVg

where the second inequality follows from (a+b)N ≥ aN +Nan−1b, and the third inequality
follows from the invariance under G. From the definition of u1, we have

‖u1‖
2n
n−2

L
2n
n−2 (M,g)

=
∫

Bδ(x1)
u

2n
n−2
1 dVg +

∫

M−Bδ(x1)
u

2n
n−2
1 dVg

=
∫

Bδ(x1)
u

2n
n−2
1 dVg + ε

2n
n−2
0

∫

M−Bδ(x1)
(G1 − η1α1)

2n
n−2 dVg,

and
∫

Bδ(x1)
u

2n
n−2
1 dVg = σ+

n−1

∫ δ/ε

0
(1 + t2)−ntn−1dt

= σ+
n−1

∫ ∞

0
(1 + t2)−ntn−1dt − σ+

n−1

∫ ∞

δ/ε

(1 + t2)−ntn−1dt

= 2−nσ+
n + o(ε20).

Likewise,
∫

Bδ(x1)
u

n+2
n−2
1 uidVg = ε0

∫

Bδ(x1)
u

n+2
n−2
1 GidVg

= ε0Gi (x1)
∫

Bδ(x1)
u

n+2
n−2
1 dVg + ε0

∫

Bδ(x1)
u

n+2
n−2
1 O(r1)dVg

= ε0Gi (x1)ε
n−2
2 σ+

n−1

∫ δ/ε

0
(1 + t2)−(n+2)/2tn−1dt

+ ε0

∫

Bδ(x1)
u

n+2
n−2
1 O(r1)dVg.
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We can see that ε(n−2)/2 is equivalent to ε0 from (3.2), and ε0

∫

Bδ(x1)
u

n+2
n−2
1 O(r1)dVg is

O(ε20δ). Therefore, we have

E 2n
n−2

(uδ,ε) ≤ k2/nY (Sn+, ∂Sn+, gSn+) − C0Aε20

+ C1

(
k∑

i=2

Gi (x1)

)(
1 − 2n

∫ ∞

0
(1 + t2)−(n+2)/2tn−1dt

)
ε20

+ O(ε20δ) + o(ε20)

where C0 and C1 are strictly positive constants independent of δ and ε. Finally it remains

to notice that we always have
∫ ∞

0
(1 + t2)−(n+2)/2tn−1dt = 1/n and if we set C2 =

C1

(
inf

i=2,··· ,k Gi (x1)
)
, so that C1

k∑

i=2

Gi (x1) ≥ C2(k − 1), we obtain two strictly positive

constants C0 and C2, independent of δ and ε, with

E 2n
n−2

(uδ,ε) ≤ k2/nY (Sn+, ∂Sn+, gSn+) − ε20(C0A + C2(k − 1)) + O(ε20δ) + o(ε20). (3.3)

In particular,we canfind δ and ε sufficiently small so that E 2n
n−2

(uδ,ε) < k2/nY (Sn+, ∂Sn+, gSn+)

if C0A +C2(k − 1) > 0. By the positive mass theorem, we have A > 0 (cf. [9, Appendix]).
Therefore we can conclude that μ 2n

n−2
(G) < k2/nY (Sn+, ∂Sn+, gSn+).

Now we suppose M = Sn+. Then, since M is locally conformally flat, we can follow
the same argument as in the above and eventually obtain the Eq. (3.3). What makes this
case different from the cases discussed earlier is the fact that, when M = Sn+, we have
A = 0 (cf. [9, Appendix]). Since C2 is a positive constant, so if k �= 1, we have μ 2n

n−2
(G) <

k2/nY (Sn+, ∂Sn+, gSn+).
Suppose k = card OG(x1) = 1, i.e. G admits a fixed point (denote by x). Since x

is a fixed point, G becomes a subgroup of Ix (Sn+, ∂Sn+, g). Then, by Lemma 2.5, there
exist τ ∈ Cx (Sn+, ∂Sn+, gSn+) so that G ⊂ τ−1 Ix (Sn+, ∂Sn+, gSn+)τ . Let f , ϕ > 0 be smooth
functions such that

(τ−1)∗gSn+ = f
4

n−2 gSn+ , g = ϕ
4

n−2 gSn+ .

We set u(x) = 1/ϕ(x) f (τ (x)). First, we show that u is G-invariant. To see this, consider
σ ∈ G and i ∈ Ix1(S

n+, ∂Sn+, gSn+) which satisfies σ = τ−1iτ . Then

σ ∗g =τ ∗i∗(τ−1)∗g

=(τ ∗i∗)((ϕ ◦ τ−1)
4

n−2 f
4

n−2 gSn+)

=((ϕ ◦ σ)( f ◦ i ◦ τ))
4

n−2 ( f ◦ τ)−
4

n−2 gSn+ .

But since σ ∗g = g, we get (ϕ◦τ)(( f ◦τ)◦σ) = ϕ( f ◦τ). This shows that the invariance of
u underσ , hence underG. Sinceϕu = 1/( f ◦τ) and τ ∗gSn+ = ( f ◦τ)−4/(n−2)gSn+ , we can eas-
ily verify that E 2n

n−2
(u) = Y (Sn+, ∂Sn+, gSn+). This shows that μ 2n

n−2
(G) = Y (Sn+, ∂Sn+, gSn+).

Now we consider the case of x1 ∈ M . Even in this case, we can show that there is a metric
g′ that is G-invariant and Euclidean in the neighborhood of each point of a minimal orbit
through the same method as before. Then, near xi , the Green’s function Gi of the conformal
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Laplacian Lg admits an expansion of the type

Gi (x) = r2−n
i + A + αi (x)

where A is a constant, αi (x) is a smooth harmonic function near xi with α(xi ) = 0, and
ri = d(xi , x).

For each xi , we now consider the function uiδ,ε defined by

uiδ,ε =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
ε

ε2 + r2i

)(n−2)/2

, for x ∈ M ∩ Bδ(xi );
ε0(Gi (x) − ηi (x)αi (x)), for x ∈ M ∩ (B2δ(xi ) − Bδ(xi ));
ε0Gi (x), for x ∈ M ∩ (B3δ(xi ) − B2δ(xi ));
ε0Gi (x)η′

i (x), for x ∈ M ∩ (B4δ(xi ) − B3δ(xi ));
0, otherwise;

(3.4)

where δ is chosen small enough so that B4δ(xi ) ∩ ∂M = ∅, and the η′ is a smooth cut-off
function such that 0 ≤ η′

i ≤ 1, η′
i (x) = 1 if ri ≤ 3δ, η′

i (x) = 0 if ri ≥ 4δ and |∇gη
′
i | ≤ 2/δ.

We set uδ,ε =
∑k

i=1
uiδ,ε so that the function uδ,ε is G-invariant. Then we can get the

following using the arguments used above:

E 2n
n−2

(uδ,ε) ≤ k2/nY (Sn+, ∂Sn+, gSn+) − ε20(C0A + C2(k − 1)) + negligible terms. (3.5)

Then, once again by the positive mass theorem (cf. [9, Appendix]) we obtain μ 2n
n−2

(G) <

k2/nY (Sn+, ∂Sn+, gSn+).

4 The case of dimension 3, 4, and 5 for type (I)

In this section, we prove Theorem 1.9 when 3 ≤ n ≤ 5. Let (M, g) be a compact n-
dimensional Riemannian manifold with boundary ∂M . First assume that ∂M is umbilic and
that M is not conformally diffeomorphic to Sn+. We also suppose that G has finite orbits,
and we denote by OG(x1) = {x1, · · · , xk} a minimal orbit under G. In this section we only
discuss the case of x1 ∈ ∂M . However, in the case of x1 ∈ M , one can obtain the desired
result in the same way as x1 ∈ ∂M , as it was in the previous section.

Unlike the previous section, g is no longer assumed to be Euclidean in the neighborhood
of xi , and as a result, some additional terms appear in the estimates. But we will see that the
additional terms are always negligible in lower dimensions.

Setϕ1 to be the first eigenfunction for the conformalLaplacianwith respect to the boundary

condition
∂ϕ

∂νg
= 0 on ∂M . Then the metric g1 = ϕ

4
n−2
1 g has minimal boundary, and this

implies that the second fundamental form vanishes on ∂M . Let (y11 , · · · , y1n ) be geodesic
normal coordinates at x1 ∈ ∂M .

When n = 3, the Green’s function Gi for the conformal Laplacian with the boundary

condition
∂G

∂νg
= 0 has the expansion near xi as

Gi (y) = |ri |−1 + A + O ′′(|ri |)
where A is a constant. Herewewrite f = O ′(rm) tomean f = O(rm) and∇g f = O(rm−1).
And O ′′ is defined similarly. We define uiδ,ε , and uδ,ε as in the previous section. It follows
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from [9, section 4] that

8
∫

M
|∇gu1|2dVg +

∫

M
Rgu

2
1dVg ≤ Y (S3+, ∂S3+, gS3+)‖u1‖2L6(M,g) − Aσ+

2 ε20 + I3,

where I3 is the error term satisfying

I3 = cε20ε
2δ−3 + cε20δ + cεδ + cε2.

As before, we can show that

E6(uδ,ε) ≤ k2/3Y (S3+, ∂S3+, gS3+) − ε20(C0A + C2(k − 1)) + negligible terms,

where C0 and C2 are positive constants. And the positive mass theorem (cf. [9, Appendix])
guarantees that C0A + C2(k − 1) > 0. So we have μ6(G) < k2/3Y (S3+, ∂S3+, gS3+).

To prove the cases for n = 4 and n = 5, we need the following:

Lemma 4.1 If n = 4 (respectively n = 5), then for any x ∈ ∂M, there exists a metric g′
x

conformal to g and Ix (M, ∂M, g)-invariant which satisfies Hg′
x

= 0 and Rc(g′
x )(x) = 0

(resp. Rc(g′
x )(x) = 0 and Sym∇Rc(g′

x ) = 0).

Proof The dimension has in fact nothing to do here. We will first show that given a com-
pact Riemannian manifold (M, g) with boundary ∂M and x a point of ∂M , we can always
find a Ix (M, ∂M, g)-invariant metric g′

x conformal to g, which satisfies Hg′
x
(x) = 0 and

Rc(g′
x )(x) = 0.

We consider � an open neighborhood of 0 in TxM so that expx |� is a diffeomorphism. If
σ is an isometry of Ix (M, ∂M, g), dσ(x) ∈ O(TxM, g(x)) and

dσ(x) = exp−1
x ◦ σ ◦ expx on �. (4.1)

The mapping ψ : Ix (M, ∂M, g) → O(TxM, g(x)) defined by ψ(σ) = dσ(x) becomes
an injective morphism of groups, so that Ix (M, ∂M, g) identifies with a subgroup of
O(TxM, g(x)). We now consider Rc(g)(x), which is a symmetrical bilinear form over
Tx (X). Let (e1, · · · , en) be an orthonormal basis of TxM which diagonalizes Rc(g)(x),
and Ei , i = 1, · · · , n the associated eigenspace. Then the invariance of Rc(g)(x) under
Ix (M, ∂M, g) imposes the invariance of Ei under the same group. Let ri be the distance
from the origin of TxM measured on Ei and a1, · · · , an real numbers. Then we consider
f̃ : TxM → R defined by f̃ (ei ) = air2i . The function f̃ is clearly Ix (M, ∂M, g)-invariant so
that the function f : expx (�) → R defined by f = f̃ ◦ exp−1

x also becomes Ix (M, ∂M, g)-
invariant. We now show that it is possible to choose the ai (in fact in a unique way) so that
f satisfies Rc(e f g)(x) = 0.
One can easily see that f (x) = 0 and ∇g f (x) = 0, so we have

Rc(e f g)(x) = Rc(g)(x) − n − 2

2
(∇2

g f )(x) + 1

2
�g f (x)g(x)

and in the normal map (expx (�), exp−1
x ) associated with (e1, · · · , en), we can see that

Rc(e f g)(x) = 0 is equivalent to
⎛

⎜
⎝

λ1
. . .

λn

⎞

⎟
⎠ − (n − 2)

⎛

⎜
⎝

a1

. . .

an

⎞

⎟
⎠ − (

n∑

i=1

ai )I d = 0.

It is clear that this system always admits a solution (which is unique). Now we set g′
x =

η(e f g) + (1 − η)g. This proves the first part of Lemma 4.1.
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For the second part, it remains to show that we can also have Sym∇Rc(x) = 0. Although
it is more technical, basically we can adopt the same method as in the first part. Starting
from the metric g′

x which has just been obtained, it will be a question of constructing a
homogeneous polynomial f̃ of third degree so that

Sym∇Rc(e f g′
x )(x) = 0.

In order not to overload the drafting, we are leaving this point aside. ��
Now we consider the metric

g′ =
k∑

i=1

(σ−1
i )∗(ηgx1) +

[
k∏

i=1

(1 − η ◦ σ−1
i )

]

g.

Then we can see that g′ is conformal to g, G-invariant, and satisfies Rc(g′) = 0 (resp.
Rc(g′) = 0 and ∇Rc(g′) = 0) and H(g′) = 0 at any point of a minimal orbit under G.

Let us point out that, by the same reasoning of recurrence of this type, it is possible to
prove the existence of conformal normal G-invariant coordinates. More precisely, we have
the following:

Lemma 4.2 Given a compact Riemanian manifold (M, g) with boundary ∂M, x a point of
∂M, and a poistive integer m, there exists a Ix (M, ∂M, g)-invariant metric g′

x conformal to
g such that, in a normal geodesic map in x,

det g′
x = 1 + O(rm)

where r represents the distance to point x. In particular, if G is a subgroup of I (M, ∂M, g)
and if x ∈ ∂M has a finite orbit under G, then for any positive integer m, we can associate
a G-invariant metric g′ conformal to g and so that

det g′ = 1 + O(rm)

in a normal geodesic coordinates at any point in the orbit of x under G.

By Lemma 4.1, when n = 4, the Green function’s Gi for the conformal Laplacian with

boundary conditions
∂Gi

∂νg
= 0 has the expansion for xi small as

Gi (x) = |x |−2 + A + O ′′(|x | log |x |)
where A is a constant. We define uiδ,ε and uδ,ε as in section 4. It follows from [9, section 4]
that

6
∫

M
|∇u1|2dVg +

∫

M
Rgu

2
1dVg ≤ Y (S4+, ∂S4+, gS4+)‖u1‖2L4(M,g) − 2Aσ+

3 ε20 + I4

where I4 is the error term satisfying

I4 = cε20ε
2δ−4 + cε20δ + cε2δ + cε3 + cε3 log(δε−1) + cδ log δ−1ε20 .

Then we can show that

E4(uδ,ε) ≤ k1/2Y (S4+, ∂S4+, gS4+) − ε20(C0A + C2(k − 1)) + negligible terms

where C0 and C2 are positive constants. And the positive mass theorem guarantees that
C0A + C2(k − 1) > 0. So we have μ4(G) < k1/2Y (S4+, ∂S4+, gS4+).
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Suppose n = 5. Let (yi1, · · · , yin) denote a normal rectangular coordinate system centered
at xi . Let ri = |yi |, ζ = yi/|yi |. Then the metric g of M can be locally written as

g = dr2i + r2i hri

where hri is a metric on Sn−1+ with h0 being the standard metric on Sn−1+ . Given ρ > 0 with
ρ small, let ξ(ri ) be a smooth nonincreasing function satisfying ξ(ri ) = 1 for ri ≤ ρ, and
ξ(ri ) = 0 for ri ≥ 2ρ; let |ξ ′(ri )| ≤ cρ−1 and let |ξ ′′(ri )| ≤ cρ−2 for all ri > 0. We define
the metric ρg on M by setting ρg = 0 on M − B+

2ρ and

ρg = dr2i + r2i (ξ(ri )h0 + (1 − ξ(ri ))hri ) whenever ri ≤ 2ρ.

Thus ρg is Euclidean in B+
ρ and coincides with g outside B+

2ρ . It is easy to check that the
curvature tensor of ρg is bounded, independent of ρ. It follows from [8, Theorem 7.1] that
the boundary ∂M is totally geodesic with respect to the metric ρg.

Let Lρ and Bρ denote the following linear operators taken in terms of ρg:

Lρ = −4(n − 1)

n − 2
�ρ + Rρ, Bρ = ∂

∂νρ

.

Let λρ denote the lowest eigenvalue of Lρ , and λ the lowest eigenvalue of L . Then since g is
conformally related to ametric with positive scalar curvature, where the boundary isminimal,
we have λ > 0. Let Gi be the multiple of the Green’s function of (L, B) with pole at xi and
normalize so that lim|yi |→0 |yi |3Gi (yi ) = 1. Note that ρg converges in the C1-norm to g
as ρ ↘ 0 and Rρ is uniformly bounded. Thus, for ρ sufficiently small, λρ > 0. Hence we
can consider Gi,ρ to be the positive Green’s function (Lρ, Bρ). Normalize the function Gi,ρ

such that lim|yi |→0 |yi |3Gi,ρ = 1. Consider the double of M , M̃ = M ∪ ∂M ∪ M , equipped
with the metric induced from M . Then we can show that the function Gi,ρ converges to Gi

as ρ → 0 in the C2-norm on compact subsets of M − {xi } by applying Lemma 1 in [17].
Since the metric ρg are Euclidean in Bρ(xi ), the function Gi,ρ is harmonic in Bρ and hance
has an expansion for |yi | small,

Gi,ρ(yi ) = |yi |−3 + Aρ + O(|yi |), Aρ ≥ 0.

We define uiδ,ε , and uδ,ε as in the previous section. It follows from (2.8) in [17] that

16

3

∫

M
|∇u1|2dVg +

∫

M
Rgu

2
1dVg ≤ Y (S5+, ∂S5+, gS5+)‖u1‖2

L
10
3 (M,g)

− 3σ+
4 Aρε20

+ cρ−5
0 ε

8
3
0 + cρ0ε

2
0 + c1ρ

1
2 ε20 ,

where c depends on ρ but c1 does not. Then we can show that

E 10
3
(uδ,ε) ≤ k2/5Y (S5+, ∂S5+, gS5+) − ε20(C0Aρ + C2(k − 1) + negligible terms

where C0 and C2 are positive constants. Since we assumed that M is not conformally equiv-
alent to S5+, it follows from [9, Section4] that

lim inf
ρ→0

Aρ > 0.

So, fixing ρ small, then fixing ρ0, and finally choosing ε0 sufficiently small, we prove
μ 10

3
(G) < k2/5Y (S5+, ∂S5+, gS5+).
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5 Notations and preliminary results for type (II)

Let (M, ∂M, g) be a compact n-dimensional Riemannian manifold with smooth boundary
∂M . By conformal change of g, we may assume that Rg = 0 in M (see Proposition 1.4
in [8]). It is known that if Q(M, ∂M, g) ≤ 0, then the Equivariant Yamabe problem with
boundary (II) is always solvable; for one can seek the solution to the subcritical case, pass
to the limit and get the solution to the critical case, as done by Trudinger for the classical

Yamabe problem. More precisely, for all 2 < q ≤ 2(n − 1)

n − 2
, there exists uq > 0 such that

uq |∂M is G-invariant and satisfies

�guq = 0 in M,
2(n − 1)

n − 2

∂uq
∂νg

+ Hguq = μq(G)

2
uq−1
q on ∂M .

where μq(G) is defined below. By the assumption Y (M, ∂M, g) ≤ 0, uq converges to u as

q → 2(n − 1)

n − 2
, where u is a solution to the Equivariant Yamabe problem with boundary (II).

Hence, we assume that Q(M, ∂M, g) > 0. By a conformal change of g, we may assume
that the scalar curvature of g vanishes in M (see Proposition 1.4 in [8]), i.e.

Rg = 0 in M and Hg > 0 on ∂M . (5.1)

Let

H
1
2 (∂M) = {

u|∂M : u ∈ H2
1 (M),�gu = 0 in M

}
.

Note that H
1
2 (∂M) ⊆ L

2(n−1)
n−2 (∂M) by the Sobolev trace embedding (0.4) in [13].

For 2 ≤ q ≤ 2(n − 1)

n − 2
, we define

Qq(u) =
∫
M

4(n−1)
n−2 |∇gu|2dVg + 2

∫
∂M Hgu2d Ag

(
∫
∂M uqd Ag)

2
q

,

where 0 �≡ u ∈ H2
1 (M). Note that Q 2(n−1)

n−2
(u) = Q(u) defined in (1.7) thanks to (5.1). For

G ⊂ I (∂M, g|∂M ) and 2 ≤ q ≤ 2(n − 1)

n − 2
, we define

μq(G) = inf
{
Qq(u) : 0 �≡ u ∈ H

1
2 (∂M) and u|∂M is G-invariant

}
.

It is well-defined, since H
1
2 (∂M) ⊆ Lq(∂M) for any 2 ≤ q ≤ 2(n − 1)

n − 2
.

Lemma 5.1 For all 2 ≤ q <
2(n − 1)

n − 2
and all G ⊆ I (∂M, g|∂M ), μq(G) is attained. Thus

there exists 0 < uq ∈ C∞(M) such that uq |∂M is G-invariant and

�guq = 0 in M,
2(n − 1)

n − 2

∂uq
∂νg

+ Hguq = μq(G)

2
uq−1
q on ∂M,

∫

∂M
uqqd Ag = 1.

Proof Consider a sequence {ui } of positive functions in H2
1 (M) such that ui |∂M is G-

invariant, satisfies �gui = 0 in M and

lim
i→∞ Qq(ui ) = μq(G) and

∫

M
uqi d Ag = 1. (5.2)
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Since the embedding H
1
2 (∂M) ↪→ Lq(∂M) is compact for all 2 ≤ q <

2(n − 1)

n − 2
, by passing

to a subsequence, we can suppose

lim
i→∞ ui = uq strongly in L2(∂M) ∩ Lq(∂M), (5.3)

lim
i→∞ ui = uq weakly in H

1
2 (∂M), and (5.4)

lim
i→∞ ui = uq almost everywhere. (5.5)

It follows from (5.5) that uq is positive almost everywhere. Since ui |∂M is G-invariant, we
have ui (γ x) = ui (x) for all γ ∈ G and all x ∈ ∂M , which together with (5.5) implies
that uq(γ x) = limi→∞ ui (γ x) = limi→∞ ui (x) = uq(x), i.e. uq |∂M is G-invariant. It also
follows from (5.2) and (5.3) that

1 = lim
i→∞

∫

∂M
uqi d Ag =

∫

∂M
uqqd Ag and lim

i→∞

∫

∂M
Hgu

2
i d Ag =

∫

∂M
Hgu

2
qd Ag.

(5.6)

Note that

0 ≤
∫

M
|∇gui − ∇guq |2dVg

=
∫

M
|∇gui |2dVg +

∫

M
|∇guq |2dVg − 2

∫

M
〈∇gui ,∇uq〉dVg.

(5.7)

By (5.4), we have

lim
i→∞

∫

M
〈∇gui ,∇uq〉dVg =

∫

M
|∇uq |2dVg.

This together with (5.7), we get

lim
i→∞

∫

M
|∇gui |2dVg ≥

∫

M
|∇guq |2dVg. (5.8)

By (5.1), (5.2), (5.6) and (5.8), we have

Qq(uq) =
∫

M

4(n − 1)

n − 2
|∇guq |2dVg +

∫

∂M
Hgu

2
qd Ag

≤ lim
i→∞

(∫

M

4(n − 1)

n − 2
|∇gui |2dVg +

∫

∂M
Hgu

2
i d Ag

)

= lim
i→∞ Qq(ui ) = μq(G).

This implies that uq realizes the minimum of Qq(u) on the space of u ∈ H
1
2 (∂M) such that

v|∂M is G-invariant. The Euler–Lagrange equation then implies that
∫

M

4(n − 1)

n − 2
〈∇guq ,∇gv〉dVg + 2

∫

∂M
Hguqvd Ag = μq(G)

2

∫

∂M
uq−1
q vd Ag (5.9)

for all v ∈ H
1
2 (∂M) such that v|∂M is G-invariant. It also follows from (5.4) that

�guq = lim
i→∞ �gui = 0 in M . (5.10)
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Let Bg be the boundary operator of g:

Bg(u) = 2(n − 1)

n − 2

∂u

∂νg
+ Hgu for u ∈ H

1
2 (M).

Since Hg > 0 by (5.1), the boundary operator Bg defined in H
1
2 (M) is invertible. Hence, let

w ∈ H
1
2 (M) be the unique solution of the equation

Bg(w) = μq(G)

2
uq−1
q . (5.11)

Since uq |∂M is G-invariant, the uniqueness of w shows that w|∂M is also G-invariant. On the
other hand, it follows from (5.9) and (5.11) that

∫

M

4(n − 1)

n − 2
〈∇g(uq − w),∇gv〉dVg + 2

∫

∂M
Hg(uq − w)vd Ag = 0

for all functions v ∈ H
1
2 (M) such that v|∂M isG-invariant. Since (uq−w)|∂M isG-invariant,

we have

0 =
∫

M

4(n − 1)

n − 2
|∇g(uq − w)|2dVg + 2

∫

∂M
Hg(uq − w)2d Ag

= 2
∫

∂M
(uq − w)Bg(uq − w)d Ag

where we have used (5.10) and integration by parts. Since Bg is invertible, uq = w, i.e. uq
is a weak solution of

Bg(uq) = μq(G)

2
uq−1
q .

A regularity theorem of Cherrier [6] asserts that uq ∈ C∞(M). This proves the assertion. ��
Lemma 5.2 If a subsequence of the sequence {uq}2≤q<

2(n−1)
n−2

converges strongly in L2(∂M)

to a function 0 �≡ u ∈ H
1
2 (M), then u realizes the minimum of Q 2(n−1)

n−2
in the space of

functions in H
1
2 (M) which are G-invariant. In particular,

(i) u is a positive smooth G-invariant function in M,

(ii) �gu = 0 in M and
2(n − 1)

n − 2

∂u

∂νg
+ Hgu = 1

2
μ 2(n−2)

n−2
(G)u

n
n−2 on ∂M, and

(iii)
∫

∂M
u

2(n−1)
n−2 d Ag = 1.

Proof First of all, we note that

lim sup
q→ 2(n−1)

n−2

μq(G) ≤ μ 2(n−1)
n−2

(G).

To see this, it suffices to consider 0 < v ∈ C∞(M) such that v|∂M isG-invariant and satisfies
Q 2(n−1)

n−2
(v) ≤ μ 2(n−1)

n−2
(G) + ε. As μq(G) ≤ Qq(v) with lim

q→ 2(n−1)
n−2

Qq(v) = Q 2(n−1)
n−2

(v), we

get

lim
q→ 2(n−1)

n−2

μq(G) ≤ lim
q→ 2(n−1)

n−2

Qq(v) = Q 2(n−1)
n−2

(v) ≤ μ 2(n−1)
n−2

(G) + ε.
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Without loss of generality, we suppose now that the subsequence {uq} satisfies lim uq = u

strongly in L2(∂M) ∩ L
2(n−1)
n−2 (∂M), weakly in H

1
2 (M) and almost everywhere with

μ = limμq(G) ≤ μ 2(n−1)
n−2

(G). (5.12)

By reasoning as in the proof of Lemma 5.1, we see that 0 < u ∈ C∞(M) such that u|∂M is
G-invariant and

�gu = 0 in M and
2(n − 1)

n − 2

∂u

∂νg
+ Hgu = μ

2
u

n
n−2 on ∂M . (5.13)

It remains to show that μ = μ 2(n−1)
n−2

(G) and
∫

∂M
u

2(n−1)
n−2 d Ag = 1. We find

∫

∂M
u

2(n−1)
n−2 d Ag = lim

q→ 2(n−1)
n−2

∫

∂M
u

n
n−2
q u d Ag

≤ lim
q→ 2(n−1)

n−2

(∫

∂M
uqqd Ag

) n
(n−2)q

(∫

∂M
u

(n−2)q
(n−2)q−n d Ag

)1− n
(n−2)q

≤
(∫

∂M
u

2(n−1)
n−2 d Ag

) n−2
n−1

,

which implies that
∫

∂M
u

2(n−1)
n−2 d Ag ≤ 1. (5.14)

Multiplying the second equation in (5.13) by u, integrating over ∂M and using the first
equation in (5.13), we get

μ 2(n−1)
n−2

(G) ≤ Q 2(n−1)
n−2

(u) = μ

(∫

∂M
u

2(n−1)
n−2 d Ag

) 1
n−1 ≤ μ, (5.15)

where the last inequality follows from (5.14). Combining (5.12), (5.14) and (5.15), we can

conclude that μ = μ 2(n−1)
n−2

(G) and
∫

∂M
u

2(n−1)
n−2 d Ag = 1, as required. ��

It now remains to study the casewhenLemma5.2 does not happen. So for any subsequence

of {uq}2≤q<
2(n−1)
n−2

, which converges in L p(∂M) with 2 ≤ p ≤ 2(n − 1)

n − 2
, converges to zero.

This phenomena occurs when {uq} has concentration points.
For r > 0 and x ∈ ∂M , set B(x, r) = {y ∈ M : dg(x, y) < r} and ∂ ′B(x, r) =

∂B(x, r) ∩ ∂M . Here, dg(x, y) is the distance between x and y in M with respect to the
Riemannian metric g.

Lemma 5.3 In the situation described above, there exists a finite number of points
{x1, · · · , xk} in ∂M for which

inf
G

Q(u)

⎛

⎝ lim sup
q→ 2(n−1)

n−2

∫

∂ ′B(xi ,δ)
uqqd Ag

⎞

⎠

1
n−1

≥ Q(Dn, ∂Dn, gDn )

for all δ > 0 and for each i = 1, 2..., k. Furthermore, for all p ∈ N, the sequence
{uq}2≤q<

2(n−1)
n−2

converges in C p(M) to zero on any compact set of M − {x1, · · · , xk}.
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Proof It follows from Lemma 4.1 in [21]. ��
Proof of Theorem 1.11 By the assumption in Theorem1.11,μ 2(n−1)

n−2
(G) is strictly smaller than

Q(Dn, ∂Dn, gDn )

(
inf

x∈∂M
card OG(x)

) 1
n−1

and it is about to show that the situation described

above cannot occur (so that Lemma 5.2 applies).
Suppose that for any subsequence of {uq}2≤q≤ 2(n−1)

n−2
converges to zero. Then byLemma5.3

there exists x1, · · · , xk ∈ ∂M such that {uq}2≤q<
2(n−1)
n−2

converges to zero inM−{x1, · · · , xk}
and for each i = 1, ..., k and for all δ > 0

μ 2(n−1)
n−2

(G)

⎛

⎝ lim sup
q→ 2(n−1)

n−2

∫

∂ ′B(xi ,δ)
uqqd Ag

⎞

⎠

1
n−1

≥ Q(Dn, ∂Dn, gDn ). (5.16)

We now use the property that uq |∂M is invariant under G and
∫

∂M
uqqd Ag = 1. (5.17)

Two cases arise. In the first case, the orbit of xi in G is finite, i.e. card OG(xi ) is finite.

It follows from (5.17) that we can choose δ > 0 small enough to get
∫

∂ ′B(xi ,δ)
uqqd Ag ≤

(
card OG(xi )

)−1
, which gives

lim sup
q→ 2(n−1)

n−2

∫

∂ ′B(xi ,δ)
uqqd Ag ≤

(
card OG(xi )

)−1
. (5.18)

In the second case, card OG(xi ) = ∞. It is then easy to see that, for all ε > 0, there exists

0 < δ � 1 with lim sup
q→ 2(n−1)

n−2

∫

∂ ′B(xi ,δ)
uqqd Ag ≤ ε. But if ε is sufficiently small, this equality

contradicts (5.16).
Therefore, for all i = 1, ..., k, the orbit of xi in G is finite and

μ 2(n−1)
n−2

(G) ≥ Q(Dn, ∂Dn, gDn )
(
card OG(xi )

) 1
n−1

(5.19)

by (5.16) and (5.18). The hypothesis that the strict inequality holds in (1.9), i.e.

μ 2(n−1)
n−2

(G) < Q(Dn, ∂Dn, gDn )

(
inf
x∈M card OG(x)

) 1
n−1

contradicts to (5.19). Therefore, xi in fact does not exist, and {uq}2≤q<
2(n−1)
n−2

satisfies the

conditions in Lemma 5.2. This proves Theorem 1.11. ��
We remark that we just showed that if the orbit of any point inG is infinite, thenμ 2(n−1)

n−2
(G)

is attained.

Proof of Theorem 1.10 Suppose G ⊂ I (∂M, g|∂M ) possesses a finite orbit. Let x1 be the
point of minimal orbit in G, i.e. card OG(x1) = inf

x∈∂M
card OG(x). By conformally changing

g, we may assume that the scalar curvature of g vanishes and the mean curvature of g at x1 is
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zero, i.e. Rg = 0 in M and Hg(x1) = 0. To see this, suppose that f ∈ C∞(∂M) such that f
is G-invariant and is strictly positive in at least one point of ∂M which satisfies f (x1) = 0.
Since the orbit of x1 in G is finite, it is always possible to construct such a function f . Let
0 < u ∈ C∞(M) be the unique solution of

�gu = 0 in M and Bg(u) = f uq on ∂M (5.20)

where 2 ≤ q <
2(n − 1)

n − 2
. Since f is G-invariant, u|∂M is also G-invariant. Then the

conformal metric g̃ = u
4

n−2 g satisfies

Rg̃ = u− n+2
n−2

(
−4(n − 1)

n − 2
�gu + Rgu

)
= 0 in M,

Hg̃ = u− n
n−2 Bgu = f uq− n

n−2 on ∂M

by (5.1) and (5.20). In particular, we have Hg̃(x1) = f (x1)u(x1)
q− n

n−2 = 0, as required.
Now let OG(x1) = {x1, ..., xk}. Let (y11 , · · · , y1n ) be normal coordinates around x1 ∈ ∂M ,

such that νg(x1) = − ∂
∂ y1n

and the second fundamental form of ∂M at x1 has a diagonal form.

By the invariant under G, we have normal coordinates (yi1, · · · , yin) around each xi ∈ ∂M
which satisfy the properties described above. Let δ > 0 be chosen such that B(xi , δ) ∩
B(x j , δ) = ∅ if i �= j . Let si (x) = max{|yi |, |yin}, where |yi |2 = (yi1)

2 + · · · + (yin−1)
2,

and ψ(x) be a piecewise smooth function which satisfies ψ(s) = 1 for |s| ≤ δ, ψ(s) = 0
for |s| ≥ 2δ, and |ψ ′(s)| ≤ δ−1 for δ ≤ |s| ≤ 2δ. For i = 1, ..., k, we define

ui,ε(x) = vi (ψ ◦ si )

where

vi =
(

ε

(ε + yni )2 + |yi |2
) n−2

2

and letuε =
∑k

i=1
ui,ε . The functionuε |∂M is thereforeG-invariant and sinceQ 2(n−1)

n−2
(uε) =

k
1

n−1 Q 2(n−1)
n−2

(u1,ε), we can deduce that (c.f. [8])

lim
ε→0

Q 2(n−1)
n−2

(uε) ≤ k
1

n−1 Q(Dn, ∂Dn, gDn ),

which implies (1.9) since k = card OG(x1) = inf
x∈∂M

card OG(x). ��

From the proof of Theorem 1.10, we have the following:

Corollary 5.4 The xi in Lemma 5.3 are necessarily points of minimal orbit in G. And in fact
they constitute exactly a minimal orbit of G.

Lemma 5.5 If x is a point of ∂Dn, we denote by

Cx (D
n, ∂Dn, gDn ) = {σ ∈ C(Dn, ∂Dn, gDn ) : σ(x) = x}

and

Ix (D
n, ∂Dn, gDn ) = {σ ∈ I (Dn, ∂Dn, gDn ) : σ(x) = x}.

For any metric g conformal to gDn , we can find τ ∈ Cx (Dn, ∂Dn, gDn ) such that
τ−1 Ix (Dn, ∂Dn, g)τ ⊂ Ix (Dn, ∂Dn, gDn ).
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Proof Note that Ix (Dn, ∂Dn, g) is a compact subgroup of conformal transformation of Dn .
Let ψ : Sn+ → Dn be the projection from the upper hemisphere to the unit disc. If ϕ :
Sn+ − {x} → R

n+ is the stereographic projection of pole x , ϕψ Ix (Dn+, ∂Dn, g)ψ−1ϕ−1

becomes a compact group of conformal transformations of R
n+, a subgroup of the group of

isometries of a metric conformal to the Euclidean metric, and thus makes it a subcompact
group of the affine group. Therefore, ϕψ Ix (Dn, ∂Dn, g)ψ−1ϕ−1 necessarily admits a fixed
point. Then we can follow the argument in Lemma 2.5 to finish the proof. ��

6 Locally conformally flat case for type (II)

In this section, we prove Theorem 1.12 when (M, ∂M, g) is locally conformally flat, i.e.
we will show that if (M, ∂M, g) is locally conformally flat, then the strict inequality holds
in (1.9). Let (M, g) be a compact Riemannian manifold with boundary ∂M , and G be a
subgroup of I (M, ∂M, g), the group of isometries of g. Assume that ∂M is umbilic and M
is not conformally diffeomorphic to Dn . We suppose that G has a finite orbit, and we denote
by Og(x1) = {x1, · · · , xk} a minimal orbit under G.

Suppose that (M, ∂M, g) is locally conformally flat. By Lemma 3.1, we can assume that
g is Euclidean in the neighborhood of each the xi . By umbilicity, we can assume that the
boundary is a hyperplane. Let (yi1, · · · , yin) be rectangluar coordinates around xi ∈ ∂M such
that ∂M is defined by yin = 0 locally. Let Gi be the positive solution of �gGi = 0 on
M − {xi } and BgGi = 0 on ∂M . Then Gi has the following asymptotic expansion for ri
small:

Gi (x) = r2−n
i + A + α(x)

where ri = d(xi , x), A is a constant, and α(x) is a smooth harmonic function near xi with
α(xi ) = 0.

If σ(xi ) = x j , then G j ◦σ = Gi , and hence
∑k

i=1
Gi is G-invariant. Let ηi be a smooth

cut-off function as in (3.4). For each xi , we now consider (like [8]) the function uiδ,ε defined
by

uiδ,ε =
⎧
⎨

⎩

viε(x), for x ∈ M ∩ Bδ(xi );
Wi (x)(Gi (x) − ηi (x)αi (x)), for x ∈ M ∩ (B2δ(xi ) − Bδ(xi ));
Wi (x)Gi (x), for x ∈ M − B2δ(xi ).

where

viε(x) =
(

ε

(ε + yin)
2 + r2i

)(n−2)/2

and

Wi (x) =
(

ε

ε2 + δ2 + 2εyinηi (ri )

)(n−2)/2

(δ2−n + A)−1. (6.1)

Observe that the function uiδ,ε is continuous across ∂Bδ and ∂B2δ .
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Wesetuδ,ε =
∑k

i=1
uiδ,ε so that the functionuδ,ε isG-invariant. To simplify the notations,

we will write u = uδ,ε , ui = uiδ,ε . We compute

4(n − 1)

n − 2

∫

M
|∇gu|2dVg + 2

∫

∂M
Hgu

2d Ag

=
k∑

i=1

(
4(n − 1)

n − 2

∫

M
|∇gui |2dVg + 2

∫

∂M
Hgu

2
i d Ag

)

+
∑

i �= j

(
4(n − 1)

n − 2

∫

M
〈∇gui ,∇gu j 〉dVg + 2

∫

∂M
Hguiu j d Ag

)

= k

(
4(n − 1)

n − 2

∫

M
|∇u1|2dVg + 2

∫

∂M
Hgu

2
1d Ag

)

+ k
k∑

i=2

(
4(n − 1)

n − 2

∫

M
〈∇gu1,∇gui 〉dVg + 2

∫

∂M
Hgu1uid Ag

)

where the second equality follows from the invariance under G. By the argument in [8,
Theorem 4.1], we have

4(n − 1)

n − 2

∫

M
|∇gu1|2dVg + 2

∫

∂M
Hgu

2
1d Ag

≤ Q(Dn, ∂Dn, gDn )

(∫

Bδ(x1)∩∂M
u

2(n−1)
n−2

1 d Ag

) n−2
n−1

− (n − 2)

2

σn−1

4n−1 Aεn−2 + cεn−2δ + cεn−1δ1−n + cεnδ−n .

On the other hand, we have

4(n − 1)

n − 2

∫

M
〈∇gu1,∇gui 〉dVg + 2

∫

∂M
Hgu1uid Ag

= 4(n − 1)

n − 2

∫

M−B2δ(x1)−B2δ(xi )
〈∇gu1,∇gui 〉dVg

+ 2
∫

∂M−B2δ(x1)−B2δ(xi )
Hgu1uid Ag

+ 4(n − 1)

n − 2

(∫

B2δ(x1)
〈∇gu1,∇gui 〉dVg +

∫

B2δ(xi )
〈∇gu1,∇gui 〉dVg

)

where we have used the fact that Hg = 0 on ∂M ∩ B2δ(xi ). Since �gGi = 0 in M − {xi }
and BgGi = 0 on ∂M − {xi }, we find
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4(n − 1)

n − 2

∫

M−B2δ(x1)−B2δ(xi )
〈∇gu1,∇gui 〉dVg + 2

∫

∂M−B2δ(x1)−B2δ(xi )
Hgu1uid Ag

= ε20

∫

M∩∂B2δ(xi )

∂G1

∂ν
Gid Ag + ε20

∫

M∩∂B2δ(x1)

∂G1

∂ν
Gid Ag

+ ε20

∫

∂M−B2δ(xi )−B2δ(xi )

∂G1

∂νg
Gid Ag

= ε20

∫

M∩∂B2δ(xi )

∂G1

∂ν
Gid Ag + ε20

∫

M∩∂B2δ(x1)

∂G1

∂ν
Gid Ag

where ν represents the unit normal vector to M ∩ ∂B2δ(x1) or M ∩ B2δ(xi ). On ∂B2δ(xi ),

we have

∣∣∣∣
∂G1

∂ν

∣∣∣∣ ≤ C and Gi ≤ Cδ2−n , which gives

ε20

∣∣∣∣

∫

M∩∂B2δ(xi )

∂G1

∂ν
Gid Ag

∣∣∣∣ ≤ Cδε20 .

On the other hand, on ∂B2δ(x1), we have
∂G1

∂ν
= r1−n

1 + O(1) and Gi = Gi (x1) + O(r1).

We thus obtain

ε20

∣∣∣∣

∫

M∩∂B2δ(x1)

∂G1

∂ν
Gid Ag

∣∣∣∣ = ε20 |Gi (x1)| + O(ε20δ).

Moreover, for i �= j , since �gu j = 0 in B2δ(xi ), we find

∫

B2δ(xi )
〈∇gui ,∇gu j 〉dVg =

∫

M∩∂B2δ(xi )
ui

∂u j

∂ν
d Ag +

∫

∂M∩B2δ(xi )
ui

∂u j

∂νg
d Ag

=
∫

M∩∂B2δ(xi )
ui

∂u j

∂ν
d Ag

and with the definition of ui , we see that
∣∣∣∣
∂u j

∂ν

∣∣∣∣ ≤ Cε0 and |ui | ≤ Cε0δ
2−n on ∂B2δ(xi ).

Hence, we obtain
∣∣∣∣

∫

B2δ(xi )
〈∇gui ,∇gu j 〉dVg

∣∣∣∣ ≤ Cδε20 .

Combining all these estimates yields

4(n − 1)

n − 2

∫

M
|∇gu|2dVg + 2

∫

∂M
Hgu

2d Ag

≤ kQ(Dn, ∂Dn, gDn )

(∫

Bδ(x1)∩∂M
u

2(n−1)
n−2

1 d Ag

) n−2
n−1

− (n − 2)

2

σn−1

4n−1 Aεn−2 + cεn−2δ + cεn−1δ1−n + cεnδ−n + kε20

(
k∑

i=2

Gi (x1)

)

.
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It now remains to evaluate ‖u‖2
L

2(n−1)
n−2 (∂M,g)

. To this end, we compute

∫

∂M
u

2(n−1)
n−2 d Ag

≤
k∑

i=1

∫

∂M∩Bδ(xi )

(
ui +

∑

j �=i

u j

) 2(n−1)
n−2

d Ag

≤
k∑

i=1

∫

∂M∩Bδ(xi )
u

2(n−1)
n−2

i d Ag + 2(n − 1)

n − 2

k∑

i=1

∑

j �=i

∫

∂M∩Bδ(xi )
u

n
n−2
i u j d Ag

≤ k
∫

∂M∩Bδ(x1)
u

2(n−1)
n−2

1 d Ag + 2(n − 1)k

n − 2

k∑

i=2

∫

∂M∩Bδ(x1)
u

n
n−2
1 uid Ag

where the second inequality follows from (a+b)N ≥ aN +Nan−1b, and the third inequality
follows from the invariant under G. From the definition of u1, we have

‖u1‖
2(n−1)
n−2

L
2(n−1)
n−2 (∂M,g)

=
∫

∂M∩Bδ(x1)
u

2(n−1)
n−2

1 d Ag +
∫

∂M−Bδ(x1)
u

2(n−1)
n−2

1 d Ag

=
∫

∂M∩Bδ(x1)
u

2(n−1)
n−2

1 d Ag +
∫

∂M−Bδ(x1)
W

2(n−1)
n−2

1 (G1 − η1α1)
2(n−1)
n−2 d Ag

and
∫

∂M∩Bδ(x1)
u

2(n−1)
n−2

1 d Ag = σn−2

∫ δ/ε

0
(1 + t2)−(n−1)tn−2dt

= σn−2

∫ ∞

0
(1 + t2)−(n−1)tn−2dt − σn−2

∫ ∞

δ/ε

(1 + t2)−(n−1)tn−2dt

= 2−(n−1)σn−1 + o(ε20).

Likewise,
∫

∂M∩Bδ(x1)
u

n
n−2
1 uid Ag =

∫

∂M∩Bδ(x1)
u

n
n−2
1 WiGid Ag

= ε0

∫

∂M∩Bδ(x1)
u

n
n−2
1 Gid Ag

= ε0Gi (x1)
∫

∂M∩Bδ(x1)
u

n
n−2
1 d Ag + ε0

∫

∂M∩Bδ(x1)
u

n
n−2
1 O(r1)d Ag

= ε0Gi (x1)ε
n−3
2 σn−2

∫ δ/ε

0
(1 + t2)−

n+1
2 tn−2dt

+ ε0

∫

∂M∩Bδ(x1)
u

n
n−2
1 O(r1)d Ag.

where the second equality follows from

Wi (x) =
(

ε

ε2 + δ2

) n−2
2

(δ2−n + A)−1 =: ε0 for x ∈ ∂M ∩ Bδ(x1)
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by the definition of Wi in (6.1). Therefore, as in Sect. 3, we obtain

Q 2(n−1)
n−2

(uδ,ε) ≤ k
1

n−1 Q(Dn, ∂Dn, gDn ) − ε20(C0A + C2(k − 1))

+ O(ε20δ) + o(ε20)
(6.2)

where C0 and C2 are strictly positive constants. In particular, we can find δ and ε sufficiently

small so that Q 2(n−1)
n−2

(uδ,ε) < k
1

n−1 Q(Dn+, ∂Dn+, gDn+) if C0A+C2(k−1) > 0. The positive

mass theorem guarantees that A > 0 (cf. [9, Appendix]. Therefore we can conclude that

μ 2(n−1)
n−2

(G) < k
1

n−1 Q(Dn+, ∂Dn+, gDn+).

Now we suppose M = Dn . Then, since M is locally conformally flat, we can follow the
above argument and eventually obtain (6.2). But, in this case, the constant A is zero. If k ≥ 2,
we still have C0A + (k − 1)C2 = (k − 1)C2 > 0.

Therefore, we suppose k = card OG(x1) = 1, i.e. G admits a fixed point (denote by x).
Since x is a fixed point, G becomes a subgroup of Ix (Dn, ∂Dn, g). Then, by Lemma 5.5,
there exist τ ∈ Cx (Dn, ∂Dn, gDn ) so that G ⊂ τ−1 Ix (Dn, ∂Dn, gDn )τ . Let f , ϕ > 0 be
smooth functions such that

(τ−1)∗gDn = f
4

n−2 gDn , g = ϕ
4

n−2 gDn .

We set u(x) = 1/ϕ(x) f (τ (x)). First, we show that u is G-invariant. To see this, consider
σ ∈ G and i ∈ Ix1(D

n, ∂Dn, gDn ) which satisfies σ = τ−1iτ . Then

σ ∗g =τ ∗i∗(τ−1)∗g

=(τ ∗i∗)((ϕ ◦ τ−1)
4

n−2 f
4

n−2 gSn+)

=((ϕ ◦ σ)( f ◦ i ◦ τ))
4

n−2 ( f ◦ τ)−
4

n−2 gSn+ .

But since σ ∗g = g, we get (ϕ ◦τ)(( f ◦τ)◦σ) = ϕ( f ◦τ). This shows that the invariance
of u under σ , hence under G. Since ϕu = 1/( f ◦ τ) and τ ∗gDn = ( f ◦ τ)−4/(n−2)gDn ,
we can easily verify that Q 2(n−1)

n−2
(u) = Q(Dn, ∂Dn, gDn ). This shows that μ 2(n−1)

n−2
(G) =

Q(Dn, ∂Dn, gDn ).

7 The case of dimension 3, 4 and 5 for type (II)

In this section, we prove Theorem 1.12 when 3 ≤ n ≤ 5. Basically, it can be proved by the
same argument as Type I. Therefore, we will only consider the case when n = 5.

Suppose that n = 5. Let (yi1, · · · , yin) denote a normal rectangular coordinate system
centered at xi . Let ri = |yi |, ζ = yi/|yi |. Then the metric g of M can be locally written as

g = dr2i + r2i hri

where hri is a metric on Sn−1+ with h0 being the standard metric. Given ρ > 0 with ρ small,
let ξ(ri ) be a smooth nonincreasing function satisfying ξ(ri ) = 1 for ri ≤ ρ, and ξ(ri ) = 0
for ri ≥ 2ρ; let |ξ ′(ri )| ≤ cρ−1 and let |ξ ′′(ri )| ≤ cρ−2 for all ri > 0. We define the metric
ρg on M by setting ρg = 0 on M − B+

2ρ and

ρg = dr2i + r2i (ξ(ri )h0 + (1 − ξ(ri ))hri ), ri ≤ 2ρ.
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Thus ρg is Euclidean in B+
ρ and coincides with g outside B+

2ρ . It is easy to check that the
curvature tensor of ρg is bounded, independent of ρ. It follows from [8, Theorem 7.1] that
the boundary ∂M is totally geodesic with respect to the metric ρg.

Let Lρ and Bρ be the following linear operator taken in terms of ρg:

Lρ = �ρ, Bρ = 2(n − 1)

n − 2

∂

∂νρ

+ Hρ.

Let λρ denote the lowest eigenvalue of Lρ , and λ the lowest eigenvalue of L . Then since
g is conformally related to a metric with positive scalar curvature, where the boundary is
minimal, we have λ > 0. LetGi be themultiple of the Green’s function of (L, B)with pole at
xi and normalize so that lim|yi |→0 |yi |3Gi (yi ) = 1. Note that ρg converges in the C1-norm
to g as ρ ↘ 0 and Rρ is uniformly bounded. Thus, for ρ sufficiently small, λρ > 0. Hence
we can consider Gi,ρ to be the positive Green’s function (Lρ, Bρ). Normalize the function
Gi,ρ such that lim|yi |→0 |yi |3Gi,ρ = 1. Consider M̃ = M∪∂M∪M as the double of M with
the standard metric induced from M . Then we can show that the function Gi,ρ converges to
Gi as ρ → 0 in the C2-norm on compact subsets of M − {xi } by applying Lemma 1 in [17].
Since the metric ρg are Euclidean in Bρ(xi ), the function Gi,ρ is harmonic in Bρ and hance
has an expansion for |yi | small,

Gi,ρ(yi ) = |yi |−3 + Aρ + O(|yi |), Aρ ≥ 0.

We define uiδ,ε , and uδ,ε as in the previous section. Then it follows from (7.16) in [8] that

16

3

∫

M
|∇gu1|2dVg + 2

∫

∂M
Hgu

2
1d Ag

≤ Q(D5, ∂D5, gD5)

(∫

Bρ0∩∂M
u

8
3
1 d Ag

) 3
4

− 3

2

σ4

44
Aρε3 + cε3ρ0 + cε5ρ−5

0 + cε4ρ−4
0 + c1ρε3,

where c depends on ρ but c1 does not. Then we can show that

Q 8
3
(uδ,ε) ≤ k

1
4 Q(D5, ∂D5, gD5) − ε20(C0A + C2(k − 1)) + negligible terms

where C0 and C2 are positive constants. Since M is not conformally equivalent to S5+, if
follows from [8, Section7] that

lim inf
ρ→0

Aρ > 0.

Fixing ρ small, then fixing ρ0, and finally choosing ε0 sufficiently small, we thus have
μ 8

3
(G) < k1/4Y (D5, ∂D5, gD5).

8 Appendix

In this Appendix, we will give the proof of Lemma 2.3. To this end, we follow the argument
in [18, Theorem3.1]. First, we have the following:
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Lemma 8.1 Let u ∈ C∞(M, g) be a solution of the equation

⎧
⎪⎨

⎪⎩

4(n − 1)

n − 2
�gu + Rgu = Pu in M;

∂u

∂νg
= 0 on ∂M .

(8.1)

(i) For any σ < Y (Sn+, ∂Sn+, gSn+), there exist constants q0 > 2n
n−2 , r0 > 0 such that,

whenever for some r < r0 and some x0 ∈ M there holds ‖P‖Ln/2(B2r (x0)) ≤ σ , then

‖u‖Lq0 (Br (x0)) < C‖u‖
L

2n
n−2 (B2r (x0))

.

(ii) For any q > 2n
n−2 , any r > 0, there exist a constant C = C(q, r) > 0 such that

‖u‖Lq (B3r (x0)) ≤ C‖u‖
L

2n
n−2 (B2r (x0))

,

whenever there holds ‖P‖Ln/2(B4r (x0)) < 2nY (Sn+, ∂Sn+, gSn+)/((n − 2)q).

Proof (i) This assertionwill follow by performing one step of aMoser iteration. Choose some
smooth cut-off function η ∈ C1

0 (B2r (x0)) satisfying η(x) = 1 in Br (x0) and |∇gη| < C/r .
For suitable p ≥ 1, we then let v = u2p−1η2. Multiplying the first equation of (8.1) by v,
using integrating by parts and the second equation of (8.1), we have

∫

M

(
4(n − 1)

n − 2
〈∇gu,∇gv〉 + Rguv

)
dVg =

∫

M
PuvdVg. (8.2)

Let w = u pη. Then |w|2 = uv, and Young’s inequality implies that

|∇gw|2 ≤ p + 1

2

(〈∇gu,∇gv〉 + u2p|∇gη|2) . (8.3)

It follows from (8.2), (8.3), and the Hölder’s inequality that

2

p + 1

(∫

M

4(n − 1)

n − 2
|∇gw|2 + Rgw

2dVg

)
− 4(n − 1)

n − 2

∫

M
u2p|∇gη|2dVg

≤
∫

M
|P||w|2dVg ≤ ‖P‖

L
n
2 (B2r (x0)∩M)

‖w‖2
L

2n
n−2 (B2r (x0)∩M)

.

(8.4)

On the other hand, for sufficiently small r0 > 0 the metric g on Br0(x0) in normal coordinates
around x0 differs arbitrarily little from the Euclidean metric. Hence for function w with
support in B2r (x0) the following Sobolev-type inequality holds with constant A arbitrarily
close to Y (Sn+, ∂Sn+, gSn+):

‖w‖2
L

2n
n−2 (M,g)

≤ A−1
∫

M

(
4(n − 1)

n − 2
|∇w|2g + Rgw

2
)
dVg. (8.5)

Let σ = aY (Sn+, ∂Sn+, gSn+), where a < 1. Then by (8.4), (8.5), and the assumption
‖P‖Ln/2(B2r (x0)∩M) ≤ σ , we have

∫

M

4(n − 1)

n − 2
|∇gw|2 + Rgw

2dVg ≤
(

2

p + 1
− σ A−1

)−1 4(n − 1)

n − 2

∫

M
u2p|∇gη|2dVg.
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For 1 < p < min{ 3−a
1+a , n

n−2 } and r < r0 = r0(a), setC∗ = 1−a
4 · n−2

4(n−1)Y (Sn+, ∂Sn+, gSn+).
Using (8.4), (8.5), our smallness assumption and the Hölder’s inequality we then obtain

C∗‖u‖2p
L

2np
n−2 (Br (x0)∩M)

= C∗‖w‖2
L

2n
n−2 (Br (x0)∩M)

≤ C∗‖w‖2
L

2n
n−2 (M)

≤ C∗A−1
∫

M

(
4(n − 1)

n − 2
|∇gw|2 + Rgw

2
)
dVg

≤
∫

M
u2p|∇gη|2dVg

≤ Cr−2‖u‖2p
L

2n
n−2 (B2r (x0)∩M)

.

(8.6)

By setting q0 = 2pn
n−1 > 2n

n−1 , we thus complete the proof of the first claim.

(ii) We perform finitely many steps of a Moser iteration. For 1 < p ≤ (n−2)q
2n and

η ∈ C1(B4r (x0)), we define the test function v = u2p−1η2, leading to (8.6) for w = u pη as
above. From (8.5) and our smallness assumption we derive

n − 2

4(n − 1)
Y (Sn+, ∂Sn+, gSn+)

(
2

1 + p
− (n − 2)q

2n

)
‖w‖2

L
2n
n−2

≤
∫

M
u2p|∇gη|2dVg.

(8.7)

Choose p1 ∈
(
1, n

n−2

]
maximal such that q = 2p1

(
n

n−2

)m
for some m ∈ N. For i =

1, · · · ,m + 1 then let pi = p1
(

n
n−2

)i−1
, ri = r(3 + 21−i ), η = ηi such that η ≡ 1 in

Bri+1(x0), η ≡ 0 in M \ Bri (x0), and |∇gη| < C2i/r . From (8.7), for 1 ≤ i ≤ m we then
obtain

‖u‖L2pi+1 (Bri+1 (x0)∩M)
≤

(
C22i (q − n−2

2n )

r2

) 1
2pi

‖u‖L2pi (Bri (x0)∩M)

which can be iterated to obtain the result. ��

Lemma 8.2 Let gk = u
4

n−2
k g, where 0 < uk ∈ C∞(M, g0), k ∈ N, be a family of conformal

metrics with unit volume
∫
M u

2n
n−2
k dVg = 1 and satisfying

∫

M
Rgk dVgk ≤ C0,

∫

M

∣∣Rgk − Rgk

∣∣p dVgk ≤ C0 (8.8)

for all k and some p > n/2 where Rgk = ∫
M Rgk dVgk . Then, either (i) the sequence (uk)

is uniformly bounded in W 2,p(M, g) ↪→ L∞(M, g), or (ii) there exists a subsequence (uk)
and finitely many points xi , · · · , xL ∈ M such that for any r > 0 and any l ∈ {1, · · · ,Ł}
there holds

lim inf
k→∞

(∫

Br (xl )∩M
|Rgk |n/2dVgk

)2/n

≥ Y (Sn+, ∂Sn+, gSn+). (8.9)

Moreover, the sequence (uk) is bounded in W 2,p on any compact subset of M \{x1, · · · , xL }.
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Proof Fix a point x0 ∈ M and assume that for some r > 0 there holds

sup
k

(∫

B2r (x0)∩M
|Rgk |

n
2 dVgk

) 2
n ≤ σ < Y (Sn+, ∂Sn+, gSn+). (8.10)

Writing the Yamabe equation for uk as

−4(n − 1)

n − 2
�guk + Rguk = Rgk u

n+2
n−2
k = Pkuk,

we have Pk = Rgk u
4

n−2
k ∈ Ln/2(B2r (x0) ∩ M) with

‖Pk‖L n
2 (B2r (x0)∩M)

=
(∫

B2r (x0)∩M
|Rgk |

n
2 dVgk

) 2
n ≤ σ < Y (Sn+, ∂Sn+, gSn+).

Clearly, we may assume that r ≤ r0(σ ) as determined in Lemma 8.1. Lemma 8.1 and the
assumption Vol(M, gk) = 1 then imply that (uk) is bounded in Lq0(Br (x0) ∩ M) for some
q0 > 2n

n−2 . In particular,

Vol(Br (x0), gk) → 0 as r → 0, (8.11)

uniformly in k ∈ N.
Choose q > n

2 such that

1

p1
:= max

{
1

p
+ (p − 2)n + 2p

pq(n − 2)
,

n + 2

q(n − 2)

}
<

2

n
.

By Hölder’s inequality, for any r > 0 we have

(∫

Br (xl )∩M
|Rgk |dVgk

) 2
n ≤ Rgk

(∫

Br (xl )∩M
dVgk

) 2
n +

(∫

Br (xl )∩M
|Rgk − Rgk |

n
2 dVgk

) 2
n

≤ Rgk

(∫

Br (xl )∩M
dVgk

) 2
n +

(∫

Br (xl )∩M
|Rgk − Rgk |pdVgk

) 1
p
(∫

Br (xl )∩M
dVgk

) 2
n − 1

p

.

(8.12)

Using (8.8), (8.11) and (8.12), and replacing r by a smaller radius if necessary, we can achieve
that ‖Pk‖L n

2 (B4r (x0)∩M)
< 2n

q(n−1)Y (Sn+, ∂Sn+, gSn+). By Lemma 8.1 andVol(M, gk) = 1, then

(uk) is bounded in Lq(B3r (x0) ∩ M), and by choice of q we obtain uniform bounds for

4(n − 1)

n − 2
�guk =Rgk u

n+2
n−2 − Rguk

=(Rgk − Rgk )u
n+2
n−2
k + Rgk u

n+2
n−2
k − Rguk ∈ L p1(B3r (x0) ∩ M).

Then Calderón–Zygmund inequality and Sobolev’s embedding now yield the estimate

‖uk‖L∞(B2r (x0)∩M) ≤C‖uk‖W 2,p1 (B2r (x0)∩M)

≤C‖�guk‖L p1 (B3r (x0)∩M) + C‖uk‖
L

2n
n−2 (B3r (x0)∩M)

≤ C = C(r).

Going back to the previous equation, we then find that

|�guk | ≤ C |Rgk − Rgk |u
n+2
n−2
k + Rgk u

n+2
n−2
k + Rguk
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is bounded in L p(B2r (x0) ∩ M). Thus, by the Calderón-Zygmund inequality, uk ∈
W 2,p(Br (x2) ∩ M) with

‖uk‖W 2,p(Br (x0)∩M) ≤ C = C(r). (8.13)

Now assume that condition (8.10) is satisfied for every x ∈ M and some radius r =
r(x) > 0. The cover (Br(x)(x))x∈M of M admits a finite subcover Bri (x), where ri = r(xi ),
1 ≤ i ≤ I . From (8.13) we then obtain the desired uniform bound

‖uk‖W 2,p(M) ≤ I max
1≤i≤I

C(ri ).

If (8.10) does not hold for every x with some r = r(x) > 0, we iteratively determine
points xl , l ∈ N, and a subsequence (uk) such that for any r > 0 and any l condition (8.9) is
valid. This iteration terminates after finitely many steps. Indeed, given x1, · · · , xL , choose
0 < r < mini �= j dist(xi , x j )/2. Then (8.9) yields the bound

L · Y (Sn+, ∂Sn+, gSn+)
n
2 ≤

L∑

l=1

lim inf
k→∞

∫

Br (xl )∩M
|Rgk |

n
2 dVgk

= lim inf
k→∞

∫

∪L
l=1Br (xl )∩M

|Rgk |
n

2
dVgk

≤ sup
k

∫

M
|Rgk |

n
2 dVgk

≤ C sup
k

(∫

M
|Rgk − Rgk |

n
2 dVgk + R

n
2
gk

)
< ∞.

By a covering argument as above we then obtain that (uk) is bounded in W 2,p ↪→ L∞ on
any compact subset of M \ {x1, · · · , xL }, as claimed. ��
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