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Abstract
We consider Newton’s problem of minimal resistance, in particular we address the problem
arising in the limit if the height goes to infinity. We establish existence of solutions and lack
radial symmetry of solutions. Moreover, we show that certain conical parts contained in the
boundary of a convex body inhibit the optimality in the classical Newton’s problem with
finite height. This result is applied to certain bodies considered in the literature, which are
conjectured to be optimal for the classical Newton’s problem, and we show that they are not.

Mathematics Subject Classification 49K99 · 49Q10 · 52A15

1 Introduction

One of the first problems in calculus of variations is a least resistance problem posed by
Newton in his Principia. A three-dimensional body with base � ⊂ R

2 is travelling in
negative z-direction. The upper boundary of the body is given by � × {0}, while the lower
boundary is described by the graph of a function u : � → [−M, 0], where M > 0 is the
height of the body. The medium around the body is assumed to be very rare and under the
assumption that each particle collides only once with the body, one arrives at the resistance

J (u) =
∫

�

1

|∇u|2 + 1
dx ∧ dy,

see [3,4]. In order to comply with the single-impact condition, one typically considers the
convex situation, namely, � ⊂ R

2 is assumed to be convex and u : � → [−M, 0] is convex
as well. We denote the set of all such functions by CM ⊂ W 1,2

loc (�).
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Aswe have mentioned, Newton obtained his resistance functional J under the assumption
of a rare medium. Despite this fact, in the Twentieth century, it has been discovered (see [7,
Chapter III], [17, §23]) that J also describes accurately enough the resistance of a convex body
moving in dense media with hypersonic speed. Alternatively, the resistance for hypersonic
speeds can be computed by the Buseman formula, which usually gives better accuracy for
non-convex bodies, but is worse for convex ones [17, §23].

For � being the unit disc, Newton found an optimal solution among all convex bodies of
revolution. Newton’s solution has a very non-trivial peculiarity: its lateral boundary is strictly
convex, but the lower part is a flat disc, and these parts adjoin each other by a corner of 45◦.
All standard facts about the problem can be found in a very well written survey [3].

Newton’s result [13] was published in 1687, exactly 1
3 of a millennium ago. Since that

until the end of the Twentieth century, it was assumed that the Newton’s body has minimal
resistance among all convex bodies. Only in 1996, Guasoni (in his “Tesi di Laurea” [5] under
the supervision of Buttazzo) found a “screwdriver” shape that has less resistance than the
one found by Newton of the same base and height M ≥ 2. An analytical argument for the
non-optimality of Newton’s solution is given in [2].

According to [4, Theorem 2.1], an optimal body exists in the class of convex bodies with
given base and height. There are some analytical results on the structure of optimal bodies.
Let � be the unit disc and let the convex function u : � → [−M, 0] describe the shape of
an optimal body for some given height M > 0. Then

– |∇u(x, y)| ∈ {0} ∪ [1,+∞) for a.e. (x, y) ∈ �, [3, Theorem 3.2];
– lim(x,y)→∂� u(x, y) = 0, [14, Theorem 2];
– If ω is an open subset of � and u ∈ C2(ω), then u is not strictly convex on ω, see [2,

Remark 3.4] or [9, Lemma 1] (more general results were obtained in [9, Lemma 1] and
[15, Theorem 2]);

– u is not radially symmetric [3, Theorem 3.4].

Moreover, this lack of strict convexity implies that the Euler-Lagrange equations cannot
be used to solve the problem, cf. [3, Theorem 3.5].

There are several numerical results [8,16],whichgive very good approximations of optimal
bodies due to [11, Theorem 2].

In [12], the hypothesis of rotational symmetry was replaced by the less restrictive hypothe-
ses of (i) mirror symmetry w.r.t. a vertical plane and (ii) developable structure of the side
boundary. Let us remark that all existing aircraft and ships, to say nothing of living creatures,
have such symmetry. We have obtained a remarkable formula that describes a curve in the
plane of symmetry and proved that the convex hull of this curve and�×{0} is locally optimal
in the considered class of admissible bodies, see [12, Theorem 9.1].

Themost astonishing fact concerning Newton’s problem is that the exact shapes of optimal
bodies in CM are still unknown.

There were suggested a lot of different shapes as candidates that were considered as
possible solutions to Newton’s problem in the class of convex bodies, see [10,12,16]. Some of
these profiles contain conical parts on their boundaries.We investigate this situation and prove
that optimal bodies cannot contain conical parts of certain type (see Sect. 5 and Theorem 6).
We use these results in Sect. 6 to prove non-optimality of all bodies conjectured in the
literature.

We also study what is happening in the limiting case M → ∞ by a rescaling û = u/M . It
seems that this auxiliary limiting problemwas not studied so far, but it is extremely useful for
studying Newton’s problem for large heights (see Sect. 6.3). Our non-optimality result also
extends to this infinite-height case. Moreover, we reestablished classical results mentioned
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above for this limiting problem. Precisely, we prove that an optimal body in the limiting
problem exists in the class of convex bodies (see Theorem 2). Let � be the unit disc and let
the convex function u : � → [−1, 0] describe the shape of an optimal body for the limiting
problem. Then we show that

– lim(x,y)→∂� u(x, y) = 0 (in fact, this immediately follows from [14, Theorem 2]);
– If ω is an open subset of � and u ∈ C2, then u is not strictly convex on ω (see Sect. 4);
– u is not radially symmetric (see Theorem 5).

2 Notation and preliminaries

Let � ⊂ R
n be a compact convex domain with nonempty interior, i.e., int� �= ∅. For some

fixed height M > 0, we define the class of functions1

CM := {u : � → [−M, 0] | u is convex and closed}.
Note that each u ∈ CM is locally Lipschitz in int� and, therefore, differentiable a.e. Hence,
we can define the objective J : CM → R̄ with R̄ := R ∪ {∞} via

J (u) :=
∫

�

1

|∇u|2 + 1
dx ∧ dy ∀u ∈ CM .

Now, Newton’s problem of least resistance is given by

J (u) → min
u∈CM

. (1)

The classical case considered by Newton uses the unit disc� := {(x, y) ∈ R
2 | x2+ y2 ≤ 1}.

In this case, the problem is rotationally symmetric. Under the additional condition that the
solution is rotationally symmetric as well, Newton was able to solve the problem, see [3].

Buttazzo, Ferone and Kawohl proved in [4] that there exists an optimal solution for any
M > 0 and any � (as above). This solution might not be unique. Indeed, on one hand, in
the classical case, it was shown by [2], that Newton’s rotationally symmetric body is not
a solution in the class CM . On the other hand, it is the unique solution among all bodies
of revolution. Hence, any optimal solution in CM cannot be rotationally symmetric. Since
rotations of any solution to the classical problem are also solutions, a solution cannot be
unique. Moreover, it is clear that the set of solutions depends on the height M .

Let us have a brief look into the existence result of [4]. We introduce the space

W 1,p
loc (�) := {u : � → R | u ∈ W 1,p(K ) for all compact subsets Kof int�},

where p ∈ [1,∞] is arbitrary, and we say that un → u in W 1,p
loc (�) if and only if un → u

in W 1,p(K ) for all compact subsets K of int�. Then, we have the following result, see [4,
Theorem 2.1 and Lemma 2.2].

Lemma 1 For all M > 0 and any p ∈ [1,∞) we have CM ⊂ W 1,p
loc (�). The set CM is

sequentially compact in W 1,p
loc (�), i.e., any sequence (un) ⊂ CM has a subsequence (unk )

with unk → u in W 1,p
loc (�) for some u ∈ CM.Moreover, unk → u everywhere and∇unk → u

a.e. in �. The functional J is sequentially lower semicontinuous on W 1,p
loc (�).

1 We consider only closed (i.e., lower semicontinuous) convex function due to the following two reasons.
First, J (u) = J (cl u) for any convex function u, and hence, cl u is a canonical representative for u in the
Sobolev space W 1,1

loc (�). Second, for closed convex functions, the mentioned result by Plakhov [14] can be
stated in a very nice way: if u ∈ CM is optimal, then u|∂� = 0.
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With this lemma, the existence ofminimizers of (1) follows from the directmethod of calculus
of variations, see [4, Theorem 2.1].

3 The limiting case of infinite height

In this section, we study the limit of optimal solutions as M → ∞. It is easy to see that the
minimum of any optimal solution in CM is −M . Hence, if we want to find the limit shape,
we need to reformulate the problem. Consider the following problem

JM (u) :=
∫

�

1

|∇u(x)|2 + M−2 dx → min
u∈Ĉ

, (2)

where Ĉ = C1 is the set of convex functions u with dom u = � and −1 ≤ u ≤ 0. Note that
we use Ĉ instead of C1 to avoid confusion with the continuously differentiable functions C1.

Obviously, JM (u) = M2 J (M u) and u ∈ Ĉ if and only if M u ∈ CM . Thus, if uM ∈ Ĉ
is an optimal solution to problem (2) then MuM ∈ CM is an optimal solution to problem (1)
and vice versa. Solutions ûM are bounded in �, and we are interested in a limit (in some
sense) of these solutions as M → ∞.

Problem (2) is closely connected with the following problem with limit functional:

J∞(u) =
∫

�

1

|∇u(x)|2 dx → min
u∈Ĉ

. (3)

Again, the existence of minimizers follows from Lemma 1, see [4, Theorem 2.1].
First, let us show how minima in problems (2) and (3) are connected.

Theorem 2 Let p ∈ [1,∞) be given and (uM )M>0 denote a global family of solutions to
problems (2).

For every increasing sequence (Mn)n∈N with Mn → ∞, the sequence (uMn )n∈N possesses

an accumulation point in W 1,p
loc (�). Every such accumulation point is a solution to (3).

Moreover,

lim
M→∞ JM (uM ) = min

u∈Ĉ
J∞(u) < ∞.

Proof Due to uM ∈ Ĉ for allM > 0, Lemma 1 implies the claimed existence of accumulation
points. Now, for any sequence (uMn ) with Mn → ∞ and uMn → û in W 1,p

loc (�), we have
(along a subsequence) ∇uMn → ∇û a.e. in �. Hence, Fatou’s lemma implies

J∞(û) =
∫

�

1

|∇û|2 dx ≤ lim inf
n→∞

∫
�

1

M−2
n + |∇uMn |2

dx = lim inf
n→∞ JMn (uMn )

On the other hand, we trivially have JM (u) ≤ J∞(u) for all M > 0 and u ∈ Ĉ . Hence, the
optimality of uMn implies

∀u ∈ Ĉ J∞(û) ≤ lim inf
n→∞ JMn (uMn ) ≤ lim inf

n→∞ JMn (u) ≤ J∞(u).

This shows that û is a solution to (3).
From JM (u) ≥ JM ′(u) forM ≥ M ′, we get that infu∈Ĉ JM (u) ismonotonically increasing

in M . Hence,

lim
M→∞ JM (uM ) = lim

M→∞ inf
u∈Ĉ

JM (u) ≤ inf
u∈Ĉ

J∞(u) = J∞(û).
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It remains to prove J∞(û) < ∞. Without loss of generality 0 ∈ int�. Consider u(x) =
−1 + |x |/R where R = maxx∈� dist(x, 0). Obviously, u ∈ Ĉ and |∇u(x)| ≡ 1/R (except
for x = 0). Hence, J∞(û) ≤ J∞(u) = R2 area(�) < ∞, since � is compact. ��

In [12], an important subclass EM ⊂ CM for the classical case� = {x2+y2 ≤ 1} ⊂ R
2 is

considered.The subclass EM consists of functions being a convex envelope of δ� and a convex
curve lying in a vertical plane of symmetry (see Sect. 4 in [12] for details). In [12], a family
of functions ũM ∈ EM of special form is constructed. Moreover, it is analytically proved that
ũM is a local minimum for large enough M in EM w.r.t. a certain class of variations, see [12,
Theorem9.1]. It is known that the resistances of analytically found ũM ∈ EM and numerically
found optimal solution ûM in CM (see [8,16]) coincide up to 1% for M = 1.5. In this paper,
we will present a new result on optimality of certain conical parts of the body side boundary,
which allows us investigate the question whether ũM ∈ EM are optimal in CM or not. On the
first glance, they seems to be not optimal, since the numerical results are accurate enough
and give a slightly better values of the resistance functional. But the following question is
much more interesting: does the family ũM ∈ EM is at least asymptotically optimal in CM

for J (see conclusion section in [12]). This question is equivalent to the following: does the
family M−1ũM is asymptotically optimal in Ĉ for JM . Recall that a family (uM ) is called
asymptotically optimal for functional JM as M → ∞ if

lim
M→∞

JM (uM )

infu∈Ĉ JM (u)
= 1.

The following proposition gives a simple way to work with asymptotically optimal fami-
lies, it can be proved analogously to Theorem 2.

Proposition 3 Let p ∈ [1,∞) be given and consider an asymptotically optimal family uM ∈
Ĉ for JM as M → ∞. Then there exists a sequence Mk → ∞ as k → ∞ and u∞ ∈ Ĉ,
uMk → u∞ in W 1,p

loc (�) and u∞ is optimal in Ĉ for limit functional J∞.

This proposition gives us a tool to check if a certain family of bodies is asymptotically
optimal. Together with results in the next section it allows us to investigate the family found
in [12].

4 Properties of solutions to the limiting problem

Suppose that u is a solution of the following problem

J (u) =
∫

�

f (∇u(x)) dx → min
u∈Ĉ

We give a simple proof of the following well known fact (see also [15, Theorem 1]).

Proposition 4 Let x0 ∈ int�. Suppose that f ′′(∇u(x0)) has at least 1 negative eigenvalue
and u is C2 in a neighborhood of x0. Then det u′′(x0) = 0.

Proof First, let x0 be a maximum of u. In this case, u ≡ const , since u is convex and
x0 ∈ int�. Second, let x0 not be a minimum of u, i.e. u(x0) > −1. Suppose the contrary:
let det u′′(x0) > 0. Then u + h ∈ Ĉ , if h ∈ C2, ‖h‖C2 is small enough, and supp h belongs
to a neighborhood of x0 where det u′′ is separated from 0. Hence u is a local minimum
of J under the described variations. Thereby, in the neighborhood, u must satisfy both the
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Euler-Lagrange equation (which is not important for us) and the Legendre condition, since
u(x) ∈ R

1 (see [1,6]). The last one states that the Hessian form f ′′(∇u(x0)) must be non-
negative definite and this is a contradiction. Finally, let x0 be a minimum of u. Again, we
assume det u′′(x0) > 0. Then, we can apply the second part of the proof in a neighborhood
of x0 and obtain det u′′(x) = 0 for all x in a punctured neighborhood of x0. This contradicts
det u′′(x0) > 0. ��

For the limiting problem (3), we have f (p) = |p|−2. Eigenvalues of f ′′(p) are −2|p|−4

and 6|p|−4. Therefore strict convexity of C2 parts is forbidden for optimal solutions.
Similar to the classical Newton’s problem, we are able to prove that solutions to the

limiting problem (3) cannot be radially symmetric.

Theorem 5 Let n = 2 and � = {x21 + x22 ≤ 1}. Then any solution to the limiting problem (3)
is not radially symmetric.

Proof We prove that the problem restricted to radial symmetric solutions is uniquely solvable
and show that the solution has strictly convex smooth parts that contradicts Proposition 4.

Let u(x1, x2) = z(r) where r =
√
x21 + x22 . Then problem (3) becomes

∫ 1

0

r dr

z′2(r)
→ min

z
, z(0) = −1, z(1) = 0, z is convex andmonotone. (4)

This problem is similar to the classical Newton’s problem and can be solved similarly. So let
us find a solution in the class of monotonic functions, and show that it is convex and gives
absolute minimum to problem (4). So,

∫ 1

0

r dr

w2(r)
→ min

z
, z(0) = −1, z(1) = 0, z′(r) = w(r) ≥ 0.

To apply the Pontryagin maximum principle (PMP), we define the Pontryagin function

H = −λ0r

w2 + qw,

where q = q(r) is conjugate to z and λ0 ∈ R is non-negative. Hence q ′ = −Hz = 0 and
q(r) ≡ q0 = const .

Suppose that λ0 = 0, then the optimal w ≥ 0 maximizes q0w due to PMP. Hence q0 < 0
(the case λ0 = q0 = 0 is forbidden by PMP) and w(r) = 0 for all r ∈ [0, 1], which
contradicts to z(1) − z(0) = 1.

So we put λ0 = 1/2 and the PMP gives the following finite dimensional problem

H = − r

2w2 + q0w → max
w≥0

. (5)

This function is concave for w ∈ (0,∞) and goes to −∞ as w → +0. If q0 ≥ 0 there is
no maximum. Hence q0 < 0 and H goes to −∞ also as w → +∞. Hence H achieves its
global maximum at the point where Hw = 0, i.e.,

Hw = r

w3 + q0 = 0 ⇒ w = −(q0r)
1/3.

Therefore z = ar4/3 − x0 where a = − 3
4 (q0)

1/3. Since z(0) = −1 and z(1) = 0, we have a
(convex and monotone) candidate ẑ = r4/3 − 1.
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Let us now prove, that ẑ = r4/3 − 1 is the unique solution to problem (4). Indeed, let z(r)
be an arbitrary convex monotone function with z(0) = −1 and z(1) = 0. Since ŵ = ẑ′ is
global maximum of H , and z′(r) ≥ 0, then

− r

2z′2
+ q0z

′ ≤ − r

2ẑ′2
+ q0 ẑ

′.

Integrating this inequality for r ∈ [0, 1] we obtain

−1

2

∫ 1

0

r dr

2z′2
+ q0(z(1) − z(0)) ≤ −1

2

∫ 1

0

r dr

2ẑ′2
+ q0(ẑ(1) − ẑ(0))

or ∫ 1

0

r dr

2z′2
≥

∫ 1

0

r dr

2ẑ′2
.

So we have proved that û(x1, x2) = (x21 + x22 )
2/3 − 1 is the unique global minimum

of J∞ in the Ĉ subclass of radially symmetric bodies. It remains to compute f ′′(p) for
f (p) = |p|−2 due to Proposition 4. It is easy to check, that f ′′(p) has eigenvalues −2|p|−4

and 6|p|−4. Hence, using Proposition 4 we obtain that the unique global minimum û of J∞
in the Ĉ subclass of radially symmetric bodies cannot be solution to the limiting problem (3).

��
We note that the objective value of the radial solution is given by

2π
∫ 1

0

r

z′(r)2
dr = 9

8
π

∫ 1

0
r1/3 dr = 27

32
π ≈ 2.651.

A simple screwdriver-shape given by the convex hull of�×{0} and the line segment joining
(±a, 0,−1) with a ≈ 0.55527 yields the better value of approx. 2.145.

In the case of finite height, solutions satisfy |∇u(x, y)| ∈ {0}∪[1,+∞) for a.e. (x, y) ∈ �.
This seems not to be true for the solution of the limiting problem. Indeed, we observed
gradients of magnitude approx. 0.9863 in numerical simulations. Detailed results of the
numerical computations might appear elsewhere.

5 Non-optimality of conical parts

In this section, we will prove a non-optimality result for certain conical parts included in the
boundary of the body in the classical situation of a circular base� = {(x, y) ∈ R

2 | x2+y2 ≤
1}. In other words, we will prove that the boundary of an optimal body cannot have certain
conical parts.

We will write δ = M−2 for short. Hence, δ ≥ 0, and the case δ = 0 corresponds to
M = ∞. Therefore,

JM (u) =
∫

�

1

|∇u(x)|2 + δ
dx,

and the function u is normalized, i.e., −1 ≤ u ≤ 0.
We start by considering a simple situation, in which the entire body is just an oblique

circular cone. The base is given by�×{0} and the apex is given by the point P0 = (x0, y0,−1)
with (x0, y0) ∈ int�. We take a different point (x1, y1) ∈ int�. We further take some height
M1 > 0, such that (x1, y1,−M1) lies exactly on the boundary of the cone. Now, for ε > 0 we
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(0 , 0)
(x 0 , y 0 )

(x 1 , y 1)
(x 2 , y2 )

ϕ+

ϕ−

Fig. 1 Visualization of the perturbed surface

consider the perturbed point P1 = (x1, y1,−m) with m = M1 + ε2 (1− M1). The perturbed
body is given by the convex hull of the base � × {0} and the points P0 and P1, see Fig. 1.

In the following, we derive an expansion formula of the resistance of the perturbed body
in terms of the parameter ε. Note that the original cone corresponds to ε = 0.

Since the resistance does not change under rotations and reflections, we can assume
without loss of generality, that the line through the points (x0, y0) and (x1, y1) also contains
the point (1, 0) and that y0 ≥ 0.

The line P0P1 intersects the horizontal plane {z = 0} at the point
(
x2
y2

)
= m

m − 1

(
x0
y0

)
+ 1

1 − m

(
x1
y1

)
.

The perturbed body can be described by the four parameters x0, y0, M1 ∈ (0, 1) and ε > 0,
since the point P1 is given by

x1 = 1 − M1 + x0M1 and y1 = M1y0.

Plugging this into the above equation, we find
(
x2
y2

)
= 1

1 − ε2

(
1 − ε2x0
−ε2y0

)
.

Next, we write the point P2 in polar coordinates, i.e., (x2, y2) = r2 (cos θ2, sin θ2) with

r22 = 1 − 2ε2x0 + ε4(x20 + y20 )

(1 − ε2)2
and θ2 = − arctan

ε2y0
1 − ε2x0

,

wherewe used y2 ≤ 0.We compute someparameters to describe the structure of the perturbed
body. The circle ∂� contains two important points (cosϕ±, sin ϕ±), where ±ϕ± > 0 and
ϕ± → 0 as ε → +0. These are the tangent points of the tangent lines to the unit disc passing
through (x2, y2). The lateral boundary of the body consists of the following parts:

1. A big conic surface with apex (x0, y0,−1) and boundary arc (cosϕ, sin ϕ, 0) for ϕ ∈
[ϕ+, ϕ− + 2π]. Let us compute the total resistance of this surface. We parametrize this
part of the boundary via

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝(1 − λ)x0 + λ cosϕ

(1 − λ)y0 + λ sin ϕ

−(1 − λ)

⎞
⎠ , λ ∈ [0, 1], ϕ ∈ [ϕ+, ϕ− + 2π].
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Note that a normal vector of this surface is given by

n = (
cosϕ sin ϕ x0 cosϕ + y0 sin ϕ − 1

)�
,

hence we have |∇u(x, y)| = 1/(1 − x0 cosϕ − y0 sin ϕ), where (x, y) is linked with
(λ, ϕ) via the above parametrization. For the area of the surface element, we get

dx ∧ dy = λ (1 − x0 cosϕ − y0 sin ϕ) dλ ∧ dϕ.

Hence, the total resistance is given by

R0 =
∫ 1

0
λ dλ

(∫ 2π

0
−

∫ ϕ+

ϕ−

)
1 − x0 cosϕ − y0 sin ϕ

(1 − x0 cosϕ − y0 sin ϕ)−2 + δ
dϕ

= 1

2

(∫ 2π

0
−

∫ ϕ+

ϕ−

)
(1 − x0 cosϕ − y0 sin ϕ)3

1 + δ(1 − x0 cosϕ − y0 sin ϕ)2
dϕ.

2. A small conic surface consisting of the apex (x1, y1,−m) and the boundary arc
(cosϕ, sin ϕ, 0) for ϕ ∈ [ϕ−, ϕ+]. Similarly, we arrive at

R1 = 1

2

∫ ϕ+

ϕ−

(1 − x1 cosϕ − y1 sin ϕ)3

m2 + δ(1 − x1 cosϕ − y1 sin ϕ)2
dϕ.

3. Two triangles with vertices (x0, y0,−1), (x1, y1,−m) and (cosϕ±, sin ϕ±, 0). On these
triangles we have ∇u± = 1/(1 − x0 cosϕ± − y0 sin ϕ±). The areas of their projections
onto the plane {z = 0} are

S± = ±1

2
det

[
cosϕ± − x0 cosϕ± − x1
sin ϕ± − y0 sin ϕ± − y1

]
.

Hence, the total resistance of the perturbed body is given by the expression

R(ε) = R0 + R1 + S+
|∇u+|2 + δ

+ S−
|∇u−|2 + δ

.

In what follows, we will derive an asymptotic expansion of R as ε ↘ 0. Note that the
resistance of the unperturbed body is given by

R(0) = R0(0) = 1

2

∫ 2π

0

(1 − x0 cosϕ − y0 sin ϕ)3

1 + δ(1 − x0 cosϕ − y0 sin ϕ)2
dϕ.

It is easy to see that

ϕ± = θ2 ± arccos
1

r2
= − arctan

ε2y0
1 − ε2x0

± arccos
1 − ε2√

1 − 2ε2x0 + ε4(x20 + y20 )
.

This right-hand side cannot be used to obtain an expansion of ϕ±, since the argument of
arccos goes to 1 as ε ↘ 0. Nonetheless, by using the addition theorems for cosine and sine,
a straightforward computation gives

cosϕ± =
(1 − x0ε2)(1 − ε2) ± y0ε3

√
2(1 − x0) − (1 − x20 − y20 )ε

2

1 − 2ε2x0 + ε4(x20 + y20 )
,

sin ϕ± =
±(1 − x0ε2)ε

√
2(1 − x0) − (1 − x20 − y20 )ε

2 − y0(1 − ε2)ε2

1 − 2ε2x0 + ε4(x20 + y20 )
.
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Using the last formula, we see that ±ϕ± = ε
√
2 (1 − x0) + O(ε2) as ε → +0. Note that

ϕ± were initially defined for ε ≥ 0. However, they are analytic functions of ε ≥ 0 as arcsin
is analytic. Hence, we are able to extend their domains for ε < 0 by analyticity. Both ϕ+ and
ϕ− become analytic functions of ε around 0. Moreover, ϕ+(−ε) = ϕ−(ε)

First, let us compute expansions for the integrals appearing in R0 and R1. Using the
Leibniz integral rule, we arrive at

1

2

∫ ϕ+(ε)

ϕ−(ε)

(1 − x0 cosϕ − y0 sin ϕ)3

1 + δ(1 − x0 cosϕ − y0 sin ϕ)2
dϕ =

√
2(1 − x0)7/2

1 + δ(1 − x0)2
ε + O(ε2). (6)

Similarly, using m = M1 + ε2(1 − M1), the following expansion can be computed by
converting the fraction under the integral into a Taylor series

1

2

∫ ϕ+(ε)

ϕ−(ε)

(1 − x1 cosϕ − y1 sin ϕ)3

m2 + δ(1 − x1 cosϕ − y1 sin ϕ)2
dϕ

= 1

2

∫ ϕ+(ε)

ϕ−(ε)

(1 − x1 cosϕ − y1 sin ϕ)3

M2
1 + δ(1 − x1 cosϕ − y1 sin ϕ)2

dϕ + O(ε2)

=
√
2(1 − x0)1/2(1 − x1)3

M2
1 + δ(1 − x1)2

+ O(ε2) = M1
√
2(1 − x0)7/2

1 + δ(1 − x0)2
ε + O(ε2).

(7)

In the last step, we used 1 − x1 = M1(1 − x0). Moreover, both integrals are odd analytic
function of ε, since ϕ+(−ε) = ϕ−(ε) and the integrand in (7) is an even function w.r.t. ε.
Hence, the remainder terms in (6) and (7) are actually O(ε3).

Second, we consider the triangles. Using again ϕ+(−ε) = ϕ−(ε), we have ∇u+(−ε) =
∇u−(ε) and S+(−ε) = −S−(ε). Hence, S+

|∇u+|2+δ
+ S−

|∇u−|2+δ
is an odd function of ε. To

expand ∇u± = 1/(1 − x0 cosϕ± − y0 sin ϕ±), we use

1 − x0 cosϕ± − y0 sin ϕ±

=
1 − x0 ∓ y0ε

√
2(1 − x0) − (1 − x20 − y20 )ε

2 + (x20 + y20 − x0)ε2

1 − 2ε2x0 + ε4(x20 + y20 )

= 1 − x0 ∓ y0
√
2(1 − x0) + O(ε2) (8)

and

S± = 1

2
(1 − M1)(1 − x0)

√
2(1 − x0) ε + O(ε2). (9)

Thus,

S±
|∇u±|2 + δ

= (1 − M1)(1 − x0)7/2√
2(δ(1 − x0)2 + 1)

ε + O(ε2),

and

S+
|∇u+|2 + δ

+ S−
|∇u−|2 + δ

=
√
2(1 − M1)(1 − x0)7/2

δ(1 − x0)2 + 1
ε + O(ε3). (10)

By combining (6), (7) and (10), we have

R(ε) − R(0) = O(ε3).

Hence, a first-order Taylor expansion ofR does not yield enough information and we have
to use a higher order Taylor expansion. As we mentioned, R(ε) is odd analytic in ε. Thus,
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also the second-order term vanishes and the third-order term can be computed in a similar
way by expanding (6)–(10) up to the ε3 terms. We arrive at

R(ε) − R(0)

(1 − x0)5/2
= 4(1 − M1)

√
2

3(1 + δ(1 − x0)2)3
·

× [
3y20 − (1 − x0)

2 − δ(1 − x0)
2((1 − x0)

2 + y20 )
]
ε3 + O(ε5).

Thereby, since ε > 0, we obtain that the sign of the variation of the resistance coincides
with the sign of the expression

3y20 − (1 − x0)
2 − δ(1 − x0)

2((1 − x0)
2 + y20 ),

in case that this expression is not zero. It is interesting to note that the parameter M1 does not
appear. Recall that we were assuming that the line through the points (x0, y0) and (x1, y1)
also contains the point (1, 0) and that y0 ≥ 0. For an arbitrary case, we must rotate and reflect
the body.

Theorem 6 Let u ∈ Ĉ and δ ≥ 0. Suppose that u contains a conical part made up by
the convex hull of a vertex (x0, y0,−z0) (z0 > 0 and (x0, y0) = (r0 cosϕ0, r0 sin ϕ0) with
0 ≤ r0 < 1) and an arc (cosϕ, sin ϕ, 0) ∈ ∂� for ϕ ∈ [α, β] with α < β. If there exists
ϕ ∈ [α, β] such that

3r20 sin
2(ϕ − ϕ0) − [1 − r0 cos(ϕ − ϕ0)]2

[1 − r0 cos(ϕ − ϕ0)]2[1 + r20 − 2r0 cos(ϕ − ϕ0)]
< δz−2

0 . (11)

Then u is not optimal for JM with M = δ−1/2 for δ > 0 and M = ∞ for δ = 0

Proof The left-hand side of (11) is continuous w.r.t. ϕ. Thus, w.l.o.g., we suppose ϕ ∈ (α, β).
In order to apply the above arguments, we rotate and rescale the function u via ũ(x, y) =
u(x cosϕ + y sin ϕ,−x sin ϕ + y cosϕ)/z0. Then, JM (u) = z−2

0 Jz0M (ũ). The function ũ
contains a conical part made up by the apex (X0, Y0,−1) with

X0 = x0 cosϕ + y0 sin ϕ = r0 cos(ϕ − ϕ0);
Y0 = −x0 sin ϕ + y0 cosϕ = r0 sin(ϕ − ϕ0);

and an arc on the unit circle ∂�×{0} containing point (1, 0, 0) in its interior. Hence, applying
the variation described in the beginning of the present section to ũ, we obtain that the change
of the cost functional Jz0M (ũ) has the same sign as2

3Y 2
0 − (1 − X0)

2 − δ̃(1 − X0)
2((1 − X0)

2 + Y 2
0 )

where δ̃ = (Mz0)−2 = δ z−2
0 . Due to (11), the variation has a negative sign. Hence, ũ is not

optimal for Jz0 M and, consequently, u is not optimal for JM . ��
We denote the left-hand side of inequality (11) by Z0(r0,
ϕ), where 
ϕ = ϕ − ϕ0. In

case δ = 0, non-optimality occurs if Z0(r0,
ϕ) < 0. In case δ > 0, the condition (11) is
equivalent to

Mz0 <

{
∞ if Z0(r0,
ϕ) ≤ 0

Z0(r0,
ϕ)−1/2 if Z0(r0,
ϕ) > 0.

In Fig. 2, we plotted some level sets of Z0(r0,
ϕ)−1/2 and the level set Z0(r0,
ϕ) = 0
(labeled with ∞) in the polar coordinates (r0,
ϕ).

2 If Y0 < 0 we should also reflect the body, i.e., replace ũ(x, y) by ũ(x, −y) to have Y0 ≥ 0 as we assumed.
The reflection changes Y0 to −Y0 and, hence, the following formula remains unchanged.
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0.25

0.25

0.5

0.5

1.0

1.0

∞

∞

Fig. 2 This shows some level sets of the function Z0(r0, 
ϕ)−1/2, see (11), in the polar coordinate system
(r0, 
ϕ)

Theorem 6 applies to the rescaled version of Newton’s problem. For later reference, we
also give a formulation which can be directly applied to the original problem (1).

Corollary 7 Let M ≥ 0 and u ∈ CM be given. Suppose that u contains a conical part made
up by the convex hull of a vertex (x0, y0,−z0) (z0 > 0 and (x0, y0) = (r0 cosϕ0, r0 sin ϕ0)

with 0 ≤ r0 < 1) and a boundary arc (cosϕ, sin ϕ, 0) ∈ ∂� for ϕ ∈ [α, β] with α < β. If
there exists ϕ ∈ [α, β] such that

3r20 sin
2(ϕ − ϕ0) − [1 − r0 cos(ϕ − ϕ0)]2

[1 − r0 cos(ϕ − ϕ0)]2[1 + r20 − 2r0 cos(ϕ − ϕ0)]
< z−2

0 . (12)

Then u is not optimal for J .

6 Non-optimality in the class of all convex function of suggested
solutions in the literature

In this section, we apply Corollary 7 to some conjectured solutions. In particular, we address
the contributions [10,12,16].
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6.1 Conjectured solutions by Lachand–Robert and Peletier (2001)

Weproceed in chronological order and start with the bodies given in [10]. Therein, the authors
studied Newton’s problem in a restricted class of functions and obtained bodies which are
the convex hull of �×{0}∪ N0 ×{−M}, where N0 ⊂ R

2 is a regular polygon centered at 0.
We note that the (global) non-optimality of these bodies was already observed in [8,16] via
the comparison with the numerical solutions. We will check that the (local) non-optimality
also follows from Corollary 7. Let us assume that N0 is a regular polygon with k ≥ 2 vertices
and we rotate N0 such that one vertex is given by (x0, 0) for some x0 ∈ (0, 1). Then, it is
clear that the body contains a conical part with parameters

(x0, y0, z0) = (x0, 0,−M) = (r0 cosϕ0, r0 sin ϕ0,−M) r0 = x0,

ϕ0 = 0, β = −α = π/k.

The body with M = 1.0 is shown in Fig. 3 (top left).
Now, it is easy to check that the left-hand side of inequality (12) is negative for ϕ = 0 ∈

(α, β) and, therefore, (12) holds true.
Hence, the bodies suggested byLachand-Robert andPeletier (2001) [10] cannot be optimal

for any value of M > 0 and k ≥ 2.

6.2 Conjectured solutions byWachsmuth (2014)

Next,we investigate the structural conjecture from [16, Sect. 3]where the author has supposed
that optimal bodies for a height M ∈ (0, M̄), with M̄ ∈ (1.4, 1.5), have the following
structure. There exists k ∈ N, k ≥ 3, and a convex function g : [0, 1] → [−M, 0], g(0) =
−M , g(1) = 0, such that the optimal body is the convex hull of the set

∂� × {0} ∪ {(r cos(2 i ϕ), r sin(2 i ϕ), g(r)), i = 0, . . . , k − 1, r ∈ [0, 1]},
where ϕ = π/k. Examples with M = 1.0 and M = 0.9 are depicted in Fig. 3 (top right and
middle left). The extremal lines

{(r cos(2 i ϕ), r sin(2 i ϕ), g(r)), i = 0, . . . , k − 1, r ∈ [0, 1]}
are highlighted in blue. Under some natural assumptions on g, the problem becomes a one-
dimensional problem of calculus of variations and can be solved for g by the corresponding
Euler-Lagrange equations. The obtained class of solutions contains a conical part (denoted
by Region II therein), see [16, Figure 6] and Fig. 3 (middle left). However, for the results pre-
sented in [16, Table 3] (reproduced and extended in Table 1), only the solution corresponding
to M = 1.0 (the height parameter is denoted by L in [16]) and symmetry parameter k = 3
(denoted by m in [16]) contains this conical part and for all other presented solutions, this
conical part vanishes. Moreover, it can be checked that Corollary 7 applies to this solution
with M = 1.0 and k = 3. Hence, the structural conjecture of [16] cannot be true for this
height M = 1.0.

The (non-optimal) body from [16, Sect. 3] with (M, k) = (1.0, 3) is displayed in Fig. 3
(middle left). Note that the conical parts are rather small.We believe that the non-optimality of
this body is (informally speaking) only due to these small conical parts. Therefore, we expect
that the objective value can be improved only by a small amount and this seems to be hard to
achieve via numerical methods. We also show the body corresponding to (M, k) = (0.9, 3)
(top right) which has a larger conical part.
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Fig. 3 Illustration of conjectured solutions (shown upside down) containing non-optimal conical parts (high-
lighted red): [10] with M = 1.0 (top left), [16] with (M, k) = (0.9, 3) (top right) and with (M, k) = (1.0, 3)
(middle left), [12] with M = 1.5 (middle right), M = 5.0 (bottom left), M = ∞ (bottom right). The bodies
in the bottom row are rescaled to height 1.0, cf. (2). All the bodies are constructed as the convex hull of the
blue points and the base � × {0}

In Table 1, we present an updated3 and completed version of [16, Table 3].
In this table, the best solution in each row is given in bold face, i.e. for each height parameter

M . Note that for M = 1.5 a better solution was obtained numerically in [16, Sect. 2] whereas
for M ≤ 0.3 a structured solution with k = 9 produces better values than the solutions given
in the table. Hence, we do not highlight solutions in the lines corresponding to M = 1.5 and
M ≤ 0.3.

3 There is one significant difference to [16, Table 3]: the given objective value corresponding to M = 1.0
and k = 3 was suboptimal and has been corrected in Table 1.
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Table 2 Similar as Table 1, but
for different values of M and k.

M/k 3 4

1.10 1.0277294 1.0335975

1.09 1.0381352 C 1.0437014

1.08 1.0486688 CN 1.0539240

1.07 1.0593317 CN 1.0642667

1.06 1.0701256 CN 1.0747311

1.05 1.0810520 CN 1.0853184

1.04 1.0921125 CN 1.0960303

1.03 1.1033089 CN 1.1068681

1.02 1.1146427 CN 1.1178333

1.01 1.1261157 CN 1.1289274

1.00 1.1377294 CN 1.1401510

0.99 1.1494856 CN 1.1515072

0.98 1.1613861 CN 1.1629969

0.97 1.1734324 CN 1.1746215

0.96 1.1856264 CN 1.1863837

0.95 1.1979697 CN 1.1982830

0.94 1.2104642 CN 1.2103218

0.93 1.2231117 CN 1.2225019

0.92 1.2359138 CN 1.2348243

0.91 1.2488725 CN 1.2472919

0.90 1.2619895 CN 1.2599052

The minimal (conjectured) solutions for each M are Bold

For each solution presented in Table 1, we checkedwhether this solution contains a conical
part (indicated by “C”) and whether Corollary 7 applies to this conical part and provides the
non-optimality (indicated by “N”). For each fixed k it seems that conical parts appear for
small values of M (depending on k) and that, eventually, this conical part becomes non-
optimal. However, for k ≥ 4 the non-optimality appears only for “very small” values of M
and for these values, k + 1 provides a better solution. Hence, for M ≤ 0.9 (and, therefore,
k ≥ 4) we cannot apply Corollary 7 and we cannot disprove the conjecture of [16, Sect. 3].
For M between 1.0 and 1.4 the situation is different. Here, the best results (according to the
structural conjecture of [16, Sect. 3]) are obtained by k = 3 and these contain non-optimal
conical parts for heights M that are smaller than approximately 1.0. In particular, we can
apply Corollary 7 for the height M = 1.0 and therefore, the conjecture of [16, Sect. 3] is
disproved for this value. For M bigger than 1.1, the solutions with k = 3 do not contain
conical parts and therefore, we cannot disprove the conjecture for M between 1.1 and 1.4.

In Table 2, we list some more values for M ∈ [0.9, 1.1] and k ∈ {3, 4}.
This table suggests the following observations:

– ForM ≥ 1.09, the bodies conjectured in [16, Sect. 3] might be optimal since these bodies
do not contain conical parts or their conical parts do not satisfy Corollary 7.

– For M ∈ [0.95, 1.08], the conjectured optimal bodies contain a non-optimal conical part
and, therefore, the structural conjecture of [16, Sect. 3] is disproved for these values of
M .
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– For M ∈ [0.90, 0.94], our non-optimality result does not apply to the conjectured bodies
with k = 4 and these bodies possess better values than those with k = 3. However, the
bodies with symmetry parameter k = 3 are not locally optimal in CM by Corollary 7.
It is also clear that our variation from Sect. 5 can be modified to produce bodies with a
threefold symmetrywhich possess smaller objective values than those indicated inTable 2
for k = 3. In particular, these improved values could be smaller than the corresponding
values with k = 4 from Table 2 and this would disprove the structural conjecture of [16]
for some values of M around 0.94. This is subject to future research.

To summarize, Corollary 7 disproves the conjectured bodies from [16, Sect. 3] at least for
M ∈ [0.95, 1.08], see Table 2. It does not apply for M ≤ 0.94 and M ∈ [1.09, 1.4], and for
these values, the conjecture might be true.

6.3 Conjectured solutions by Lokutsievskiy and Zelikin (2020)

In [12], the authors study the class EM of convex bodies of height M which can be written
as the convex hull of the union of the base � × {0} and of a convex curve z = v∗(x1) in
the plane {x2 = 0} (we keep notations of [12], and v∗ denotes the Legendre-Young-Fenchel
transform of a convex function v). We note that this approach is similar to Sect. 6.2 with
k = 2. The authors proved local optimality of such bodies in the corresponding class (see
[12, Theorem 9.1]).

In this paper, there is a table with numerically found parameters of the locally optimal
curve v∗ for some different values of the height M (see [12, Table 1]). The solution v∗ has a
horizontal line segment in the front of the body, since v has a corner at 0. It can be checked
that all the bodies from the table contain a conical part. Exemplarily, we have shown the
bodies corresponding to M = 1.5 in Fig. 3 (middle right) and to M = 5.0 (rescaled to height
1.0, bottom left). The conical part is given by the vertex (x0, y0, z0) = (v′(+0), 0,−M) and
the arc with angles [α, β] = [π/2 − ε, π/2] for some4 ε > 0. Now, it is easily checked that
inequality (12) from Corollary 7 is fulfilled for r0 = v′(+0), ϕ0 = 0, ϕ = β = π/2 and
z0 = M . Therefore, this conical part is always non-optimal in the class CM of all convex
bodies. Hence, it seems that the optimal bodies in the class EM are never optimal in CM .

A similar approach can be used for the limiting problem of minimizing J∞ in the class
E1. Using the same strategy, one obtains the values (with the notation of [12])

p0 ≈ 3.167203701258, r(p0) ≈ 0.3451623687826,

v′(+0) ≈ 0.5300674211893, J∞(u) ≈ 2.140225047120.

The corresponding body is shown in Fig. 3 (bottom right). Again, this body has a conical
part (with ε ≈ 0.296085), which is non-optimal by Corollary 7.

Thus, the minimizers of J∞ in Ĉ do not belong to E1. Hence, the family found in [12]
cannot be asymptotically optimal for J in CM by Proposition 3 despite the fact that it is
locally optimal in EM by [12, Theorem 9.1].
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