
Calc. Var. (2019) 58:57
https://doi.org/10.1007/s00526-019-1499-y Calculus of Variations

Fractional Kirchhoff problems with critical Trudinger–Moser
nonlinearity
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Abstract
This paper is concernedwith the existence of solutions for a class of fractional Kirchhoff-type
problems with Trudinger–Moser nonlinearity:

⎧
⎨

⎩

M

(∫∫

R2N

|u(x) − u(y)|N/s

|x − y|2N dxdy

)

(−�)sN/su = f (x, u) in �,

u = 0 in R
N\�,

where (−�)sN/s is the fractional N/s-Laplacian operator, N ≥ 1, s ∈ (0, 1), � ⊂ R
N is

a bounded domain with Lipschitz boundary, M : R+
0 → R

+
0 is a continuous function, and

f : � × R → R is a continuous function behaving like exp(αt2) as t → ∞ for some
α > 0. We first obtain the existence of a ground state solution with positive energy by using
minimax techniques combined with the fractional Trudinger–Moser inequality. Next, the
existence of nonnegative solutions with negative energy is established by using Ekeland’s
variational principle. The main feature of this paper consists in the presence of a (possibly
degenerate) Kirchhoff model, combined with a critical Trudinger–Moser nonlinearity.
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1 Introduction andmain results

In this paper, we study the following fractional Kirchhoff-type problem:
⎧
⎨

⎩

M

(∫∫

R2N

|u(x) − u(y)|N/s

|x − y|2N dxdy

)

(−�)sN/su = f (x, u) in �,

u = 0 in R
N\�,

(1.1)

where N ≥ 1, s ∈ (0, 1), � ⊂ R
N is a bounded domain with Lipschitz boundary, M :

[0,∞) → [0,∞) is a continuous function, f : � × R → R is a continuous function

behaving like exp(α|t | N
N−s ) as t → ∞ for some α > 0, and (−�)sN/s is the fractional

N/s-Laplacian operator which, up to a normalization constant, is defined as

(−�)sN/sϕ(x) = 2 lim
ε→0+

∫

RN\Bε(x)

|ϕ(x) − ϕ(y)| Ns −2(ϕ(x) − ϕ(y)

|x − y|2N dy, x ∈ R
N ,

along functions ϕ ∈ C∞
0 (RN ). Throughout this paper, Bε(x) denotes the ball inRN centered

at x ∈ R
N with radius ε > 0.

To study the existence of solutions for problem (1.1), let us recall some results related to
the fractional Sobolev space Ws,p

0 (�). Let 1 < p < ∞ and set

Ws,p
0 (�) =

{
u ∈ L p(�) : [u]s,p < ∞, u = 0 a.e. in R

N\�
}

,

where the Gagliardo seminorm [u]s,p is defined as

[u]s,p =
(∫∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

.

Equipped with the norm

‖u‖ := [u]s,p,
Ws,p

0 (�) is a uniformly convex Banach space, and hence reflexive, see [38] for more details.
The fractional critical exponent is defined by

p∗
s =

⎧
⎨

⎩

Np

N − sp
if sp < N ;

∞ if sp ≥ N .

Moreover, the fractional Sobolev embedding theorems states that Ws,p
0 (�) ↪→ L p∗

s (�) is
continuous if sp < N and Ws,p

0 (�) ↪→ Lq(�) is continuous for all p ≤ q < ∞ if sp = N .
For more detailed account on the properties of Ws,p

0 (�), we refer to [10].
In recent years, great attention has been paid to study problems involving fractional opera-

tors. In particular, many works focus on the subcritical and critical growth of the nonlinearity
which allows us to treat the problem variationally using general critical point theory. Prob-
lems like (1.1) are important in many fields of science, notably continuum mechanics, phase
transition phenomena, population dynamics, minimal surfaces and anomalous diffusion, as
they are the typical outcome of stochastically stabilization of Lévy processes, see [1,4,21]
and the references therein. Moreover, such equations and the associated fractional operators
allow us to develop a generalization of quantum mechanics and also to describe the motion
of a chain or an array of particles that are connected by elastic springs as well as unusual
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Fractional Kirchhoff problems with critical Trudinger–Moser… Page 3 of 27 57

diffusion processes in turbulent fluid motions and material transports in fractured media, for
more details see [4,5] and the references therein.

Recently, some authors have paid considerable attention in the limiting case of the frac-
tional Sobolev embedding, commonly known as the Trudinger–Moser case. For example,
when n = 2, W 1,2(�) ↪→ Lr (�) for 1 ≤ r < ∞ but W 1,2(�) 
↪→ L∞(�). To fill this gap,
Trudinger [37] proved that that there exists τ > 0 such that W 1,2

0 (�) is embedded into the
Orlicz space Lφτ (�) determined by the Young function φτ = exp(τ t2−1). After that, Moser
[25] found the best exponent τ and in particular he obtained a result which is now referred
as Trudinger–Moser inequality. In [24], Martinazzi proved that for each u ∈ Ws,N/s

0 (�) and
α > 0, there holds

∫

�

exp
(
α|u| N

N−s

)
dx < ∞.

Moreover, there exist positive constants

αN ,s = N

ωN−1

(
�((N − s)/2)

�(s/2)2sπN/2

)− N
N−s

,

were ωN−1 be the surface area of the unit sphere in RN and CN ,s depending only on N and
s such that

sup
u∈Ws,N/s

0 (�)

[u]s,N/s≤1

∫

�

exp
(
α|u| N

N−s

)
dx ≤ CN ,s |�|, (1.2)

for all α ∈ [0, αN ,s] and there exists a∗
N ,s ≥ αN ,s such that the supremum in (1.2) is ∞

for α > αN ,s . For more details about Trudinger–Moser inequality, we also refer to [19,30].
When N 
= 1 and s 
= 1/2, it is still an open problem whether a∗

N ,s = αN ,s or not. However,

for N = 1 and s = 1/2, one can calculate that αN ,s = α∗
N ,s = 2π2 and there exists C > 0

such that

sup

u∈W
1
2 ,2
0 (�)

[u]1/2,2≤1

∫

�

exp(αu2)dx ≤ C |�|, (1.3)

for all α ∈ [0, 2π2] and the supremum in (1.3) is ∞ for α > 2π2.
In the setting of the fractional Laplacian, Iannizzotto and Squassina [17] investigated

existence of solutions for the following Dirichlet problem
{

(−�)
1
2 u = f (u) in (0, 1),

u = 0 in R\(0, 1), (1.4)

where f (u) behaves like exp(α|u|2) as u → ∞. Using the mountain pass theorem, they
obtained the existence of solutions for problem (1.4). Subsequently, Giacomoni, Mishra and
Sreenadh [16] studied themultiplicity of solutions for problems like (1.4) by using the Nehari
manifold method. Very recently, Perera and Squassina [32] studied the bifurcation results for
the following problem with Trudinger–Moser nonlinearity

{
(−�)sN/su = λ|u|(N−2s)/s exp(|u|N/(N−s)) in �,

u = 0 in R
N\�,

where λ > 0 is a parameter.
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For unbounded domains and the general fractional p-Laplacian, Souza [12] considered
the following nonhomogeneous fractional p-Laplacian equation

(−�)spu + V (x)|u|p−2u = f (x, u) + λh in R
N , (1.5)

where (−�)sp is the fractional p-Laplacian and the nonlinear term f satisfies exponential
growth. The author obtained a nontrivial weak solution of the Eq. (1.5) by using fixed point
theory. Li and Yang [22] studied the following equation

(−�)ζpu + V (x)|u|p−2u = λA(x)|u|q−2u + f (u) x ∈ R
N,

where p ≥ 2, 0 < ζ < 1, 1 < q < p, λ > 0 is a real parameter, A is a positive function in

L
p

p−q (RN ), (−�)
ζ
p is the fractional p-Laplacian and f satisfies exponential growth.

On the other hand, Li and Yang [23] studied the following Schrödinger-Kirchhoff type
equation

(∫

RN
(|∇u|N+V (x)|u|N )dx

)k

(−�Nu+V (x)|u|N−2u) = λA(x)|u|p−2u + f (u) in R
N ,

(1.6)

where�Nu = div(|∇u|N−2∇u) is the N -Laplacian, k > 0,V : RN → (0,∞) is continuous,

λ > 0 is a real parameter, A is a positive function in L
p

p−q (RN ) and f satisfies exponential
growth. By using the mountain pass theorem and Ekeland’s variational principle, the authors
obtained two nontrivial solutions of (1.6) as the parameter λ small enough. Actually, the
study of Kirchhoff-type problems, which arise in various models of physical and biological
systems, have received more and more attention in recent years. More precisely, Kirchhoff
[18] established a model governed by the equation

ρ
∂2u

∂t2
−

(
p0
h

+ E

2L

∫ L

0

∣
∣
∣
∣
∂u

∂x

∣
∣
∣
∣

2

dx

)
∂2u

∂x2
= 0, (1.7)

for all x ∈ (0, L), t ≥ 0, where u = u(x, t) is the lateral displacement at the coordinate x
and the time t , E is the Young modulus, ρ is the mass density, h is the cross-section area, L is
the length and p0 is the initial axial tension. Equation (1.7) extends the classical D’Alembert
wave equation by considering the effects of the changes in the length of the strings during
the vibrations. Recently, Fiscella and Valdinoci [14] proposed a stationary Kirchhoff model
driven by the fractional Laplacian by taking into account the nonlocal aspect of the tension,
see [14, Appendix A] for more details.

In particular, when s → 1 and M ≡ 1, problem (1.1) becomes
{

−�Nu = f (x, u) in �,

u = 0 in R
N\�,

which studied by many authors by using variational methods, see for example, [9,11,15,20].
Here �Nu = div(|∇u|N−2∇u) is the N -Laplacian. When s → 1, problem (1.1) becomes

⎧
⎨

⎩

−M

(∫

RN
|∇u(x)|Ndx

)

�Nu = f (x, u) in �,

u = 0 in R
N\�,

(1.8)

In [13], Figueiredo and Severo studied problem (1.8) with N = 2, and the existence of ground
state solution obtained by using minimax techniques with the Trudinger–Moser inequality.

123



Fractional Kirchhoff problems with critical Trudinger–Moser… Page 5 of 27 57

Inspired by the above works, especially by [15,28], we are devoted to the existence of
ground state solution of (1.1) and overcome the lack of compactness due to the presence of
exponential growth terms as well as the degenerate nature of the Kirchhoff coefficient. To
the best of our knowledge, there are no results for (1.1) in such a generality.

Throughout the paper, without explicit mention, we assume that M : R
+
0 → R

+
0 is a

continuous function with M(0) = 0, and verifies

(M1) for any d > 0 there exists κ := κ(d) > 0 such that M(t) ≥ κ for all t ≥ d;

(M2) there exists θ > 1 such that
M(t)

tθ−1 is nonincreasing for t > 0;

(M3) for any t1, t2 ≥ 0 there holds

M (t1) + M (t2) ≤ M (t1 + t2).

Remark 1.1 By (M2), we can obtain that

θM (t) − M(t)t is nondecreasing for t > 0,

where M (t) = ∫ t
0 M(τ )dτ . Indeed, for any 0 < t1 < t2,

θM (t1) − M(t1)t1 = θM (t2) − θ

∫ t2

t1
M(t)dt − M(t1)

tθ−1
1

tθ1

≤ θM (t2) − M(t2)

tθ−1
2

(tθ2 − tθ1 ) − M(t2)

tθ−1
2

tθ1

= θM (t2) − M(t2)t2,

thanks to assumption (M2). Thus, θM (t) − M(t)t is nondecreasing for t > 0. In particular,
we have

θM (t) − M(t)t ≥ 0, ∀t ≥ 0. (1.9)

A typical example of M is given by M(t) = a0 + b0 tθ−1 for all t ≥ 0 and some
θ > 1, where a0, b0 ≥ 0 and a0 + b0 > 0. When M is of this type, problem (1.1) is
said to be degenerate if a = 0, while it is called non-degenerate if a > 0. Recently, the
fractional Kirchhoff problems have received more and more attention. Some new existence
results of solutions for fractional non-degenerate Kirchhoff problems are given, for example,
in [33,34,38]. On some recent results concerning about the degenerate case of Kirchhoff-
type problems, we refer to [3,6,7,26,27,35,39–41] and the references therein. It is worth
mentioning that the degenerate case is rather interesting and is treated in well–known papers
in Kirchhoff theory, see for example [8]. In the large literature on degenerate Kirchhoff
problems, the transverse oscillations of a stretched string, with nonlocal flexural rigidity,
depends continuously on the Sobolev deflection norm of u via M(‖u‖2). From a physical
point of view, the fact that M(0) = 0 means that the base tension of the string is zero, a very
realistic model.

Throughout the paper we assume that the nonlinear term f : � ×R → Ris a continuous
function, with f (x, t) ≡ 0 for t ≤ 0 and x ∈ �. In the following, we also require the
following assumptions ( f1) − ( f6):

( f1) there exists α0 > 0 such that,

lim
t→∞ f (x, t) exp(−α|t |N/(N−s)) =

{
0, ∀α > α0,

∞, ∀α < α0,

uniformly in �;
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57 Page 6 of 27 X. Mingqi et al.

( f2) there exist constants t0, K0 > 0 such that

F(x, t) ≤ K0 f (x, t), ∀ (x, t) ∈ � × [t0,∞),

where F(x, t) = ∫ t
0 f (x, τ )dτ ;

( f3) limt→0+
f (x, t)

t
θN
s −1

< θM (1)λ∗ uniformly for x in �, where

λ∗ := inf
u∈Ws,N/s

0 (�)\{0}
‖u‖Nθ/s

‖u‖N/s
LN/s (�)

> 0,

see [42] for more details;

( f4) there exists β0 >
sM

(
αN ,s
α0

)
αN ,s
α0

N R0
such that

lim
t→∞

f (x, t)t

exp(α0|t | N
N−s )

≥ β0 uniformly in x ∈ �,

where R0 is the radius of the largest open ball contained in �;

( f5) for each x ∈ �,
f (x, t)

t
θN
s −1

is increasing for t > 0;

( f6) there exists 0 ≤ ψ ∈ Ws,N/s
0 (�) such that ‖ψ‖ = 1 and

sup
t∈R+

(
s

N
M (t N/s) −

∫

�

F(x, tψ)dx

)

<
s

N
M

(
αN ,s

α0

)

.

An example of function f satisfying ( f1) − ( f5) with α0 = 1 is given by

F(x, t) = sM (1)λ∗

2N
t
Nθ
s + t

Nθ
s − s

N−s

[
exp(t N/(N−s)) − 1

]
, ∀t > 0.

In fact, by a simple calculation, one can verify that

f (x, t) = θM (1)λ∗

2
t
Nθ
s −1 +

(
Nθ

s
− s

N − s

)

t
Nθ
s − N

N−s

[
exp(t N/(N−s)) − 1

]

+ N

N − s
t
Nθ
s exp(t N/(N−s)),

Moreover, f (x, t)/t Nθ/s−1 is increasing for all t > 0, and

lim
t→∞

F(x, t)

f (x, t)
= 0, lim

t→∞
f (x, t)t

exp(t N/(N−s))
= ∞.

uniformly in x ∈ �.

Remark 1.2 We say that f satisfies exponential critical growth at ∞ if ( f1) holds. Moreover,
we observe that ( f2) implies

F(x, t) ≥ F(x, t0) exp(K0(t − t0)), ∀(x, t) ∈ � × [t0,∞),

which is reasonable for the nonlinear term f (x, t) behaving like exp(α0|t |N/(N−s)) at infinity.
Moreover, by ( f2), for each μ > 0, there exists Cμ > 0 such that

μF(x, t) ≤ t f (x, t), ∀(x, t) ∈ � × [Cμ,∞). (1.10)
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Remark 1.3 If N = 1 and s = 1/2, then ( f4) reduces to:

( f ′
4) there exists β0 >

M
(
2π2
α0

)
2π2
α0

b−a such that

lim
t→∞

f (x, t)t

exp(α0t2)
≥ β0 uniformly in x ∈ � := (a, b),

where a < b.

Remark 1.4 Using ( f5) and the similar discussion as Remark 1.1, one can deduce that for
each x ∈ �,

t f (x, t) − Nθ

s
F(x, t) is increasing for t > 0.

In particular, t f (x, t) − Nθ
s F(x, t) ≥ 0 for all (x, t) ∈ � × [0,∞).

Definition 1.1 We say that u ∈ Ws,N/s
0 (�) is a (weak) solution of problem (1.1), if there

holds

M(‖u‖N/s)〈u, ϕ〉s,N/s =
∫

�

f (x, u)ϕdx

for all ϕ ∈ Ws,N/s
0 (�), where

〈u, ϕ〉s,N/s =
∫∫

R2N

|u(x) − u(y)| Ns −2(u(x) − u(y)) · (ϕ(x) − ϕ(y))

|x − y|2N dxdy.

For general N ≥ 1 and s ∈ (0, 1), we get the following result.

Theorem 1.1 If M fulfills (M1)–(M3) and f satisfies ( f1)–( f6), then problem (1.1) admits
a nontrivial nonnegative ground state solution in Ws,N/s

0 (�) with positive energy.

If we consider the special case s = 1/2 and N = 1, then the assumption ( f6) can be
removed. Hence we get the second result as follows.

Theorem 1.2 Let s = 1/2, N = 1 and � = (a, b) with a < b. If M fulfills (M1)–(M3)

and f satisfies ( f1)–( f5), then problem (1.1) admits a nontrivial nonnegative ground state
solution in W 1/2,2

0 (a, b) with positive energy.

Finally, we consider a special case of f (x, u), that is, we study the following problem:
{
M

(‖u‖N/s
)
(−�)sN/su = λ|u|q−2u exp(α0|u|N/(N−s)) + h(x)|u|r−2u in �,

u = 0 in R
N\�,

(1.11)

where M : [0,∞) → [0,∞) is a continuous function satisfying (M1) and (1.9), θN/s <

q < ∞, 1 < r < N/s and 0 ≤ h ∈ L
N

N−sr (�).
Set

t∗ =
(

αN ,s

2α0

)(N−s)/N
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and define

g(t) = M (t∗)
tθ∗

t
Nθ
s − λ

q
CN ,s |�|tq for all t ≥ 0.

Clearly, g has positive maximum attained at

tmax =
(
M (t∗)Nθ

sCN ,s tθ∗ λ

) s
sq−Nθ

> 0,

being q > Nθ/s. Set

�∗ = M (t∗)Nθ

sCN ,s tθ∗ ρ̃
q− Nθ

s
1

.

and denote by Cr the embedding constant from Ws,N/s
0 (�) to Lr (�). Here ρ̃1 ∈ (0, t∗) is a

constant. Assume that

‖h‖
L

N
N−sr (�)

<
rg(tmax)

Cr
r t

r
max

. (1.12)

Now we give the third result as follows.

Theorem 1.3 Assume M fulfills (M1) and (1.9). If (1.12) holds, then for all λ > �∗ prob-
lem (1.11) admits a nontrivial nonnegative solution uλ in Ws,N/s

0 (�) with negative energy.
Moreover, ‖uλ‖ → 0 as λ → ∞.

To get the existence of ground state solutions for problem (1.1), we first apply the moun-
tain pass lemma without Palais–Smale condition to get a Palais–Smale sequence {un} with
I (un) → c∗ > 0 and I ′(un) → 0. The main difficulty is how one can get the strong conver-
gence of {un} and how to prove that the limit of {un} is the ground state solution of problem
(1.1).

To the best of our knowledge, Theorems 1.1–1.3 are the first results for the Kirchhoff-type
problems involving critical Trudinger–Moser nonlinearities in the fractional setting.

The rest of the paper is organized as follows. In Sect. 2, we give some necessary properties
for the functional setting. In Sect. 3, we verify that the associated functional satisfies the
mountain pass geometry and give an estimate for the level value. In Sect. 4, we obtain the
existence of ground state solution for problem (1.1). In Sect. 5, a nonnegative and nontrivial
solution for problem (1.1) with negative energy is obtained by using Ekeland’s variational
principle.

2 Preliminary results

We first provide some basic functional setting that will be used in the next sections.

Theorem 2.1 [10, Theorem 6.10] Let s ∈ (0, 1) and N ≥ 1. Let � ⊂ R
N be a bounded

domain with Lipschitz boundary. Then there exists a positive constant C = C(N , s,�) such
that for any u ∈ Ws,N/s

0 (�) there holds

‖u‖Lq (�) ≤ C‖u‖
for any q ∈ [1,∞), i.e. the space Ws,N/s

0 (�) is continuously embedded in Lq(�) for any
q ∈ [1,∞).
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To prove the existence of weak solutions of (1.1), we shall use the following embedding
theorem.

Theorem 2.2 (Compact embedding) let s ∈ (0, 1) and N ≥ 1. Assume that � is a
bounded domain in R

N with Lipschitz boundary ∂�. Then, for any ν ≥ 1 the embedding
Ws,N/s

0 (�) ↪→↪→ Lν(�) is compact.

Proof By [10, Theorem 7.1], we know that the embedding Ws,N/s
0 (�) ↪→↪→ Lν(�) is

compact for any ν ∈ [1, N/s]. Next we prove that this result holds true for the case ν ∈
(N/s,∞). Let {un} is a bounded sequence in Ws,N/s

0 (�). Then there exist a subsequence of

{un} (still denoted by {un}) and u ∈ Ws,N/s
0 (�) such that un → u in LN/s(�).

For any ν > N/s, by the Hölder inequality we have
∫

�

|un − u|νdx =
∫

�

|un − u| σN
s |un − u|ν− σN

s dx

≤
(∫

�

|un − u| Ns dx
) 1

σ
(∫

�

|un − u|(ν− σN
s ) σ

σ−1 dx

) σ−1
σ

≤
(∫

�

|un − u| Ns dx
) 1

σ
(∫

�

|un − u| σ
σ−1 dx

) ν− σN
s

ν |�| σN
sν , (2.1)

where σ ∈ (0, 1). Since σ/(σ − 1) > 1, it follows from Theorem 2.1 that

(∫

�

|un − u| σ
σ−1 dx

) ν− σN
s

ν |�| σN
sν ≤ C,

which together with (2.1) yields that

∫

�

|un − u|νdx ≤ C

(∫

�

|un − u| Ns dx
) 1

σ

,

In view of un → u in LN/s(�), we get un → u in Lν(�). ��
To study solutions of problem (1.1), we define the associated functional I : Ws,N/s

0 (�) →
R as

I (u) = s

N
M (‖u‖N/s) −

∫

�

F(x, u)dx .

Since f is continuous and satisfies ( f1) and ( f3), for any ε ∈ (0, sM (1)
N λ∗), α > α0, and

q ≥ 1, there exists C = C(ε, α, q) > 0 such that

|F(x, t)| ≤
(
sM (1)

N
λ∗ − ε

)

|t |θN/s + C |t |q exp(α|t | N
N−s ), ∀(x, t) ∈ � × R. (2.2)

Using (2.2) and the fractional Trudinger–Moser inequality, one can verify that I is well
defined, of class C1(Ws,N/s

0 (�),R) and

〈I ′(u), v〉 = M(‖u‖N/s)〈u, v〉s,N/s −
∫

�

f (x, u)vdx,

for all u, v ∈ Ws,N/s
0 (�). From now on, 〈·, ·〉 denotes the duality pairing between

(
Ws,N/s

0 (�)
)′ andWs,N/s

0 (�). Clearly, the critical points of I are exactly the weak solutions

123



57 Page 10 of 27 X. Mingqi et al.

of problem (1.1). Moreover, the following lemma shows that any nontrivial weak solution of
problem (1.1) is nonnegative.

Lemma 2.1 Any nontrivial solutions of problem (1.1) is nonnegative.

Proof Let u ∈ Ws,N/s
0 (�)\{0} be a critical point of functional I . Clearly, u− =

max{−u, 0} ∈ Ws,N/s
0 (�). Then 〈I ′(u),−u−〉 = 0, i.e.

M(‖u‖ N
s )〈u, u−〉s,N/s =

∫

�

f (x, u)(−u−)dx .

Observe that for a.e. x, y ∈ R
N ,

|u(x) − u(y)| Ns −2(u(x) − u(y))(−u−(x) + u(y)−)

= |u(x) − u(y)| Ns −2u+(x)u−(y) + |u(x) − u(y)| Ns −2u−(x)u+(y)

+ |u−(x) − u−(y)| Ns
≥ |u−(x) − u−(y)| Ns ,

and f (x, u)u− = 0 a.e. x ∈ � by assumption. Hence,

M(‖u‖ N
s )‖u−‖ N

s ≤ 0.

This, together with ‖u‖ > 0 and (M1), implies that u− ≡ 0, that is u ≥ 0 a.e. in �. This
ends the proof. ��

3 Mountain pass geometry andminimax estimates

Let us recall that I satisfies the (PS)c condition in Ws,N/s
0 (�), if any (PS)c sequence

{un} ⊂ Ws,N/s
0 (�), namely a sequence such that I (un) → c and I ′(un) → 0 as n → ∞,

admits a strongly convergent subsequence in Ws,N/s
0 (�).

In the sequel, we shall make use of the following general mountain pass theorem (see
[2,36]).

Theorem 3.1 Let E be a real Banach space and J ∈ C1(E,R) with J (0) = 0. Suppose that

(i) there exist ρ, α > 0 such that J (u) ≥ α for all u ∈ E, with ‖u‖E = ρ;
(ii) there exists e ∈ E satisfying ‖e‖E > ρ such that J (e) < 0.

Define � = {γ ∈ C1([0, 1]; E) : γ (0) = 1, γ (1) = e}. Then
c = inf

γ∈�
max
0≤t≤1

J (γ (t)) ≥ α

and there exists a (PS)c sequence {un}n ⊂ E.

To find a mountain pass solution of problem (1.1), let us first verify the validity of the
conditions of Theorem 3.1.

Lemma 3.1 (Mountain Pass Geometry 1) Assume that ( f1) − ( f3) hold. Then there exist
ρ > 0 and κ > 0 such that I (u) ≥ κ for any u ∈ Ws,N/s

0 (�), with ‖u‖ = ρ.
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Proof Applying (2.2) and the definition of λ∗ in ( f3), for any ε ∈ (0, λ∗) and q > θN/s we
have

∫

�

F(x, u)dx ≤
(
sM (1)

N
λ∗ − ε

) ∫

�

|u| Nθ
s dx + C

∫

�

|u|q exp
(
α|u| N

N−s

)
dx

≤
(
sM (1)

N
− ε

λ∗

)

‖u‖ Nθ
s + C‖u‖q

L2q (�)

·
(∫

�

exp(2α‖u‖ N
N−s (u/‖u‖) N

N−s )dx

)1/2

, (3.1)

for all u ∈ Ws,N/s
0 (�).

On the other hand, (1.9) gives

M (t) ≥ M (1)tθ for all t ∈ [0, 1]. (3.2)

Thus, by using (3.1), (3.2) and the Hölder inequality, we obtain for all u ∈ Ws,N/s
0 (�), with

‖u‖ ≤ ρ1 ≤ 1 small enough,

I (u) ≥ ε

λ∗ ‖u‖ Nθ
s − C‖u‖q

L2q (�)

(∫

�

exp
(
2α‖u‖ N

N−s (u/‖u‖) N
N−s

)
dx

)1/2

≥ ε

λ∗ ‖u‖ Nθ
s − C1‖u‖q

(∫

�

exp

(

2αρ
N

N−s
1 (u/‖u‖) N

N−s

)

dx

)1/2

.

Choosing 2αρ
N/(N−s)
1 ≤ αN ,s and using the fractional Trudinger–Moser inequality, we get

I (u) ≥ ‖u‖ θN
s

( ε

λ∗ − C2‖u‖q− θN
s

)
.

Now fix ε > 0 and choose 0 < ρ < ρ1 < 1 such that ε
λ∗ − C2ρ

q− θN
s > 0. Thus,

I (u) ≥ κ := ρθN/s
(

ε
λ∗ − C2ρ

q− θN
s

)
> 0 for all u ∈ Ws,N/s

0 (�), with ‖u‖ = ρ. ��

Lemma 3.2 (Mountain Pass Geometry 2) Assume that (M2) and ( f2) hold. Then there exists
a nonnegative function e ∈ C∞

0 (R), such that I (e) < 0 and ‖e‖ ≥ ρ for all λ ∈ R
+.

Proof It follows from (1.9) that

M (t) ≤ M (1)tθ for all t ≥ 1. (3.3)

On the other hand, taking μ > θN/s and using (1.10), we obtain that there exist positive
constants C3,C4 > 0 such that

F(x, t) ≥ C3t
μ − C4 for all x ∈ � and t ≥ 0. (3.4)

Now, choose v0 ∈ Ws,N/s
0 (�) with v0 ≥ 0 and ‖v0‖ = 1. Then for all t ≥ 1, we have

I (tv0) ≤ s

N
M (1)t

θN
s ‖v0‖ θN

s − C3t
μ

∫

�

|v0|μdx + C4|�|.

Hence, I (tu0) → −∞ as t → ∞, thanks to θN/s < μ. The lemma is proved by taking
e = T v0, with T > 0 so large that ‖e‖ ≥ ρ and I (e) < 0. ��
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By Lemmas 3.1 and 3.2 and the mountain pass theorem (Theorem 3.1), there exists a
(PS)c sequence {un} ⊂ Ws,N/s

0 (�) such that

I (un) → c∗ and I ′(un) → 0 as n → ∞,

where

c∗ = inf
γ∈�

max
t∈[0,1] I (γ (t)), (3.5)

where � =
{
γ ∈ C([0, 1];Ws,N/s

0 (�) : γ (0) = 0, I (γ (1)) = e
}

. Obviously, c∗ > 0 by

Lemma 3.1. Moreover, under assumption ( f6), we have the following estimate.

Lemma 3.3 Assume that (M2), ( f2) and ( f6) hold. Then

c∗ <
s

N
M

(
αN ,s

α0

)

.

Proof Since ψ ≥ 0 in � and ‖ψ‖ = 1, as in the proof of Lemma 3.2, we deduce that
I (tψ) → −∞ as t → ∞. Consequently, using assumption ( f6), one can deduce that

c∗ ≤ max
t≥0

I (tψ) ≤ sup
t∈R+

(
s

N
M (t N/s) −

∫

�

F(x, tψ)dx

)

<
s

N
M

(
αN ,s

α0

)

.

This proves the lemma. ��
Actually, for the case N = 1 and s = 1/2, assumption ( f6) naturally holds true. To get

more precise information about theminimax level c∗ in this case, let us consider the following
Moser functions which have been used in [31]:

G̃n(x) = 1√
2π

⎧
⎪⎪⎨

⎪⎪⎩

| ln n| 12 if |x | ≤ 1
n ,

| ln |x ||
| ln n| 12

if 1
n < |x | < 1,

0 if |x | ≥ 1.

Let � := (a, b), x0 = a+b
2 and R0 = b−a

2 . It is standard verify that the functions

Gn(x) = G̃n

(
x − x0
R0

)

, x ∈ �,

belongs to W
1
2 ,2
0 (�). Moreover, limn→∞ ‖Gn‖ = 1 and the support of Gn is contained in

interval (x0 − R0, x0 + R0), see [31].

Lemma 3.4 Assume that (M1), (M2), ( f1) and ( f ′
4) hold. Then there exists n > 0 such that

max
t≥0

I (tGn) = max
t≥0

{
1

2
M (t2‖Gn‖2) −

∫

�

F(x, tGn)dx

}

<
1

2
M

(
2π2

α0

)

.

Proof Arguing by contradiction, we assume that

max
t≥0

I (tGn) ≥ 1

2
M

(
2π2

α0

)

. (3.6)

Since the functional I possesses the mountain pass geometry, for each n there exists tn > 0
such that

I (tnGn) = max
t≥0

I (tGn).
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In view of the fact that F(x, t) ≥ 0 for all (x, t) ∈ � × R, one can deduce that

M
(
t2n‖Gn‖2

) ≥ M

(
2π2

α0

)

.

Since M : [0,∞) → [0,∞) is a nonnegative function, M is a nondecreasing function.
Thus, we get

t2n‖Gn‖2 ≥ 2π2

α0
.

Hence,

lim inf
n→∞ t2n ≥ 2π2

α0
. (3.7)

On the other hand,

d

dt
I (tGn) |t=tn= 0,

which implies that

M(t2n‖Gn‖2)t2n‖Gn‖2 =
∫

�

f (x, tnGn)tnGndx ≥
∫

BR0 (x0)
f (x, tnGn)tnGndx . (3.8)

Using change of variable, we have

M(t2n‖Gn‖2)t2n‖Gn‖2 ≥ R0

∫

B1(0)
f (R0x + x0, tn G̃n)tn G̃ndx

≥ R0

∫

B 1
n
(0)

f

(

R0x + x0, tn
1√
2π

(ln n)1/2
)

tn
1√
2π

(ln n)1/2dx .

Note that (3.7) implies that

tn√
2π

(ln n)1/2 → ∞ as n → ∞.

It follows from ( f4) that given δ > 0 there exists tδ > 0 such that

f (x, t)t ≥ (β0 − δ) exp(α0t
2), ∀(x, t) ∈ � × [tδ,∞). (3.9)

Thus, there exists n0 ∈ N such that

f

(

R0x + x0, tn
1√
2π

(ln n)1/2
)

tn
1√
2π

(ln n)1/2

≥ (β0 − δ) exp

(

α0t
2
n

1

2π2 ln n

)

,

for all n ≥ n0. Hence,

M(t2n‖Gn‖2)t2n‖Gn‖2 ≥ (β0 − δ)R0 exp

(

α0t
2
n

1

2π2 ln n

)
2

n

= (β0 − δ)2R0 exp

(

α0t
2
n

1

2π2 ln n

)

exp(− ln n)

= (β0 − δ)2R0 exp

[(

α0t
2
n

1

2π2 − 1

)

ln n

]

. (3.10)
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Next we show that {tn} is a bounded sequence in R. If not, there exists a subsequence of {tn}
still labeled by {tn}, such that tn → ∞ as n → ∞. From (3.3) and (3.7), we can conclude
that

M(t2n‖Gn‖2)t2n‖Gn‖2
exp

[(
α0t2n

1
2π2 − 1

)
ln n

] → 0 as n → ∞,

which contradicts (3.10). Thus,

lim sup
n→∞

t2n ≤ 2π2

α0
,

which together with (3.7) yields that

t2n → 2π2

α0
(3.11)

as n → ∞.
Following some arguments as in [11,13], we are going to estimate (3.8). In view of (3.9),

for 0 < δ < β0 and n ∈ N, we set

Un,δ := {x ∈ BR0(x0) : tnGn(x) ≥ tδ} and Vn,δ := BR0(x0)\Un,δ.

Splitting the integral (3.8) on Un,δ and Vn,δ and using (3.10), we deduce

M(t2n‖Gn‖2)t2n‖Gn‖2

≥ (β0 − δ)

∫

BR0 (x0)
exp(α0(tnGn)

2)dx

− (β0 − δ)

∫

Vn,δ

exp(α0(tnGn)
2)dx +

∫

Vn,δ

f (x, tnGn)tnGndx . (3.12)

Since Gn(x) → 0 a.e. in BR0(x0), we deduce that the characteristic functions χVn,δ satisfies

χVn,δ → 1 a.e. in BR0(x0) as n → ∞.

By tnGn < tδ and the Lebesgue dominated convergence theorem, we have as n → ∞
∫

Vn,δ

exp(α0(tnGn)
2)dx → 2R0 and

∫

Vn,δ

f (x, tnGn)tnGndx → 0. (3.13)

The key point is to estimate the first term on the right hand of (3.12). By (3.7) and the
definition of Gn , we have

∫

BR0 (x0)
exp(α0(tnGn)

2)dx ≥ R0

∫

B1/n(0)
exp(ln n)dx

+ R0

∫

1/n<|x |<1
exp

[ | ln |x ||2
ln n

]

dx

= 2R0 + R0

∫

1/n<|x |<1
exp

[ | ln |x ||2
ln n

]

dx

≥ 2R0 + 2R0

(

1 − 1

n

)

, (3.14)
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for n sufficiently large. Inserting (3.13) and (3.14) in (3.12) and using (3.10), we arrive at

M

(
2π2

α0

)
2π2

α0
≥ (β0 − δ)2R0, ∀δ ∈ (0, β0).

Letting δ → 0+, we obtain

β0 ≤
M

(
2π2

α0

)
2π2

α0

2R0
,

which contradicts ( f ′
4). Therefore, the lemma is proved. ��

By Lemma 3.4, we obtain the desired estimate for the level c∗.

Lemma 3.5 Assume (M1) − (M2) and ( f3) hold. Then

c∗ <
1

2
M

(
2π2

α0

)

.

Proof Since Gn ≥ 0 in � and ‖Gn‖ → 1, as in the proof of Lemma 3.2, we deduce that
I (tGn) → −∞ as t → ∞. Consequently,

c∗ ≤ max
t≥0

I (tGn), ∀n ∈ N.

Thus, the desired result follows by using Lemma 3.4. ��
Consider the Nehari manifold associated to the functional I , that is,

N =
{
u ∈ Ws,N/s

0 (�)\{0} : 〈I ′(u), u〉 = 0
}

and c∗ := infu∈N I (u).
The next result is crucial in our arguments to get the existence of a ground state solution

for (1.1).

Lemma 3.6 Assume that (M3) and ( f3) are satisfied. Then c∗ ≤ c∗.

Proof For any u ∈ N , we define h : [0,+∞) → R by h(t) = I (tu). clearly, h is differen-
tiable and

h′(t) = 〈I ′(tu), u〉 = M
(
t
N
s ‖u‖ N

s

)
t
N
s −1‖u‖ N

s −
∫

�

f (x, tu)udx, ∀t ≥ 0.

It follows from 〈I ′(u), u〉 = 0 that

M
(
‖u‖ N

s

)
‖u‖ N

s =
∫

�

f (x, u)udx,

which means that h′(1) = 0. Thus,

h′(t) = t
θN
s −1‖u‖θ N

s

[
M(t N/s‖u‖N/s)

t (θ−1)N/s‖u‖(θ−1)N/s
− M(‖u‖N/s)

‖u‖(θ−1)N/s

]

+ t
θN
s −1

∫

�

[
f (x, u)

u
θN
s −1

− f (x, tu)

(tu)
θN
s −1

]

u
θN
s dx .

Using (M2) and ( f5), we get

h′(t) ≥ 0 for 0 ≤ t < 1 and h′(t) ≤ 0 for t > 1.
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Thus, h(1) = maxt≥0 h(t), which means

I (u) = max
t≥0

I (tu).

Now we define g : [0, 1] → Ws,N/s
0 (�), g(t) = t t0u, where t0 is such that I (t0u) < 0.

Clearly, g ∈ � and therefore

c∗ ≤ max
t∈[0,1] I (g(t)) ≤ max

t≥0
I (tu) = I (u).

By the arbitrary of u ∈ N , we get c∗ ≤ c∗. Thus the proof is complete. ��

4 Proofs of Theorems 1.1 and 1.2

This section is devoted to the proof of our main result. We recall that a solution u0 of problem
(1.1) is a ground state if I (u0) = infu∈A I (u), where

A := {u ∈ Ws,N/s
0 (�)\{0} : I ′(u) = 0}.

Since c∗ ≤ c∗ ≤ I (u0), in order to obtain a ground state u0 for (1.1) it is enough to show
that there is u0 ∈ A and I (u0) = c∗. To this aim, we first give some useful lemmas.

Lemma 4.1 (The (PS)c∗ condition)Let (M1)−(M3) and ( f1)–( f6) hold. Then the functional
I satisfies the (PS)c∗ condition.

Proof From Lemmas 3.1 and 3.2, we deduce from Theorem 3.1 that there exists a sequence
{un} ⊂ Ws,N/s

0 (�) satisfying

I (un) → c∗ and I ′(un) → 0.

We first show that {un} is bounded in Ws,N/s
0 (�). Arguing by contradiction, we assume that

{un} is unbounded inWs,N/s
0 (�). Then up to a subsequence, still labeled by {un}, ‖un‖ → ∞

and d := infn≥1 ‖un‖ > 0. Using (1.9), (M1) and (1.10) with μ > Nθ
s , we get

C+‖un‖ ≥ I (un) − 1

μ
〈I ′(un), un〉

≥
(

s

Nθ
− 1

μ

)

M(‖un‖N/s)‖un‖N/s − 1

μ

∫

|un |≤tmu
(μF(x, un) − f (x, un)un)dx

≥
(

s

Nθ
− 1

μ

)

M(dN/s)‖un‖N/s − 1

μ
Cμ|�|, (4.1)

where Cμ = sup{| f (x, t)t − μF(x, t)| : (x, t) ∈ � × [0, tμ]}. Dividing (4.1) by ‖un‖N/s

and letting n → ∞, we get

0 ≥
(

s

Nθ
− 1

μ

)

M(dN/s) > 0,

which is absurd. Thus, {un} is bounded in Ws,N/s
0 (�).

Next we show that {un} has a convergence subsequence inWs,N/s
0 (�). Going if necessary

to a subsequence, there exist u ∈ Ws,N/s
0 (�) and ξ ≥ 0 such that
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un⇀u weakly in Ws,N/s
0 (�),

un → u strongly in Lν(�)(ν ≥ 1),

un → u a.e. in �

‖un‖ → ξ. (4.2)

Here we have used the compact embedding from Ws,N/s
0 (�) to Lν(�) for any ν ≥ 1, see

Theorem 2.2.
We first show that

lim
n→∞

∫

�

| f (x, un)|dx =
∫

�

| f (x, u)|dx . (4.3)

By I ′(un) → 0 and {un} is bounded in Ws,N/s
0 (�), there exists C > 0 such that

∫

�

| f (x, un)un |dx ≤ C .

Since f (x, u) ∈ L1(�), it follows that given ε > 0 there is a δ > 0 such that
∫

U
| f (x, u)|dx ≤ ε if |U | ≤ δ

for all measurable subsets U of �, where |U | denotes the Lebesgue measure of U . From
u ∈ L1(�), there exists D1 > 0 such that

|{x ∈ � : |u(x)| > D1}| ≤ δ.

Let D = max{D1,C/ε}. Then we have
∣
∣
∣
∣

∫

�

| f (x, un)|dx −
∫

�

| f (x, u)|dx
∣
∣
∣
∣

≤
∫

|un |>D
| f (x, un)|dx +

∫

|u|>D
| f (x, u)|dx

+
∣
∣
∣
∣

∫

|un |≤D
| f (x, un)|dx −

∫

|u|≤D
| f (x, u)|dx

∣
∣
∣
∣ .

By above results, we obtain
∫

|u|>D
| f (x, u)|dx ≤ ε.

Also, we deduce
∫

|un |>D
| f (x, un)|dx =

∫

|un |>D

| f (x, un)un |
|un | dx ≤ C

D
≤ ε.

Next we claim that as n → ∞
∣
∣
∣
∣

∫

|un |≤D
| f (x, un)|dx −

∫

|u|≤D
| f (x, u)|dx

∣
∣
∣
∣ → 0.

Indeed, set gn(x) = | f (x, un)|χ|un |≤D − | f (x, u)|χ|u|≤D , then gn → 0 a.e. in �. Moreover,
|gn | ≤ | f (x, u)| if |un(x)| > D; |gn | ≤ C + | f (x, u)| if |un(x)| ≤ D, where C =
sup{| f (x, t)| : x ∈ �, |t | ≤ D}. Thus, the Lebesgue dominated convergence theorem yields
the claim. Therefore, we prove (4.3).
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By (4.3), we can get

lim
n→∞

∫

�

f (x, un)dx =
∫

�

f (x, u)dx . (4.4)

Indeed, set hn(x) = | f (x, un)| − | f (x, un) − f (x, u)|. Obviously, hn(x) → | f (x, u)| a.e.
in �. Moreover,

|hn(x)| ≤ | f (x, u)|.
Thus, the Lebesgue dominated convergence theorem implies that

lim
n→∞

∫

�

(| f (x, un)| − | f (x, un) − f (x, u)|)dx =
∫

�

| f (x, u)|dx,
which means that

lim
n→∞

∫

�

| f (x, un) − f (x, u)|dx = 0.

Therefore, (4.4) holds true. By (4.4), ( f2) and the generalized Lebesgue dominated conver-
gence theorem, we have

lim
n→∞

∫

�

(F(x, un) − F(x, u))dx = 0. (4.5)

Now, we assert that u 
= 0. Arguing by contradiction, we assume that u = 0. Then,∫

�
F(x, un)dx → 0 and I (un) → c∗ gives that

s

N
M (‖un‖N/s) → c∗ <

s

N
M

(
αN ,s

α0

)

as n → ∞. Thus, there exists n0 ∈ N and δ > 0 such that ‖un‖N/s < δ <
αN ,s
α0

. Choosing

q > 1 close to 1 and α > α0 close to α0 such that we still have qα‖un‖N/s < δ < αN ,s .
Thus, it follows from (2.2) with q = 1 that

∣
∣
∣
∣

∫

�

f (x, un)undx

∣
∣
∣
∣

≤ C

(∫

�

|un |θN/sdx +
∫

�

|un | exp(α|un |N/s)dx

)

≤ C(‖un‖θN/s + ‖un‖
L

q
q−1 (�)

(∫

�

exp[qα‖un‖N/s(un/‖un‖)N/s]dx
) 1

q

≤ C

(

‖un‖θN/s + ‖un‖
L

q
q−1 (�)

)

→ 0

as n → ∞. Since {un} is a bounded (PS)c∗ sequence, we get

〈I ′(un), un〉 = M(‖un‖N/s)‖un‖N/s −
∫

�

f (x, un)undx → 0,

which implies that

M(‖un‖N/s)‖un‖N/s → 0.

From this and assumption (M1), we deduce ‖un‖ → 0. Furthermore, we obtain I (un) → 0,
which contradicts the fact that I (un) → c∗ > 0. Therefore, we must have u 
= 0. So that
ξ > 0.
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We claim that I (u) ≥ 0. Arguing by contradiction, we assume that I (u) < 0. Set z(t) :=
I (tu) for all t ≥ 0. Then z(0) = 0 and z(1) < 0. Arguing as in the proof of Lemma 3.1, we
can see that z(t) > 0 for t > 0 small enough. Hence there exists t0 ∈ (0, 1) such that

z(t0) = max
t∈[0,1] z(t), z′(t0) = 〈I ′(t0u), u〉 = 0,

which means that t0u ∈ N . Therefore, by Remarks 1.1 and 1.4, the semicontinuity of norm
and Fatou’s lemma, we get

c∗ ≤ c∗ ≤ I (t0u) = I (t0u) − s

Nθ
〈I ′(t0u), t0u〉

= s

N
M (‖t0u‖N/s) − s

Nθ
M(‖t0u‖N/s)‖t0u‖N/s

+ s

Nθ

∫

�

[

f (x, t0u)t0u − θN

s
F(x, t0u)

]

dx

<
s

N
M (‖u‖N/s) − s

Nθ
M(‖u‖N/s)‖u‖N/s

+ s

Nθ

∫

�

[

f (x, u)u − θN

s
F(x, u)

]

dx .

By the weak lower semicontinuity of convex functional, we have

‖u‖N/s ≤ lim inf
n→∞ ‖un‖N/s = ξ N/s .

In view of Remark 1.1 and the continuity of M , we deduce that

s

N
M (‖u‖N/s) − s

Nθ
M(‖u‖N/s)‖u‖N/s

≤ s

N
M (ξ N/s) − s

Nθ
M(ξ N/s)ξ N/s

= lim
n→∞

s

N
M (‖un‖N/s) − s

Nθ
M(‖un‖N/s)‖un‖N/s .

By Fatou’s lemma, we get
∫

�

f (x, u)udx ≤ lim inf
n→∞

∫

�

f (x, un)undx .

It follows from above results and (4.5) that

c∗ ≤ c∗ < lim
n→∞

[ s

N
M (‖un‖N/s) − s

Nθ
M(‖un‖N/s)‖un‖N/s

]

+ s

Nθ
lim inf
n→∞

∫

�

[

f (x, un)un − Nθ

s
F(x, un)

]

dx

≤ lim
n→∞

[
I (un) − s

Nθ
〈I ′(un), un〉

]
= c∗

which is absurd. Thus the claim holds true.
Now we claim that

I (u) = c∗. (4.6)

Obviously, by (4.5) and semicontinuity of norm, we have I (u) ≤ c∗. Next we are going to
show that I (u0) < c∗ can not occur. Actually, if I (u) < c∗, then

‖u‖ < ξ.

123



57 Page 20 of 27 X. Mingqi et al.

Note that (4.5) yields that

s

N
M (ξ N/s) = lim

n→∞
s

N
M (‖un‖N/s) = c∗ +

∫

�

F(x, u)dx . (4.7)

This gives that

ξ
N
s = M−1

(
N

s
c∗ + N

s

∫

�

F(x, u)dx

)

.

Set vn = un/‖un‖. Then vn⇀v0 = u0/ξ inWs,N/s
0 (�) and ‖v0‖ < 1. Thus, it follows from

[32, Theorem 2.2] that

sup
n∈N

∫

�

exp(α′vN/s
n )dx < ∞, ∀ α′ <

αN ,s

1 − ‖v0‖N/s
. (4.8)

On the other hand, by (4.7), we have

N

s
c∗ − N

s
I (u) = M (ξ N/s) − M (‖u‖N/s).

Thus, it follows from I (u) ≥ 0 that

M (ξ N/s) ≤ N

s
c∗ + M (‖u‖N/s) < M

(
αN ,s

α0

)

+ M (‖u‖N/s).

Furthermore, by (M1), we get

ξ N/s < M−1
[

M

(
αN ,s

α0

)

+ M (‖u‖N/s)

]

≤ αN ,s

α0
+ ‖u‖N/s . (4.9)

Note that

ξ N/s = ξ N/s − ‖u‖N/s

1 − ‖v‖N/s
.

Hence, it follows from (4.9) that

ξ N/s <
αN ,s/α0

1 − ‖v‖N/s
.

Thus, there exist n0 ∈ N and α′′ > 0 such that

α0‖un‖N/(N−s) < α′′ <
αN ,s

1 − ‖v‖N/s

for all n ≥ n0. We choose ν > 1 close to 1 and α > α0 close to α0 such that

να‖un‖N/(N−s) ≤ α′′ <
αN ,s/α0

1 − ‖v‖N/s
.

In view of (4.8), for some C > 0 and n large enough, we obtain
∫

�

exp(να|un |N/(N−s))dx ≤
∫

�

exp(α′′|vn |N/(N−s))dx ≤ C .

Therefore, we deduce from (2.2) that
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∣
∣
∣
∣

∫

�

f (x, un)(un − u)dx

∣
∣
∣
∣

≤ C

(∫

�

|un − u|Nθ/sdx +
∫

�

|un − u| exp(α|un |N/(N−s))dx

)

≤ C‖un‖Nθ/s

L
Nθ
s (�)

+ C‖un − u‖
L

ν
ν−1 (�)

→ 0

as n → ∞.
Since {un} is a bounded (PS)c∗ sequence in Ws,N/s

0 (�), we have

o(1) = 〈I ′(un), un − u〉
= M(‖un‖N/s)〈un, un − u〉s,N/s −

∫

�

f (x, un)(un − u)dx . (4.10)

Define a functional L as follows:

〈L(v), w〉 = 〈v,w〉s,N/s

for all v,w ∈ Ws,N/s
0 (�). By the Hölder inequality, one can see that

|〈L(v), w〉| ≤ ‖v‖‖w‖,
which together with the definition of L implies that for each v, L(v) is a bounded linear
functional on Ws,N/s

0 (�). Thus, 〈L(u), un − u〉 = o(1), that is,

〈u, un − u〉s,N/s = o(1).

In conclusion, we can deduce from (4.10) that

M(‖un‖N/s)‖un − u‖N/s = M(‖un‖N/s)(〈un, un − u〉s,N/s − 〈u, un − u〉s,N/s) = o(1).

In view of the fact that ‖un‖ → ξ and ξ > 0, by using (M1), we obtain that un → u in
Ws,N/s

0 (�). Furthermore, using (4.5) and the continuity ofM , we have I (u) = c∗, which is
a contradiction. Thus, the assertion (4.6) holds true.

Combining I (u) = c∗ with I (un) → c∗ and ‖un‖ → ξ , we conclude that

M (ξ N/s) = M (‖u‖N/s),

which implies that ξ = ‖u‖. By the uniform convexity of norm, we obtain that un → u in
Ws,N/s

0 (�). This finishes the proof. ��
Proof of Theorem 1.1 By Lemmas 3.1 and 3.2, we know that I satisfies all the assumptions
of Theorem 3.1. Hence there exists a (PS)c∗ sequence {un} ⊂ Ws,N/s

0 (�). Moreover, by
Lemma 4.1, there exists a subsequence of {un} (still labeled by {un}) such that un → u in
Ws,N/s

0 (�) and ξ = ‖u‖. It follows from I ′(un) → 0 that

M(‖un‖N/s)〈un, ϕ〉s,N/s =
∫

�

f (x, un)εdx, ∀ϕ ∈ Ws,N/s
0 (�).

Furthermore, we have

M(‖u‖N/s)〈u, ϕ〉s,N/s =
∫

�

f (x, u)ϕdx ∀ϕ ∈ Ws,N/s
0 (�),

which means that u is a solution of (1.1) satisfying I (u) = c∗, that is, I ′(u) = 0 and
I (u) = c∗. Therefore, by the definition of c∗ and c∗ ≤ c∗, we know that u is a ground state
solution of problem (1.1). Moreover, Lemma 2.1 shows that u is nonnegative. ��
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Proof of Theorem 1.2 Indeed, Theorem 1.2 is a special case of Theorem 1.1. Its proof
follows from the same discussion as the proof of Theorem 1.1 by using the correspond-
ing lemmas. ��

5 Proof of Theorem 1.3

To study the solutions of problem (1.11), we define the following functional

Iλ(u) = s

N
M (‖u‖N/s) − λ

∫

�

F(x, u+)dx − 1

r

∫

�

h(x)|u+|r dx

for all u ∈ Ws,N/s
0 (�), where u+=max{u, 0} and F(x, u)= ∫ u

0 |t |q−2t exp(α0|t |N/(N−s))dt .
Clearly, one can verify that Iλ is of class C1 and the critical points of Iλ are the nonnegative
solutions of (1.11).

In this section, without further mentioning, we always assume that M fulfills (M1) and
(1.9), q > θN/s, r ∈ (1, N/s) and 0 ≤ h ∈ LN/(N−sr)(�).

Lemma 5.1 There exist �∗ > 0, ρ̃λ > 0 and κ̃λ > 0 such that for all λ > �∗, Iλ(u) ≥ κ̃λ

for any u ∈ Ws,N/s
0 (�), with ‖u‖ = ρ̃λ.

Proof Set t∗ =
(

αN ,s
2α0

)(N−s)/N
. By (1.9), one can get

M (t) ≥ M (t∗)
tθ∗

tθ , for all 0 ≤ t ≤ t∗.

By the Hölder inequality, we obtain for all u ∈ Ws,N/s
0 (�), with ‖u‖ ≤ ρ̃1 < t∗,

Iλ(u) ≥ M (t∗)
tθ∗

‖u‖θN/s − λ

q
‖u‖q

L2q (�)

[∫

�

exp

(

2α0‖u‖N/(N−s)
∣
∣ u

‖u‖
∣
∣N/(N−s)

)

dx

]1/2

− 1

r

∫

�

h(x)|u|r dx

≥ M (t∗)
tθ∗

‖u‖θN/s − λ

q
‖u‖q

[∫

�

exp

(

2α0ρ̃
N/(N−s)
1

∣
∣ u

‖u‖
∣
∣N/(N−s)

)

dx

]1/2

−
Cr
r ‖h‖

L
N

N−sr (�)

r
‖u‖r ,

where Cr > 0 denotes the embedding constant of from Ws,N/s
0 (�) to Lr (�). Since

2α0ρ̃
N/(N−s)
1 < αN ,s , it follows from the fractional Trudinger–Moser inequality that

Iλ(u) ≥ M (t∗)
tθ∗

‖u‖θN/s − λ

q
CN ,s‖u‖q −

Cr
r ‖h‖

L
N

N−sr (�)

r
‖u‖r .

Let

g(t) = M (t∗)
tθ∗

t
Nθ
s − λ

q
CN ,s t

q , for all t ≥ 0.

It is easy to check that g has positive maximum attained at

tmax =
(
M (t∗)Nθ

sCN ,s tθ∗ λ

) s
sq−Nθ

> 0,
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being q > Nθ/s. Set

�∗ = M (t∗)Nθ

sCN ,s tθ∗ ρ̃
q− Nθ

s
1

.

Then for λ ≥ �∗ we have tmax ≤ ρ̃1 < t∗. Since

‖h‖
L

N
N−sr (�)

<
rg(tmax)

Cr
r t

r
max

,

we conclude that Iλ(u) ≥ κ̃ := ρ̃r
λ

(
M (t∗)

tθ∗
ρ̃

θN/s−r
λ − λ

q CN ,s ρ̃
q−r
λ − 1

r C
r
r ‖h‖

L
N

N−sr (�)

)

>

0 for all u ∈ Ws,N/s
0 (�), with ‖u‖ = ρ̃λ := tmax. ��

Lemma 5.2 Set

c̃λ = inf
{Iλ(u) : u ∈ Bρ̃λ

}
,

where Bρ̃λ = {u ∈ Ws,N/s
0 (�) : ‖u‖ < ρ̃λ} and ρ̃λ ∈ (0, 1] is given by Lemma 5.1. Then

c̃λ < 0 for all λ > �∗.

Proof Choose a nonnegative function ϕ ∈ C∞
0 (�) such that ‖ϕ‖ = 1 and

∫

�
h(x)ϕr dx > 0.

Fix λ > �∗. Then, by (H1) and (3.3), for all τ , with 0 < τ < 1, we have

Iλ(τϕ) ≤ s

N
M (‖ϕ‖N/sτ N/s) − 1

r
τ r

∫

R3
h(x)ϕr dx

≤ s

N

(

sup
0≤τ≤1

M(τ )

)

τ N/s − 1

r
τ r

∫

R3
h(x)ϕr dx .

Since 1 < r < N/s, fixing τ > 0 even smaller so that we have that τϕ ∈ Bρ̃ and Iλ(τϕ) < 0.
This gives that c̃λ < 0 for all λ > �∗, as desired. ��

By Lemmas 5.1 and 5.2 and the Ekeland variational principle (see [2]), applied in Bρ̃λ ,
there exists a sequence {un}n such that

Iλ(un) → c̃λ, I ′
λ(un) → 0 (5.1)

as n → ∞.
Next we show that {un} has a convergent subsequence in Ws,N/s

0 (�).

Lemma 5.3 Up to a subsequence, {un} is strongly convergent to some function in Ws,N/s
0 (�).

Proof Since {un} ⊂ Bρ̃λ , there exist a subsequence of {un}, still denoted by {un}, uλ and
ωλ ≥ 0 such that

⎧
⎪⎨

⎪⎩

un → uλ weakly in Ws,N/s
0 (�),

un → uλ strongly in Lν(�) for any ν ∈ [1,∞),

‖un‖ → ωλ and un → uλ a.e. in �.

We first show that

lim
n→∞

∫

�

|u+
n |q−2un exp(|u+

n | N
N−s )(un − uλ)dx = 0. (5.2)
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Indeed, by the Hölder inequality, we have
∣
∣
∣
∣

∫

�

|u+
n |q−2u+

n exp(|u+
n | N

N−s )(un − uλ)dx

∣
∣
∣
∣

≤
(∫

�

|un |2qdx
) q−1

2q
(∫

�

|un − uλ|2qdx
) 1

2q
(∫

�

exp(2α0|un | N
N−s )dx

) 1
2

. (5.3)

In view of Lemma 5.1, we have 2α0‖un‖N/(N−s) ≤ 2α0ρλ < αN ,s . Thus, the fractional
Trudinger–Moser inequality gives that

∫

�

exp(2α0|un | N
N−s )dx =

∫

�

exp

(

2α0‖un‖ N
N−s

∣
∣
∣
∣
un

‖un‖
∣
∣
∣
∣

N
N−s

)

dx

≤
∫

�

exp

(

2α0ρ̃
N

N−s

∣
∣
∣
∣
un

‖un‖
∣
∣
∣
∣

N
N−s

)

dx

≤ CN ,s .

It follows from (5.3) that
∣
∣
∣
∣

∫

�

|u+
n |q−2u+

n exp(|u+
n | N

N−s )(un − uλ)dx

∣
∣
∣
∣

≤ C

(∫

�

|un − uλ|2qdx
) 1

2q → 0

as n → ∞, which means that (5.2) holds true.

Since h(x) ∈ L
N

N−sr (�) and 1 < r < N/s, by Vitali’s convergence theorem one can
prove that

lim
n→∞

∫

�

h(x)|u+
n |r−2u+

n (un − uλ)dx = 0. (5.4)

By the weak convergence of {un} in Ws,N/s
0 (�), one can easily get that

lim
n→∞ M(‖un‖N/s)〈uλ, un − uλ〉s,N/s = 0. (5.5)

Due to the fact that {un} is a (PS) sequence, we have

〈I ′
λ(un), un − uλ〉 − M(‖un‖N/s)〈uλ, un − uλ〉s,N/s = o(1).

Then,

o(1) = M(‖un‖N/s)
(〈un, un − uλ〉s,N/s − 〈uλ, un − uλ〉s,N/s

)

−
∫

�

|u+
n |q−2u+

n exp(α0|u+
n | N

N−s )(un − uλ)dx

+
∫

�

h(x)|u+
n |r−2u+

n (un − uλ)dx .

Combining (5.2), (5.4) and (5.5), we get

lim
n→∞ M(‖un‖N/s)

(〈un, un − uλ〉s,N/s − 〈uλ, un − uλ〉s,N/s
) = 0. (5.6)
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If ωλ = 0, then by Iλ(un) → c̃λ and (4.5) we obtain

0 > c̃λ = lim
n→∞

[
s

N
M (‖un‖N/s) −

∫

�

F(x, u+
n )dx − 1

r

∫

�

h(x)|u+
n |r dx

]

= 0,

which is impossible. Thus, we get ωλ > 0. Therefore, from (5.6) and (M1), we conclude that
‖un − uλ‖ → 0 as n → ∞. In conclusion, the proof is complete. ��
Proof of Theorem 1.3 By Lemmas 5.1 and 5.2, there exists a (PS) sequence {un} such that

Iλ(un) → c̃λ, I ′
λ(un) → 0.

Furthermore, by Lemma 5.3, there exist a subsequence of {un} (still denoted by {un}) and
uλ ∈ Ws,N/s

0 (�) such that

un → uλ.

Moreover, uλ is a nonnegative and nontrivial solutions of problem (1.11). Finally, according
to the following fact

‖uλ‖ ≤ ρ̃λ :=
(
M (t∗)Nθ

sCN ,s tθ∗ λ

) s
sq−Nθ

and t∗ =
(

αN ,s

2α0

)(N−s)/N

,

we deduce that ‖uλ‖ → 0 as λ → ∞. ��
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