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Abstract

We analyse the asymptotic behaviour of solutions of the Teichmiiller harmonic map flow
from cylinders, and more generally of ‘almost minimal cylinders’, in situations where the
maps satisfy a Plateau-boundary condition for which the three-point condition degenerates.
We prove that such a degenerating boundary condition forces the domain to stretch out as a
boundary bubble forms. Our main result then establishes that for prescribed boundary curves
that satisfy a separation condition, these boundary bubbles will not only be harmonic but will
themselves be branched minimal immersions. Together with earlier work, this in particular
completes the proof that the Teichmiiller harmonic map flow changes every initial surface
in R” spanning such boundary curves into a solution of the corresponding Douglas-Plateau
problem.

Mathematics Subject Classification 58E20 - 53C44 - 49Q05

1 Introduction and results

Let I'* be two disjoint C 3 Jordan curves in Euclidean space R",n > 2,andletug : Co — R"
be any given map from the cylinder Cy = [—1, 1] x S! that spans I'* in the sense that
uol(x1yxs! 18 a weakly monotone parametrisation of I+,

We consider a geometric flow, introduced by the first author in [19], that is designed to
change such an initial map into a parametrisation of a minimal surface spanning I'*. This
flow is modelled on the construction of Teichmiiller harmonic map flow for maps u from
arbitrary closed surfaces M into general target manifolds (N, gn) by P. Topping and the first
author from [21], see also [4] where such a flow was introduced for maps from tori. The flow
in [21] is defined as a natural gradient flow of the Dirichlet energy

1
E(u,g):i/ \dul; dv,
M
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viewed as a function on the space of equivalence classes of pairs (u, g) of maps u : M —
(N, gn) and metrics g on M, identified under the symmetries of E, see [21] for details.
The results of P. Topping and the first author [18,21-24] establish that this flow decomposes
every initial map uop : M — N from a closed domain to a compact Riemannian manifold
into critical points of the area functional, i.e. into (possibly branched) minimal immersions.

The analogous flow for maps from cylinders to Euclidean space tries to deform a given
initial surface into a solution of the Douglas-Plateau problem [5] of the existence of a minimal
surface of annulus type satisfying a Plateau-boundary condition. The results of [19] establish
the existence of a global weak solution of this flow for every initial data. In the case that
the corresponding three-point condition (1.6) does not degenerate as t — o0, the results of
[19] furthermore ensure convergence along a sequence #; — o0 to a critical point of the area
functional that spans the prescribed boundary curves I'* in the target, so that in these situations
the flow changes the initial surface into (possibly branched) minimal immersions as desired.

Here we investigate the remaining case of the asymptotic behaviour of the flow, i.e. the
case of a degeneration of the three-point condition. This is equivalent to more and more
of at least one of the prescribed boundary curves I'* in the target being parametrised over
smaller and smaller subarcs of the corresponding boundary curve of the domain. As we shall
see, this forces harmonic bubble(s) to form at the boundary of the domain, a phenomenon
that is excluded for many similar geometric flows, such as the harmonic map flow with
Dirichlet boundary condition or the flows of Chang-Liu [1-3], respectively Duzaar-Scheven
[6], that change disc-type surfaces into minimal discs, respectively discs with prescribed
mean curvature.

While the bubbling behaviour of almost harmonic maps on closed domains has been the
subject of intensive study over the past decades, see e.g. [14-16,28,29] and the references
therein, relatively little has been known about the formation and structure of boundary bub-
bles until very recently, when work of Jost, Liu and Zhu [12], respectively Huang, Wang
[8], established the energy identity and no-neck property for the bubble-tree convergence of
approximate harmonic maps satisfying free-boundary, respectively weak and strong anchor-
ing conditions, see also [13].

While the present work is also concerned with the analysis of boundary bubbles, its focus
is quite different as our main goal is to establish minimality of the obtained harmonic bubbles
and as we deal with Plateau-boundary data for which a (degenerating) three-point condition is
imposed. In contrast to free-boundary harmonic discs, which are always (branched) minimal
immersions, the bubbles we obtain are in general not conformal and can indeed a priori have
poles in no fewer than four points. Excluding the formation of such poles will be a key step in
the asymptotic analysis of the flow, and more generally the analysis of almost minimal maps.

For boundary curves that satisfy the separation condition, which we introduce in (1.11)
below and which is a weaker version of the separation condition that we recall in (1.12), we
obtain that the resulting bubbles formed by the flow are indeed minimal immersions provided
the three-point condition does not degenerate too quickly, a condition which can be easily
guaranteed by a suitable coupling of the equations of the flow, see (1.10) below.

As a consequence of our analysis and the results of [19], we thus obtain in particular

Theorem 1.1 Let 't C R” be any two disjoint C> Jordan curves satisfying the separation
condition (1.11) and let uy € H'(Co, R") be any initial map which spans T* in the sense
that uo|(1yx 51 is a (weakly monotone) parametrisation of T'F, and let gg € M be any initial
metric.

Then the global solution (u, g) of the flow (1.4) and (1.5) for coupling functions n+ satisfying
(1.10) changes uq into either a minimal cylinder or into two minimal discs in the sense
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that there exist times t; — 00 so that u(t;) converges to (branched) minimal immersions
Uso : Co — R", respectively ﬁoio : D = D{(0) — R, spanning I'* as is made precise in
[19, Theorem 2.7], respectively Theorem 1.3 below.

To state our main results in full detail, we first need to recall more details on the construction
and properties of the flow from [19]. As in the case of a closed domain, for M = Cg a cylinder,
the flow is defined as a gradient flow of the energy E on the set of pairs of maps and metrics
that are identified under the symmetries of E, i.e. conformal invariance E (u, g) = E(u, ezvg)
and invariance E (u, g) = E(uo f, f*g) under pull-back by diffeomorphisms f : Co — Cy.

We recall from [19] that the conformal invariance allows us to restrict the metric to the
set of hyperbolic metrics with boundary curves of prescribed constant geodesic curvature,
compare also [20]. We also recall that if we were to use all of the symmetries to simplify
the evolution of the metric component (rather than use some of the symmetries for the map
component instead), we could further restrict the metric to be an element of the one-parameter
family G of metrics which are obtained as follows: for each ¢ € (0, co), we consider the
standard hyperbolic collar

(Ce, g0) = ([=Ye, Yol x S', p7(s)(ds?® + d6?%)), (1.1)
where
pe(s) = 5= cos(=9) ", ¥y = Z (T — arctan(dl)), (1.2)

forafixedd > 0. The G, are now obtained as pull-back of g, by diffeomorphisms f; : Co —
[—Y¢, Ye] x ST which are chosen such that (Gy) is horizontal, i.e. moves L2—0rth0g0na1 to the
action of the diffeomorphisms, and whose precise form was given in [19, Lemma 2.4]. This
condition on Gy is equivalent to % G being an element of the horizontal space H (G ) which
is made up of all trace- and divergence-free tensors k for which furthermore k(v, ) = 0 on
dCy, if v, t are normal, respectively tangent, to dCy, so

H(Gy) = { [} (c(ds® — dbP)), c e R}.

While for the flow of Topping and the first author [21] on closed domains, the metric com-
ponent only moves in horizontal directions, for surfaces with boundary, we need to reserve
some of the symmetries coming from the diffeomorphism invariance to impose a three-point
condition on the map component, compare (1.6) below. As a result, one must also allow the
metric to move by the pull-back by select diffeomorphisms. In the case of the cylinder, these
are given by elements of the six-parameter family of diffeomorphisms

(hb,¢)(b,¢):((b+,¢+),(b*,qb*))eﬂzs where =D xR C C xR, D= D((0),

whose precise definition is given in equation (4.2) in [19, Section 4.1.1]. The key properties
of these diffeomorphisms are that their restrictions onto the boundary curves {£1} x S' are
described by the corresponding Mobius transforms, i.e. their angular component is such that

oo ELO) +b*

- i0 — 9T
= M= 4= ("), where My+ 4+ (2) = €' et

and that a change of the metric induced by a change of only (b, ¢), i.e. by tensors in
V+(g) = {% |a=0hzﬁb+’¢+)(8)’(l,—’¢—)GZ where (b+7 ¢+)|a=0 = (b+, ¢+) and g :h?b,(p)GZ}’

is supported in a fixed compact subset of the corresponding half-cylinder C* := (0, 1] x
S!, with the analogous statement holding also for variations V™ (g) induced by changes of

(b=, 7).
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The metric component of the flow hence evolves in M= {h;:’(ng s (b)) e P, L e
(0, c0)} whose tangent space splits LZ-orthogonally as

T,M=H eV @V (g). (1.3)

We can equip Tgﬂ with either the L2-metric or, more generally, with a product metric
2._ 2 -2 2 -2 2
Ih+ Lx.g+Lx gl = 1hl2cy g + 15 1Ex, 812y o + 121X 8122, 0

forh e H(g)andLyx_ g € yE (g), where we shall assume in the following that n. = r;(|bjE D
for a smooth function 7 : [0, 1) — R™ which is bounded from above.

We recall that the negative L?-gradient of E is described in terms of the Hopf-differential
®(u, g) by
~VgE = tRe(®(u, g)), where ®(u, g) = [|ux|* — luy|* — 2i(uy, uy)]dz%, z = x +1iy

for local isothermal coordinates (x, y) on (Cp, g). As the metric component of our flow
evolves by the corresponding gradient flow, the evolution equation for g is given by

b8 = L[ P Re(@(. 8)) + (b7 - PY " Re(@(u, 8)) + (671 - P~ (Re(®(u, )],
(1.4)

where P;I s Pg’ * refer to the L?-orthogonal projections onto H (g), respectively V*(g).
The map component of a solution of the flow is determined by evolving a map u in
Hll’ ,+(Co, R™) by the negative L2-gradient of the energy, and hence characterised by

/ (du, dw)y + du - wdvgdt > 0 forall w € L*([0, T1, T, H{ ,(Cp)) (1.5)
[0,T]xCy

where Hll!*(Co) is the set of all functions u € HIl (Cp), where
Hll (Co) i ={u e H! (Co, R™), with M|{i]}xsl a weakly monotone parametrisation of Fi}
which furthermore satisfy the three-point condition

w(Py™) = /%, j=1,2,3, where PJ"" = (&1, 2%) (1.6)

for some fixed distinct points Q/'* € I'*. Here T Hll .(Co) is the corresponding tangent
cone, compare [19, Section 2.2].

Remark 1.2 We note that the flow considered in [19] corresponds to the case that the cou-
pling functions n+ = 1, but observe that all results of [19] remain valid also for general
smooth coupling functions n+ = n(|b*|) with > 0 bounded from above, as explained in
Appendix A.1. We also note that we could furthermore introduce a coupling that relates the
speeds of the horizontal part of the metric and the map component, and that questions related
to this coupling in the closed case have been considered by Huxol in [9].

The results of [19] guarantee that for every ug € Hll’ «(Co) and go € /\7 there exists a
global weak solution

(u, ) € (L™([0, 00), H{ ,(Co, R™) N H' ([0, 00) x Cp)) x €™ ([0, 00), M)
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of (1 .4) and (1.5) which, furthermore, is stationary at the boundary of Cy except at the points
O * for almost every time ¢, compare (1.9) below, and which satisfies the energy inequality

t (5]
E(u, g)(t)—E(u, g)(t2) =3} / 18cull?ac, o) dF + / (—VoE(u, 8). 88)12(cy.) 4t
1.7
for almost every #; < fp, where by construction

(~VE. 08)2 = S[IPT Re(@)|2, + 12 1Py Re(@) 22 + n* | PY” Re(®))]I2,].
(1.8)

Here and in the following, we say that a map u : (€2, g) — R” satisfies the stationarity
condition (or say u is stationary) at a boundary curve y of a domain €2 except at finitely many
points P/ if there exists a neighbourhood U of y such that

41/Re(d>(u,g))Lngvg +/du(X) “Agudvg =0 (1.9)

for every X € I'(T'S2) such that X is tangential to y, X (P/) = 0 and supp(X) C U.

In the case that the diffeomorphisms (% 4); by which we pull back the metrics G¢ to
obtain g = hj Gg do not degenerate as t — 00, the results of [19] ensure that the flow
changes the 1n1t1a1 surface into either a (branched) minimal immersion from the cylinder
spanning both '® (if 2(#;) - 0) or into two (branched) minimal immersions from discs,
each spanning one of the boundary curves (if £(¢;) — 0), as is described in detail in [19,
Theorem 2.7].

In the present paper, we address the remaining case of the asymptotic behaviour, i.e. the
case that the diffeomorphisms &, 4 degenerate as in (1.15), which will result in the formation
of a harmonic boundary bubble. We shall furthermore see that for coupling functions n+ =
n(|bE|), for n € C*([0, 1), R*) so that

1
nE) < CA —§&) forsome C > 0and y > T (1.10)
-7
and for boundary curves I'* that satisfy the separation condition
r+n Sr+ = ¢ for every minimal disc Sp+ that spans I'T, (1.11)

these boundary bubbles must themselves be (branched) minimal immersions so that the flow
will again decompose the initial map into two minimal discs spanning '*.

We remark that our condition (1.11) is a weaker version of the separation condition that
requires

dist(ST, $7) > 0 for all minimal discs s* spanning r+, (1.12)

under which Struwe [27] developed a Morse theory for the energy of annulus type minimal
surfaces, there with the energy viewed as a function of the parametrisations of the boundary
curves via harmonic extension.

To state our result in detail, we first note that using the identification (u, g) ~ (uo f, f*g),
f a diffeomorphism, we can view a solution of the flow at times ¢ equivalently as either
maps u(t) that satisfy the standard three-point condition (1.6) but are defined on cylinders
(Co, g(t) = h;‘b’w(”.f;‘(ﬂg@(,)) whose metrics become singular as |b*| — 1, or as maps

ﬁ(t) = u(t) o (f[(,) [e] h(b,(f,)(t))_l . (Cg(,), g[(t)) e Rn, (1.13)
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on the well controlled cylinders (Cy(y), g¢(;)) that are described by (1.1), at the cost of the new
maps now satisfying a three-point condition that degenerates as |b*| — 1: namely for every
t € [0, oo0) the map @i(¢) satisfies a(z, P/*) = QJ/-* for the same fixed points Q7+ € I'*
in the target, but now for points PIE@) = (Yo, 67-% (1)) which are characterised by

it o
70 = My ) gy (€3 ). (1.14)

If [b%(1)] — 1, then &* := min; (disty,, (PX*(1), P/%(r))) — 0 so, after passing
to a subsequence #; — 00, at least two of the points P/ A1) will converge to the same
accumulation point which we denote by PZ. As we shall see below, this not only forces a
boundary bubble to form at Pf, but furthermore forces the cylinder to stretch out and become
infinitely long and the map to converge to a constant away from the concentration point(s)
PZ.

To be more precise, we shall prove the following result:
Theorem 1.3 Let 't € R” be any two disjoint C3 Jordan curves and (u, g) be a global
solution of Teichmiiller harmonic map flow (1.4), (1.5) (to some initial data (uo, go) €
Hll’ +(Co) x M ) which is stationary at the boundary except at the six points POJ * and satisfies
the energy inequality (1.7). Here n+ = n(|b¥)) for an arbitrary functionn € C*([0, 1), RT)
that is bounded from above.
Suppose that the three-point condition degenerates ast — o0 in the sense that

lim inf max(|6* (1)1, [b~(O]) = 1. (1.15)

Then
£(t) > 0ast — o0

and there exist t; — 00, chosen in particular so that (b, §)(t;) — (boo, Poo), SO that the

following holds true for the corresponding maps u(t;) : (Ce,), 8er;)) — R that are defined

by (1.13):

(i) The maps uf(sﬁ) = u(t;)(EYeq) F 5,6) converge locally on the half-cylinder
[0, 00) x S! to limit maps uZ, which are such that if |b%| = 1, then uZ, is constant;
while if |béco| < 1, then uéco can be extended across the puncture to a (branched) minimal
immersion on the unit disc. In both cases the convergence is weak Hl%)  -convergence
away from at most three points and strong Hllo (-convergence away from at most one
point, see Theorem 1.4 for details.

(i) Harmonic bubbles will form at P;t in the sense that if |boio| = 1, then the maps u(t;)
can be pulled back to a sequence of maps ﬁli : Q:—L — R” that converge weakly in H?
away from at most four points to a harmonic map ﬂzoto : D — R" that spans T'*. Here
the domains Qli_ are such that they exhaust the unit disc minus a point ﬁ*i € aD.

(iii) Moreover, if the coupling function satisfies (1.10) and the curves T'F satisfy the sep-
aration condition (1.11), then the bubbles ﬁ;to : D — R" are themselves (branched)
minimal immersions and indeed no Hopf-differential is lost near the boundary in the
sense that

||¢>(u;-JE)||L1([0.A]Xsl) — 0 forevery A > 0.

The above result will be a consequence of more general results, stated in Theorems 1.4
and 1.5 below, about the formation of boundary bubbles for sequences of almost minimal
maps from hyperbolic cylinders

(Ci.gi) = (I=Y7. Y1 x S', p (ds* + d6?)) for some ¢; € (0, £o). (1.16)
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where py, are as defined in (1.2), and Yl.i > 1 are so that
FG —al) <Y <FZ G —ab, (1.17)

for some fixed numbers £, c1,2 > 0. We note that this ensures that the metrics g; are uniformly
equivalent to the standard metric ds? +d6? on ‘chunks’ Kii’A = {(s,0) : YE—A <45 <
Y*)} of fixed length A > 0 at the ends of the cylinder and remark that (1.17) is satisfied, in
particular, for the cylinders (1.1) arising from the flow considered above. For related results
on almost minimal maps from closed (degenerating) surfaces we refer to [10,29].

Theorem 1.4 Let Tt < R” be two disjoint C3 Jordan curves, let (C;i, g;) be hyperbolic
cylinders asin (1.16) and (1.17) and let Ql'2 3+ e rtpe distinct points. Letu; € Hl(C, , 8i)
be a sequence of maps with uniformly bounded energy that satisfy the stationarity condmon
(1.9) atthe boundary curves of C; except at six points P] forwhich furthermore u; (P] )=
Q/F, j = 1,2, 3. Suppose that at least one of these three -point conditions degenerates in
the sense that at least one of

1

e = m;gl(distgi(Pij’i, PF¥)) >0, (1.18)
J

and that the maps u; are almost minimal in the sense that
1A guill2c, g + I PH (Re(@ i, g 12(c, g — O (1.19)
and, in the case that 8? - 0, also
IPY" Re(® i, 80D 12(c 1) = O- (1.20)
Then
i — 0

and, after passing to a subsequence, the maps u; converge in the following sense:

If one of the three-point conditions does not degenerate, say ¢; — 0 but 8?‘ — el >0,
then the maps ul+ :(s,0) — ui(Yi+ — s, 0) converge to a limit u;ro which may be extended
across the puncture to a ( branched ) minimal disc spanning T'", compare [19, Theorem 2.7].

On the half-cylinders C = CiN{xs > 0} on which the three-point condition degenerates
(which may be one or both of them), i.e. for which e — 0, we have

(i) The maps u 1 (s5,0) — u; (:I:Y :Fs 0) converge weakly in H[ ([0, 00) x S! \{P*i})
toa constant limiting map ujE = g% e T, where PjE (O, GZE) Sfor the mutual limit
Of of the angular components of at least two of the three points Pij *

(ii) Harmonic bubbles form at Pf in the sense that the maps converge to a harmonic map
ﬁoio : D — R”" spanning T'F after being pulled-back by suitable conformal diffeomor-
phisms fii : Qli — [0, Yi] x SL namely

it .= ui o f — u in HIOC(D \ {P D for some P € oD

1

where the f are defined on a sequence of domains SZ exhausnng D\ {P*i} and
furthermore converge to the constant map P * uniformly away from Pj'E Moreover, the
limit maps satisfy the stationarity condition (1.9) for all vector fields X € T'(T D) with
support supp(X) N {ﬁi} = () and with X(ﬁj )y =0, j=1,2,3, where PJE are the
limits of the points ( f ) l(P] i) and the convergence is also weakly in Hl o away
from these four points {P/ + Pi}
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Our main result, Theorem 1.5, then shows that a suitable relation between the decay (1.19)
of the tension and the horizontal part of the Hopf-differential on the one hand and the rate
of the degeneration (1.18) of the three-point condition on the other hand ensures that the
bubbles we obtain are not only harmonic but indeed describe minimal discs.

Theorem 1.5 Let o, R, Eg > 0, let I C R" be a C3 Jordan curve and let Ql’z’3 el
be distinct points. Let u; € H'(C;, gi) be a sequence of maps with E(u;, gi) < Eq from
cylinders C; which are as in (1.16) and (1.17) and for which £; < Efor some number
U(Ey, a, c1,2) > 0 that is determined by Lemma 2.8.

Suppose that u; | [~y }xs! are weakly monotone parametrisations of I which satisfy the

stationarity condition (1.9) at {=Y;"} x § ! except at three points Pl.j for which furthermore

u,-(PiJ) = Qj and denote by ¢; 1 < €; 2 < &; 3 the distances between the points Pij‘
If the three-point condition degenerates in the sense that

er.1 = min(distg, (P, P})) — 0,
i#k

and the maps are almost minimal in the sense that
8i =1 Aguill2c,.g) + 1Py Re(P i gD 72c, gy = O (1.21)

and if furthermore the mean values M,, (:i:Yii) = ﬁiyi}xsl u; d6 of u; at the ends of the
cylinder are so that

0 <o <My (=Y7) =M, (Y| <R, (1.22)
then the following holds true:
(i) The cylinders C; degenerate at a rate of
ti = C(I1Pg Re(@ (i, gD 72, gy + 188 1i I 2, ) = 0 (123)

C = C(Eyp, a, c1,2). In particular, after passing to a subsequence a harmonic bubble
forms as described in part (ii) of Theorem 1.4.
(i) If furthermore 8; — 0 fast enough so that for some q < /2,

1o1-1
g,8 70, (1.24)

then the harmonic limit map Ui », obtained by rescaling u; around the concentration point
Py as in part (ii) of Theorem 1.4 is weakly conformal and hence a (possibly branched)
minimal immersion spanning U'. Furthermore, if

111
(1 + [ log(ei1 /e 2)]) - £;38 1 — 0, (1.25)
then no Hopf-differential is lost near the boundary curve, namely
I i @1y~ —v +alxst.g) = O (1.26)
for every A > 0.

While the focus of the present paper is the analysis of boundary bubbles, it might be
worth noting that the above result applies without change also for almost minimal maps u;
satisfying a non-degenerate three-point condition, so gives e.g. the bound (1.23) on the length
of the central geodesic provided we a priori know that this length is sufficiently small.
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We note that if the maps u; in the above theorem also satisfy a (not necessarily degenerat-
ing) Plateau-boundary condition on the second boundary curve {Yi+} x S!, then we may drop
the assumption (1.22) in favour of imposing the separation condition (1.11), see Sect. 2.3 for
details.

The paper is organised as follows:

First, in Sect. 2, we provide the proofs of the results on almost minimal cylinders, Theo-
rem 1.4 and Theorem 1.5. The proof of the first part of Theorem 1.4 is based on a combination
of well-understood techniques from the analysis of bubbling for harmonic maps, developed
in particular in [14—16] and [28], with the Courant-Lebesgue Lemma and the regularity the-
ory of [6], while the proof of the second part relies on the use of a compactness result for
‘almost-meromorphic functions’, stated in Lemma 2.1 and proven in Sect. 3. A crucial part
of the present work is to establish strong control of the Hopf-differential, both globally on
the domain and in particular near the points where the three-point condition is imposed and
where poles can form. This control is used both to show that the formation of a boundary
bubble forces the domain to degenerate [in the setting of Theorem 1.5 with rate (1.23)], and
also to show that the Hopf-differential of the harmonic bubble is not just meromorphic but
holomorphic, and hence zero, thereby establishing that the bubble is indeed a (branched)
minimal immersion. To this end, we shall prove in Section 4 that the residues at potential
poles of almost minimal maps are controlled in terms of the tension and the horizontal part of
the Hopf differential and use this result, which is stated in detail in Lemma 2.7, to complete
the proof of Theorem 1.5 in Section 2.2. Based on these general results on almost minimal
cylinders, we may then derive the asymptotic convergence of the Teichmiiller harmonic map
flow (1.4), (1.5) in the final part 2.3 of Section 2.

2 Proof of the main results

In this section, we assemble the proofs of all of our main results, with some of the arguments
based on lemmas that are proven later on in Sects. 3 and 4. To this end, we will first establish
our main results concerning almost minimal maps from cylinders, stated in Theorems 1.4
and 1.5, and later apply these results to derive the claimed asymptotic convergence of the
flow in Sect. 2.3.

Before we begin with the proofs of our main theorems, we collect the results used in their
proofs.

To begin with, we recall that the stationarity condition implies that the trace of the Hopf-
differential on the boundary curve is real, see Appendix A.2 for details. As the horizontal
space H(g) can be equivalently characterised as the real part H(g) = Re(H(Cop, g)) of the
space H(Cp, g) of holomorphic quadratic differentials whose traces on dCy are real, the
assumption of smallness of the horizontal part PgH (Re(®;)) of the Hopf-differentials in our
main theorems can thus be thought of as ®; having only a small holomorphic part.

Conversely, the antiholomorphic derivative of the Hopf-differential is controlled in terms
of Agu, namely 10D (u, 8)||L1(Co,g) < CE(u, g)l/2 . ”Agu”LZ(CO,g)’ and a key tool in the
proof of Theorem 1.4 is the following compactness result for almost-meromorphic Sobolev
functions which is a generalisation of [21, Lemma 2.3] and which is proven in Sect. 3.

Lemma2.1 Let¢; € L1(22, C), Q C C open, be a sequence of functions for which

sup 131l 1 ) + 11110y < 0. @.1)
1
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Suppose that there exist sets S; = {pij,j = 1...N} C Q, for some N € N, so that
i € WIIO’C1 (Q2\ S;) and let Q' CC Q. Then, after passing to a subsequence,

1

e J)oo strongly in Ll(Q/), 2.2)

i =i — ) _res i (i) -
i TP

foralimiting function q;oo which is furthermore holomorphic in the case that || 3ol L@ — 0.
Here and in the following, the residues are defined by res j (@) = ﬁ lim, ¢ faD »hH ¢ dz.

We use in particular the following consequence of the above lemma, whose proof is also
provided in Sect. 3.

Corollary 2.2 Let ¢p; : Q@ = [0, A) x Sl > Cbhea sequence of functions for which (2.1)
holds and suppose that ¢; € WIL’CI (Q\ Si) away from sets S; = {pij, =123 c{0}xs!
and that the traces of ¢; on {0} x SV \ S; are real.

Suppose furthermore that the singular points converge to limit points pij — péo and that

¢ = boo in Llyo(R2\ Sxc)y  Seo = {plo, j = 1,2,3}.
Then
Ui = i — Za{'hpl, (2) = ¢oo in L}, (Q), (2.3)
J

where

hp(z) = z=s5+10 € Q, 2.4)

1
2tanh(3(z — p))’

and where the numbers al.j € R are chosen as follows:
If plo does not coincide with any of the other limit points ploo then al.] = 0, while in the case

thatk = |{l : péo = péo}l > 2, we set

; 1
al = res (¢i) — 3 Z Tes,y (¢1)- (2.5)
I:pho=pk

Remark 2.3 We note that since the functions h, by which we modify are such that
hy(z — p) = —hp(z — p), we have that fSl Re(h,(s +1i6))dO = O for every s € R. In
particular, the corresponding quadratic differentials &, - dz? on a cylinder ([—-Y~, Y] x
st ,oz(a,’s2 + d92)) have no horizontal part,

Re(dz2) /Y+

PHRe(h,dz?) = ———— 2p—2/ Re(h,(s +i0)) d6 ds = 0.
¢ g IRe(dz2)[12, J-y- s

-Y

The above compactness results will be crucial to gain control of the Hopf-differential
near the concentration points P where the bubbles form and where we have no chance of
obtaining strong enough convergence of the map to be able to gain the necessary control on the
Hopf-differential directly. They will also prove to be useful to analyse the Hopf-differential

near points where the three-point condition is imposed, whether these points pi./ converge to

a mutual limit point P or to distinct limits Po/(;i.
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Conversely, on half-discs D,Jg(xo) away from the points where the three-point condition
is imposed, we can control the H?-norm of maps using the following lemma which is a
consequence of the regularity theory developed by Duzaar-Scheven in [6], see in particular
[6, Theorem 8.3].

Lemma 2.4 (Corollary of [6, Theorem 8.3]) LetI" C R" be a C3 Jordan curve andletT' C T
be any sub-arc. Suppose u is an element of the space Hll,(D;f) of all H' functions on the
half-disc DY = {(x, y) € Dg 1y = 0} C C for which u|(y=0)npy is a weakly monotone
parametrisation of T and suppose that, for some f € LZ(D;),

/+ Vu - Vwdx +/+ w- fdx > 0forallw e T, HL(D}). (2.6)
DR DR

Then u € HZ(D;/z) and, for a constant C > 0 that depends only on I", the modulus of
continuity of u on Dg N {y = 0}, and an upper bound on the energy E(u, g),

J

‘We note that in contrast to [6, Theorem 8.3], we do not need to assume smallness of
energy in the above lemma since the maps we consider satisfy a linear differential inequality
of the form (2.6) rather than a non-linear version of this as considered in [6], though in fact
smallness of energy is in our case also just a simple consequence of the fact that there are no
non-constant harmonic maps from S2 to R, compare [19, Lemma 3.8].

We also recall the following well known consequence of the Courant-Lebesgue lemma
(see e.g. [11, Lemma 3.1.1] or [26, Lemma 4.4]).

C
IV2ul? dx < —/ |Vu|2dx+c/ | fI*dx.
R2 Dt Dt
R R

+
R/2

Remark 2.5 Given any Ey > 0 and any ¢ > 0 we may choose § = §(¢, Eo, ') e (o, %) SO
that for any map u € Hll (C) with E(u, go) < Eg and any pg € {:I:Yi} x S we have either
osc <egor osc <e,
{£Y£)xSTNB (po) {£Y£)xS'N(BS° (po))*

where here and in the following go = ds? + d#? denotes the flat metric on the cylinder.

In particular, if the three-point condition does not degenerate, then the traces u;|yc of
mapsu; € H, 11 (C) with uniformly bounded energy are equicontinuous. Conversely, if at least
two of the three points Pi] % at which we impose the three-point condition converge to a

common limit P*i then the traces on {£Y*} x S\ {P*i} converge to a constant locally
uniformly.

2.1 Proof of Theorem 1.4

Based on the tools collected above, we can now give the proof of our first main result. This
proof is done in two main steps, first establishing that £; — 0 and then analysing the maps
on the half-cylinders C;—r = C; N {#£s > 0}. This later part only uses properties of the
maps on Cl.i and is thus applicable also in more general situations, including the setting of
Theorem 1.5.

Proof of Theorem 1.4 Let u; : (C;i, g;) — R”" be as in Theorem 1.4. After passing to a
subsequence, we can assume that the angular components 91'/ * of the points Pij % at which

the three-point condition is imposed converge and denote by Q‘O’Qi the resulting limits. We
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furthermore recall that since the boundary curves are disjoint and the energy of the maps is
bounded uniformly, the length L; = YiJr + Y, of the cylinders is bounded away from zero
by a uniform constant and hence the numbers ¢; are bounded from above, compare (3.10) in
[19], so we may assume that £; — £, > 0.

We first prove that a degeneration of (at least one of) the three-point conditions forces the
cylinders C; to degenerate, i.e. £ to be zero. Suppose that this is not the case. After passing
to a subsequence, we may thus assume that Yl.i — Yoﬂg < oo and hence Pij = PC{<;i =
(FYZ, 04:F). We set So := (PLF} and Co = [-YZ, YE] x S'. This convergence allows
us to choose diffeomorphisms f; : Coo — C; so that fi(:I:Yojg Fs,0) = (j:Yl.i F s, 0) for
all s € [0, A] for some A > 0, i.e. with f conformal in neighbourhoods QF = {(s,0) :
ls F Yoio| < A} of the boundary curves, and so that the pulled back metrics converge

f7°8i = 8o = pi_(ds* + d6*) smoothly on Cec. (2.7)

The uniform H2-bounds on compact subsets of Coo \ Seo from Lemma 2.4 allow us to pass
to a subsequence so that on C \ Seo,

Vi 1= Ui o fi = Uso Weakly in Hlm and strongly in Wloc forevery g < oco. (2.8)

Viewing v; as maps from the limiting surface (Co, go0), We hence know that the correspond-
ing Hopf-differentials ® (v;, go0) = ¢ (vi, goc,)dz2 converge in particular

¢ (Vi 8oo) — (oo, goo) strongly in L}, (Coo \ Seo).

Combining the uniform H2-bounds on the maps with the convergence of the metrics (2.7)
and the assumption that [| A ¢+, v; lz2(co, rrany) = 1DguillL2(c; ) = 0 implies that

1Ag vill L2k g00) = 0 on compact sets K of Coo \ Soo

so that the obtained limit map is harmonic.
In the nelghbourhoods Q* of the boundary where f; is conformal and indeed fiei =
B; (s)zgc>o for some /3 — 1, we also have that

A vill 2% g0y < supﬂ A prgvill 2@, gy = CllAg Uil gy = 0
and hence in particular
18P (Vi goo) L1 (0% gy < CllAguVill2(0% g0y — O-
We also recall that the Hopf-differential depends only on the conformal structure,
D(vj, goo) = P(ui o fi, f781) = [P (u;, gi) on QF, (2.9)

so that the stationarity condition implies that the traces of ¢ (v;, go0) on dC; are real, compare
Appendix A.2. We may thus apply Corollary 2.2 to conclude that

Y =P (vi, goo) — ZaijhiY;HG-ji — oo strongly in LI(COO, 8c0)s (2.10)
i ’

where al.’ and /. are as in that corollary.

We now first consider the case that the three-point condition degenerates on both of
the boundary curves, i.e. that both é‘oio = lim; o sii = 0. In this situation, we obtain
from the Courant-Lebesgue lemma that the traces of v; on both boundary curves converge
to constant maps locally uniformly away from the two concentration points P2, compare
Remark 2.5. As the limit map u, is thus constant on both boundary curves and harmonic
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on the whole cylinder, it must be described by a parametrisation (proportional to arclength)
Uso(s,0) = a(s) of a straight line that connects two points O on the disjoint curves r+
and that is hence non-trivial. As a consequence, the Hopf-differential of the limit map takes
the form ¢ - dz? for some ¢ > 0, i.e. Re(® (oo, 8o0)) 1s a non-trivial element of H(g~) and
has thus in particular non-zero projection onto H (g~o).

This implies that

1Pg2, (Re(®(vi. o0l 12(C gy * O

as the projection of a quadratic differential W onto H(gso) is simply (Re(¥), Re(dz?))
2
%, so combining the strong L'-convergence of the modified Hopf-differentials
217,
Y;dz* obtained from Corollary 2.2 with the fact that the modification we made has no

horizontal part, compare Remark 2.3, implies that
P Re(®(vi, g0)) = Py (Re(Yidz?)) — PJ (Re(® (oo, 8o0))) # O,

where we note that these tensors are contained in the same one-dimensional space. However,
combining the fact that the metrics g and f;*g; are conformal in a neighbourhood of the
boundary, and the resulting relation (2.9), with the convergence of the maps and metrics (2.7),
(2.8) away from the boundary also implies that

| Py (Re(®(vi, go0)) — Pt (Re(@(i, £ 8l 12(cr gy = O
and hence that

lim || P77 (Re(® (i, goo)) l12(Coy gy = Him | P (Re(® (i, gDl 12c1 01y = O-
11— 00 11— 00

leading to a contradiction in this first case where we assumed that £o;, > Oand e}, = e = 0.

Suppose now that still £5, > 0 but that only one of the ¢ is zero, say ef, > 0 = e.
Repeating the above argument, we obtain a limit # : (Coo, goo) — R” which is harmonic,
constant on {—YL} x S', and whose Hopf-differential is real on the boundary curves and
holomorphic away from the points Pé/(;i where it might a priori have poles of order one.
However, since ¢, > 0, the assumptions of the theorem ensure that the projection of the
Hopf-differential onto the space VT (g;), corresponding to changes of (b, ¢ 1), tends to zero
as well. By [19, Lemma 3.3], compare also [ 19, Proof of Theorem 2.7(i)], this implies that the
stationarity condition holds for the limit u, for all vector fields supported in a neighbourhood
of the boundary curve {Y£} x S! rather than just for such vector fields that satisfy the
constraint Y(Pojc;+) = 0. By Remark A.1, this excludes the possibility that ® (¢, goo) has
poles at points on the boundary curve {Y1} x S'. On the other hand, as us is constant on
{—=YZ}) x S!, standard regularity theory yields that u, is smooth in a neighbourhood of the
other boundary curve {—Y} x S! so that ® (s, goo) may in particular not form any poles
there either. As the stationarity condition ensures that ® (¢, goo) is real on both boundary
curves, Re(® (10, g0)) is hence again an element of H(g~), and thus, by the argument
from above, must be zero.

This implies that the map u, : Coo — R” is harmonic, conformal, and constant on one of
the boundary curves and hence has vanishing normal derivative there, and so may be reflected
across that curve to give a map from (=Y, — Loo, Y1) x S which, by [7], is either constant
or a minimal immersion away from finitely many points. As Vo, = 0 on {—Y} x S', we
would thus need u, to be constant which contradicts the fact that u | Y5 xs! parametrises
rt.
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Having thus established that £; — 0 as claimed in the theorem and hence that Y= — oo,
we now turn to the analysis of the shifted maps uijE =u;o fii, fii(s, 0) = (£Y7 Fs,0),
which are defined on larger and larger sub-cylinders [0, Yii) x S of Cop = [0, o) X § I As
these maps and the following analysis use only the information on the corresponding half-
cylinders CiﬂE = {£s > 0} N C; and the fact that Yl.i — 00, we remark that the following
argument is applicable not only in the setting of Theorem 1.4 but also in the setting of
Theorem 1.5 (there once we have established that ¢; — 0).

Repeating the argument from the first part of the proof, now applied to u:—L instead of
v;, we conclude that, after passing to a subsequence, the maps converge away from S%, :=

{0, 615},

uljE — ufo weakly in leac(COO \ S;Eo) and strongly in Wlla’f (Cxo \ Séco), q < 00,

to alimit map uﬁo which is harmonic, has finite energy and which may thus be extended across
the puncture to a harmonic map defined over the disc using the removability of singularities
theorem of Sacks-Uhlenbeck [25].

The obtained maps ufo : Coo — R” have the following properties: if SS—LO = 0 then,
by Remark 2.5, the traces of u:—r converge locally uniformly to a constant ¢g* € I'* on
{£YZE) x ST\ {PZ}, so the limit map u is constant on the boundary of C, and hence on
the whole cylinder. Conversely, if one of the ¢ > 0, then the stationarity condition (1.9) is
satisfied for all vectorfields X with support in a neighbourhood of the corresponding boundary
curve {j:Y;} x S! and thus Remark A.1 ensures that <I>(uoio, 8oo0) 1s real and has no poles on
{0} x S!. Extending dJ(uffo, goo) by reflection to the whole of (—oo, 00) x S! gives a quadratic
differential which must be represented by a holomorphic function on (—oc, 00) x S which
has finite L!-norm, and must thus be zero, so we must have that have that <I>(ufo, gc0) = 0.
The limit map ui is thus not only harmonic but also conformal, and hence a (possibly
branched) minimal immersion. This completes the proof of part (i) of the theorem.

Before we analyse the bubbles, we note that since the diffeomorphisms fijE are conformal
on the whole cylinder and so, in particular, in a neighbourhood of the boundary, the analysis
of the Hopf-differential carried out in the first part of the proof still applies. Thus, after
modifying the Hopf-differentials as in Corollary 2.2, we obtain strong local L'-convergence
to the Hopf-differential of these limit maps uZ, i.e. to zero; see Corollary 2.6 below for a
precise statement.

We now analyse the bubbles forming at the concentration point P~ (if eg, = 0), with
the same argument of course applying also for u;r in the case that also el.+ — 0. We first
pull back the maps u;” : [0,Y;7) x § I — R” by the conformal diffeomorphism rel —
(s = —log(r),0) to annuli D \ D,, in the punctured unit disc and further pull-back the
resulting maps by the unique Mobius transform Mb,i o D — D which maps eiznT' to
A% so that, overall, the points Pl.] "~ at which we imposed the three-point condition are
pulled-back to ¢ As our subsequence was chosen so that the angles 91‘] "~ converge, we
know thatb;” — b, € dD and ¢;” — ¢,. Hence the resulting conformal diffeomorphisms
ff Q7 CcD—[0,Y7) xS 1 converge to a constant map away from the point 13*_ =
—b, € dD. The domains £2;, on which these diffeomorphisms, and hence the pulled back
maps ﬁ: =u; o ff, are defined, exhaust D \ {f’*_}. As all involved diffeomorphisms are
conformal, we note that the pulled-back metrics are given by 3,~2 gp for conformal factors 3,~
that converge to zero away from }?*_.
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The rescaled maps 7, are thus almost harmonic also with respect to the standard metric
on the disc in the sense that

1Agp iy |12k gp) < s;pﬂA,- IAguill L2, q) — O forevery K cC D\ {P},

so, using Lemma 2.4 and the Courant-Lebesgue lemma, we can conclude that a subsequence
converges to a harmonic map # o, which spans I' ~, where the obtained convergence is uniform

on the boundary and the usual local weak H? and strong W4 (¢ < 00) convergence away
21 j

from the concentration point P:: and away from the three points 175" atwhich the three-point
condition is imposed. We furthermore remark that [19, Lemma 3.11] excludes the possibility

-2mj
that energy concentrates at the three points €75 so that the maps also converge strongly in
Hlla (D \{P,}). Since the stationarity condition is invariant under conformal changes of the
metric, we thus obtain that f Re(®(#00, 80)) - Lxg dvg = 0 holds true for every vector

-~ -2m )
field X that is supported in D \ {P.} and that furthermore satisfies X (e‘TI) = 0, which
completes the proof of the theorem. O

Itis important to observe at this point that the above proof yields that, for i large, the Hopf-
pi— dz? obtained

in Corollary 2.2, which in turn is determined only by the residues of the Hopf-differential at

differential on C;” is essentially described by the modification i aij “h

the three points Pl.] . As observed above, this argument is applicable not only in the setting
of the result that we have just proven, but once we prove that the assumptions of Theorem
1.5 imply that £; — 0 also in that situation, so it is important to record that we have shown
in particular:

Corollary 2.6 Let u; be a sequence of maps from cylinders C; (as in (1.16) and (1.17)) with
uniformly bounded energy which are so that u; | [~y }xs! are weakly monotone parametri-
sations of a C* Jordan curve T and so that the u; satisfy the stationarity condition (1.9) at
(=Y} x st except at three points Pi'/ = (=Y, 91:/’_)for which furthermore u,-(P/) =0/,
QY23 ¢ T distinct points, and 91:”_ — 9({0’_.

Suppose that these maps are almost harmonic, i.e. that ||Ag u; ”Lz(Cf,gi) — 0, and that
¢ — 0. Let ¢ = ¢(ui, gi) be the functions describing the Hopf-differentials and let

m; = Zj aij’_hP:; be defined as in Corollary 2.6, i.e. in the case that all limits 04~
are distinct we have m; = 0, while if k € {2, 3} of these limits agree, say 0;5_ =...= 9&_,
then

mi =Y wes e (9i) e — G > res,,l_,-,-(¢,->>- D hpiee @11

I=j<k 1=<j=k I=j=<k

Then the Hopf-differentials of u; are essentially described by the corresponding quadratic
differentials M, = m;dz2 in the sense that, for every A < 00,

P @i, i) = My Nl 1 g—n ) —> Oasi — o0 (2.12)
on ‘chunks’ K;’A ={(s,0):0<Y; +s5 < A} of size A around {—Y; } X st
2.2 Proof of Theorem 1.5

The analysis carried out in the previous section implies that a lack of control on the residues
of the Hopf-differential at the points where the three-point condition is imposed is the main
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obstruction to the obtained bubbles being not only harmonic but indeed minimal. We will
obtain the required control on these residues as a consequence of Lemma 2.7 that we state
below and that will be proven in Sect. 4.
To state this lemma we consider as usual maps from a cylinder of the form
(C,g) = ([-Y.YTIx S', pj(s)(ds® +d6?)), where Y* = Z(Z —c*¢) > 1
(2.13)

+

for some ¢~ € [c1, 2], ¢ € (0, £p), where £, c] and ¢ are arbitrary fixed, positive constants.

Lemma 2.7 For any a, Eg, c12 > 0 there exists { = E(ot, Eo,c1,2) > 0, determined in
Lemma 2.8 below, so that the following holds.

Letu € HY(C,R") bea map on a cylinder as above for which £ < £ with E(u, g) < Epand
Agu € L2(C, g). Suppose that u satisfies the stationarity condition (1.9) on {—Y "} x §!
except at three points PY23 = (=Y ~, 07) which are ordered so that

6! =92—81 <6? <o’ =02+82f0rs0m(30 <& <& <2mw —(03 —91), (2.14)

that the Hapf differential ® = ¢dz? of u is in Wl (C \ {PY%3}) and that the mean values
M, (£YF) = fiyi}xsl u dé are so that

0<a<|M(=Y")— M, Y. (2.15)
Then the residues of the Hopf-differential at the points P/ satisfy the following estimates:
[resp1 (@) +resp2(¢) +resp3(P)| < CllAgullz2(c g + Cexp(— c||PH(Re(<I>))||L2(C o)
(2.16)
while for every g < /2

e1&2(|resp1(@)| + [resp2(P)|) + 5%|feSP3(¢)| =C [”A ””LZ(C o ||PI_I(Re(q)))”LZ(C g))]

2.17)

and

1
7)
fares s (9) — exres 1 (@] = Cy[IAgull e+ 1P Re@)I et ] 2.18)

for constants c, C, Cy > 0 that in addition to a, Eq and c > are allowed to depend on upper
bounds on |Agul| ;2 and |M, (=Y ™) — M, (Y™)| and for C, additionally on the choice of
q < ﬁ

In addition, we shall need that the length of the central geodesic of such a cylinder is
controlled by the following lemma, which establishes in particular the claimed rate (1.23) of
the degeneration in Theorem 1.5.

Lemma 2.8 Let (C, g) be a cylinder as described in (2.13), letu € H'(C,R") be a map for
which (2.15) is satisfied for some a > 0 and let ® be the corresponding Hopf-differential.
Then

IPI Re(®)) 12 q) = Ca?l? — CO? — Cl™ 1/2||Agu||L2(C o (2.19)
for a constant C that depends only on an upper bound Eq on the energy of u and the constants

c1,2 and £y in the definition of the cylinder.
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In particular, there exists a number £ = (o, Eo, ci,2) > 0 so that if the length £ of the
central geodesic of the cylinder C is no more than £ < ¢, then indeed

€< C(IPT Re(®)172c ) + 1 8gul72 (2.20)

(Cvg))’

where C now additionally depends on a.

In the special case of maps which are both harmonic and conformal, the above lemma of
course just reduces to the well known fact that the conformal structures of solutions to the
Douglas-Plateau problem are constrained in terms of the energy and «. The above lemma
should however not be seen as a generalisation of this fact to maps which are almost harmonic
and almost conformal as control on the horizontal part of the Hopf-differential and on Agu
is insufficient to control the full Hopf-differential ® due to the poles of ® in the points where
the three-point condition is imposed.

Instead, Lemma 2.8 will be a key ingredient in proving that almost harmonic maps whose
Hopf-differentials have small horizontal part are indeed almost conformal in situations where
a boundary bubble forms. While the proof of this lemma is given in Sect. 4, we first use it to
give the proof of our main result on almost minimal maps from cylinders.

Proof of Theorem 1.5 Let u; : C; — R”" be as in Theorem 1.5. We first note that since the
metrics g; are uniformly equivalent to the flat metric go near the boundary of the cylinders
C;, the assumption (1.24), respectively (1.25), involving the distances distg, (Pij , Pik ) of
the points Pl-j = (=Y, Qij ) at which the three-point condition is imposed is equivalent to
asking that (1.24), respectively (1.25), is satisfied instead for the differences between the
corresponding angles Gl.j . Following the notation from Lemma 2.7, we can thus consider
instead &; ; defined as in (2.14), i.e. after possibly reordering the points, assume that

i1 =07 0! <=6 —0? <21 — (6 —0}).

As the lengths ¢; of the central geodesics of the cylinders (C;, g;) are assumed to be no
more than the constant £ from the above Lemma 2.8, we first note that this lemma implies
that £; — O with the rate given in (1.23). As such we may apply the second part of the
proof of Theorem 1.4 to conclude that, after passing to a subsequence, the translated maps
u; 2 [0,Y;7) xS I 5 R” form a bubble at a concentration point P as described in detail
in Theorem 1.4.

As the rescaled maps #; = u; o f{ defined in Theorem 1.4 converge strongly in H' to
the harmonic bubble 7, away from P_ € 9D, we note that /i is conformal if and only if

1PG; . 80) 11k gy — Oforall K C D\ {P] ). 2.21)

Because the diffeomorphisms f:f 1 Q7 C D\ {ﬁ*_ }—10,Y7) xS ! are conformal and the
L'-norm of quadratic differentials is conformally equivalent, (2.21) is equivalent to

19 801 f (k). g0 = O forall K €C D\ (P]), (2.22)

where go = ds* 4+ d6>. As we shall see below, this in turn will follow provided we show
that

[| D (u;, g")”Ll(DMs,-J (P2).g0) 0 for every M < oo, (2.23)

and we shall prove that this is the case if the tension and horizontal part of Hopf-differential
decay according to (1.24). Moreover, we shall see that the slightly stronger assumption
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(1.25) ensures that no Hopf-differential at all can be lost on any finite length chunk around
the boundary curve, namely that

| P (u;, gl’)“Ll(l_yi*,_y[*_;’_[\lxslygl_) — 0 forevery A > 0. (2.24)
To prove (2.23) and (2.24), we note that, by Corollary 2.6, the claim (2.23) is equivalent to

M~ ||L,(DM%1 P2).g0) 0 for every M > 0 (2.25)

for the quadratic differentials M;” = ml._dz2 that are obtained by modifying the Hopf-
differentials & (u;, g;) = ¢,~d12 as described in Corollary 2.6, while (2.24) is equivalent to
proving that

||Mf||L1(Ki_,A.gO) — Oon Klf’A ={(s,0):0<7Y +s <A} (2.26)
In the case that &; 5 is bounded away from zero uniformly, Lemma 2.7 yields, for ¢ < +/2,
-1
[res p1.2 ()] < Csifll -8 7, 8; defined by(1.21),

allowing us to bound the coefficients ail =—a?= %(res pl (@) —resp2(¢;)) of the function

s =
m; = ati1 (hp1 — hp2) by which we modify the Hopf-differential. To estimate || M, |1 =
2|lm; || 1 over either V; := Dy, , (Piz) C C; ,oroverV; := Ki_‘A, we consider the shifted
functions m; (- — Pl.2) = al.l (h—ie; , — ho) on the corresponding domains Vi = Dy, 1 (0),
respectively \7, = [0, A] x S! and split these domains into the disc Dyg; ; = Dae;  (0) and
the rest of \7, resulting in

_ | 1
IM; Wiy = 4ai lllhollLips,, ) + Clail - lho = h—ie; It (vi\Dy,, )
=g 2
=G5 T+l by, )

where the second step follows using Taylor and the fact that ||oll L1 (p,) < Crfor0 <r < 1.
If (1.24) is satisfied we hence obtain that
_ 1-1
”Ml‘ ||L1(DM5i,1(Pi2)) < C(Si =0
while under the stronger assumption (1.25) we indeed obtain that
1

_ 1—1
1Ml g~y < C(lTog(er, DI + 1S, * — 0.

This completes the proof of the theorem in the case that the ; » are bounded away from zero.

To show that (2.26) holds true also in the case where all three points P[J converge to the
same limit point, i.e. that both ¢; 1 and ¢; » tend to zero, we note that in this situation, the
function m; from Corollary 2.6 is characterised by

m; (- — P?) =r1es p1 (§i) (hie; | — ho) + 18 p3 (i) (hie; , — o)
= 5 (X res i (90) (hiey, = 2ho + hie, ).
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To estimate the norm of this function over V; as above, we now split up the domain into the
disc of radius 4¢; 1, the annulus Dy, , \ Dase; | and the remaining cylinder to get

1Ml vy < Clires pi (@) (hiey, — ho) + 18 pa (60 Ghicy, — ho)l 1 7,
+C1 Y res i ()]
< Clresp @)1 - ol L1y, + Clresps @01 - ol i, )

+ Clresp1 @il - 1h—iei.; = holl 17,0y, ,\Dae; )

+ Clres 1 (60) (i, = ho) +1es s (#0) (hisy, = ROl 17, )
+CI Y res i (1)l

The last term in this estimate is controlled by (2.16) which, together with (1.21), implies that

C| Zrespij (#)] < C8; + Cexp(—cs; %) = 0.

Similarly, we may use (2.17) to bound the first two terms in the above estimate by

1

1—1
Ceialrespi (@) + Ceialres 3 (9i)] < Ce 8, =0

if the weaker assumption (1.24) of the theorem is satisfied.
Writing these three terms for short as o(1) and applying Taylor’s theorem to /i | — ho
and hie; , — ho, we may thus apply (2.17) and (2.18) to obtain that

1M N1 vy < Clresp @] 1127 15,0004, D, )
+ Cl = respi (9) - 1,1 +resps (@) - il - 12wy, )

+ Clirespy (@01 - €21 + Iresps @01 - €221 127 1117y, ) 0D

<Cleia 1220 0na, y Dy ) 108D+ 6,318 7 4 0(D),

In the case that V; = Dy, , (Pl.z) we take the norm of z~2 only over annuli Dpe; i \ Dag,
over which this function has bounded L' norm so that (1.24) again ensures that

-1
_ _1 2
”Ml ”LI(DMS,',I) < C8i728i — 0.

Conversely, the stronger assumption (1.25) allows us to deal with the additional log(e; 2/€;.1)
term arising if V; = Ki_’A so that in this case (2.26) follows.

Finally, to explain why (2.22) follows from (2.23), we recall that on 9D the angular
component of fi_ :D — [0,Y7) x S! is described by the Mébius transform My, 4, for

which My, 4, (ez%ji) = Ql.j . With angles ordered as in (2.14), we can easily check that
Arg(—=b;) € [0, T1and 1 — |b;| € [c-&i1,C - & 1]

12
% < C,(1—|b]) on D\ D,(~b),

we thus find that the image of K CC D \ {}3;_ = —byo} under My, 4, is contained in small

discs of the form DMKEI . (eigiz) C D and hence also fi_ (K) C Dpge; (Pl.z) for i sufficiently
large. ’ O

for some universal constants ¢, C > 0. As IM;’) d)(z)l =
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2.3 Asymptotic analysis of the flow

We finally turn to the analysis of the flow and the proof of Theorem 1.3. So let (u, g):¢[0,00)
be a solution of the flow (1.4), (1.5) as obtamed in [19] which satisfies both the stationarity

condition (1.9) at the boundary except at P0 (t) = (£Ye), =3 2 ) and the energy inequality
(1.7), which implies in particular that

[e.¢] o0
/0 1Agul 720, 0 41 + /0 1P Re(@(u, )12, o df <00 (227)

and

o0
/0 (b D2IPY T Re(@, D32y o + 1B D2 IPY Re(@(, @))I22c, ) dt < 00,

Hence if max(]b™|, |b~|)(t) — 1 ast — oo as assumed in the theorem, we may pass to a
subsequence of times #; — oo so that

18 gu () 120 + 1 PE Re(@ . ) i) 120y = O (2.28)

or, to be more precise, so that

8i = 1Agu()l 2y g) + 1Py (Re(P (u, g)(tz)))lle(Co g = 7 (2.29)

and so that
bE@W) — b, ¢T (1) —2mn; — ¢, (2.30)

where at least one of the |b§o| = 1, while in the case that |béco| < 1, moreover

1P (Re(@(u, )2y, 4 = O- (2.31)

Theorem 1.4 then immediately implies that £(¢;) — 0 and also yields parts (i) and (ii) of
Theorem 1.3 for the maps u; = it(t;) : (Ce(,), &er;)) — R defined in (1.13).

We also note that we can exclude the possibility that there is another sequence of times
t/ — oo along which £(f/) > v > 0 by applying the above argument to a sequence of
nearby times 7;, chosen as follows. Suppose that E(ti/) >v > 0.As |%| < C81/2||8,g||Lz,
see [19, Appendix A.2], there exists c(v, Eg) > 0 such that |[£(s) — £(1)| < % for all s, t with
Is — 1] < c(v). We can thus choose 7; with |7; — t/| < ¢(v, Eo) and hence £(7;) > 3, so that
the corresponding maps u(#;) are almost minimal in the sense that (2.28), (2.30) and (2.31)
hold at these #; which, by Theorem 1.4, leads to a contradiction.

In order to prove that the separation condition (1.11) and the choice of the coupling
function (1.10) ensure that the obtained boundary bubbles are also conformal and hence
indeed minimal, we first recall that we not only have an orthogonal splitting of the tangent
space to M as described in (1.3), but that, for |5 | # 0, the space of variations V' (g) induced
by changes of (b*, ¢1) furthermore splits L2-orthogonally

V¥ (g) =span{Ly,, g} @span{Ly, . &} @® span{Ly,, g}

into variations induced by changing only one of |b™|, Arg(b™), respectively ¢, where, for
example, Y|+ is characterised by Ly‘bﬂg = #hzﬁ,d)@” for g = h;d)Gg.
We may hence control the change of |b™| by

)
|14 Ly, gll2 < IPYT @@)l2 = n(bH D IPY" Re(@(u, ) 2.

@ Springer



Analysis of boundary bubbles for almost minimal... Page210f34 121

As we recall in Appendix A.1, we have ||Ly|b+‘g||L2(Co,g) > C(1—|bT)~!, see also Lemma
4.3 in [19], so we obtain that if the coupling function 7 satisfies n(ljﬁl) < C(1—1|bT )Y for
some y > 0, then & (1 — [b¥]) < C(1 — 6T+ - p(bH DI PY" Re(@ . )l 12(co.0-
Using the energy inequality (1.7), we may thus bound

t
(1= 7 =<C+ C/ N6 DIPY " (Re(®w, )l 2y < CVI - foreveryr > 1,
0
giving an a priori bound on the speed at which the Mobius transforms can degenerate of

1
11—t >c-t %, ¢>0. (2.32)

On the boundary, our diffeomorphisms are described by Mobius transforms whose derivatives
are bounded by ||[(M b ;)/ lpee < I_le, so we obtain the same control also on the rate at
which the three-point condition for our maps u; = u(#;) : (Ci, gi) — R" can degenerate:
the corresponding points P/ (t;) given by (1.14) are so that
_1
min disty () (P (1), PRY()) = e (L= 1pH@)]) = cot; 7
J

for a constant cp > 0 that depends only on the initial energy and the bound on the coupling
function. Of course, the above argument also holds for |67 |.

As the sequence of times #; was chosen so that (2.29) holds, we hence obtain that the
assumption (1.25) of Theorem 1.5 is satisfied as, with the notation from Theorem 1.5,

-1 Lo _lg-1
(1 + |log(ei,1/€i2)) 81_21 28 1< Cs;ll S T <Cot ot ? 0 — 0,

1 1 1

Q=

as (1.24) allows us to choose ¢ < /2 so that 1_% <y.

We finally remark that if the three-point condition degenerates on both boundary curves,
then both integrals converge f{ LyEyxst Wi dS — g% e I'* so that the difference of these

integrals is bounded (for i large) by, for example, ldist(l“ﬂ I'") > 0. The other main
assumption (1.22) of Theorem 1.5 is hence satisfied in this case for arbitrary disjoint curves
I'* not necessarily satisfying the separation condition (1.11).

It is hence only in situations where a boundary bubble forms on only one of the boundary
curves, say on {—Y; } x § ! while 81-+ - 0, that we shall use the separation condition (1.11).
In this case, we know from Theorem 1.5 that the maps ul.+(s, 0) == u;(Ye(t;) — s,0) :
[0, Ye(£;)) x S' — R” converge to a limit map uly : [0, 00) x S' — R” that can be
extended across the puncture to a parametrisation of a minimal disc S+ that spans '™, Letting

8o := dist(I"'", ST) > 0, we then choose A > 0 large enough so that osc lug'o < %80 and
{A}xS

recall that the convergence ul*(s, 6) — uZ, is in particular uniform on such a circle in the
interior of (0, o) x S!. Moreover, the trace of u;| =1y (1)) x st converges locally uniformly
to a constant map ¢~ € I'™ away from a point, compare Remark 2.5. For ¥;~ := Yy(;) and
Y;" = Yy, — A, we thus obtain that

lim ‘ Uj —/ ui’ = ‘2714]_ —/ uoo‘ > 1é,
{=00 " J{—y}xS! {r}xs! {A}xS!

so that also in this case assumption (1.22) of Theorem 1.5 is satisfied.
In both situations, we may thus appeal to this theorem to conclude that in the setting of
Theorem 1.3, any boundary bubble that is formed by the flow (1.4), (1.5) will again be a
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minimal immersion, and hence that the flow changes any initial data into either a minimal
cylinder or into two minimal discs. This completes the proof of Theorem 1.3.

3 Compactness of almost meromorphic functions

The goal of this section is to establish the compactness results for almost meromorphic
functions stated in Lemma 2.1 and Corollary 2.2. Our proof of Lemma 2.1 is based on the
arguments used in the proof of the L'-compactness result [21, Lemma 2.3] of Topping and the
first author for C! functions with bounded antiholomorphic derivatives, though we need to
proceed with more care as we are dealing with functions that are only ‘almost meromorphic’
rather than ‘almost holomorphic’. To this end, we use

Lemma3.1 Let ¢ € LY(Q), @ c C open, be so that there is a finite set of points S =
{p/.j=1...N} C Qsuchthat ¢ € W,;! (Q\ S) and suppose that |3¢|| ;1) < 00. Then

loc

forany Q' CC Q and any functionr : Q' — (0, %dist(aﬂ, Q) which is so that

inf  dist(p’, 9D, ()(2)) > 0,
zeQ, p/eS

the function

(®)
¢ (2) = ][ ¢ds — Z P i), resy (@) = o lim / pdz,
D () = pl — 2771 £0 0D, (p/)
(3.1)
approximates ¢ in the sense that
I =&V llLiey < 4n supr - 199 1.1 (3.2)
Here 67 (z) denotes the winding number of 9Dy (;)(2) around pl.
The proof of this lemma is based on the following standard result.
Lemma 3.2 [In the setting of Lemma 3.1, the standard Cauchy-formula holds, i.e.
‘ ¢dz=/ dpdz AdZ +2mi Z res ;i (@) (3.3)
QY
pleqy
for any Q' CC Q with smooth boundary, and there are sequences (Sij — 0 such that
res,i(¢) 1 .
/ respi@) 1 9@ ol dvy — Oasi — oco. (3.4)

w — pJ 2mi 3051.([,2/') w—z
i

For the sake of completeness, we include a sketch of the proof of (3.4) in the Appendix.

Proofof Lemma 3.1 Letr and ¢ be as in the lemma. Set r* := infg ; dist(p/, 0D, ;) (2)) >
0, let ¢ € (0, 2r*) be any fixed number, and set 2 := Q' \ |J D, (pf). We remark that for
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z € Q" and any such ¢, we have 3D, (;)(z) C €2 and note that this allows us to conclude
that, for any 8/ € (0, ¢),

N i
/ ’q&(w) - pas+ 3 LW 2@y,
Q; 9 »(w)(w) j=1 27i i

aD;;(pi) LW

< 4msuprl3gll L@\ b, (-
o

(3.5)

Indeed for C! functions this is a simple consequence of the inhomogeneous Cauchy-formula
and Fubini’s theorem, while for functions ¢ as in the lemma, we can approximate ¢ by C!
functions in W11(Q \ U Dy (p?)) and use that all integrals in (3.5) are taken over subsets
of the set Q \ | Dy, (p/) to pass to the limit.

Finally, applying (3.5) for §/ = Si’ given by Lemma 3.2, we see that (3.2) holds true,
initially with the L'-norm on the left hand side computed only over €, instead of €', but as
e € (0, 2r*) is arbitrary, hence indeed also for the original LY(')-norm. ]

With this result in hand, we can now complete the proof of the compactness result for ‘almost
holomorphic functions’. The argument below is based on the proof of Lemma 2.3 in [21].

Proofof Lemma 2.1 Let ¢; be a sequence of functions as in Lemma 2.1, and define

N
=D res, (@) ——
j=1

TP
to obtain a function with zero re51dues at the singular pomts p where after passing to a

subsequence, we may assume that p — pOo (where the pZ, are not necessarily distinct).
Given any ' CC  and any ¢ > 0, the main step of the proof is now to establish that
there exists a sequence of functions ¢? such that, for a constant C independent of ¢,

llgi — ¢l 1o < Ce, and (¢f) is precompact in L' (Q') foreache > 0.  (3.6)
i WLY(2) i

These qﬁf will be obtained as mollifications of the q}i, where we will mollify at different
scales at different points and with mollifiers supported on annuli rather than on balls due to
the singularities of the functions ¢;, resulting in piecewise smooth functions qu , rather than
smooth functions obtained by a standard mollification.

To prove (3 6) it suffices to consider £ > 0 such that mm(dlst(poo, poo)) > 16¢ for
distinct poo, poo, and i sufficiently large so that max; | p — pll < and we set Q) =
QN U D (poo)

We let n € C3°(D2 \ Dy, [0, 00)) be radially symmetric with fR2 n = 1and let 175 (x) :=
8%17(%) so that supp(n®) C Do\ Ds. We now approximate ¢; by mollifying at two different
scales, namely define

-~ ~ & ~
¢f =i xn8 - lg + i 1™ Tgng,.

We note that this can be seen as taking an average of the function (q;i)(“ (@) that was defined
b}: (3.1) in Lemma 3.1 for r defined below and furthermore note that, by construction,
(i) P @) = (¢;)*@) . To be more precise, if we set r(z) := § if z € Q] while r(z) := 4¢
if z € Q' \ €, then we have

2
¢/ (@) =2m / N (@)Y @ xdh.
1
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We note that, by construction, dist(pij, 0Dy (1) (2)) > 375 for every z € ', A € [1,2] and
i sufficiently large. We may thus apply Lemma 3.1 for each of the functions z = Ar(z), to
conclude that

2
18] = dill1ie) =27 /Q , ' /1 T0[@)* P @) = di@)]rdrdv: < C sup r(2) - 13611 -
zZ€
which implies the first claim in (3.6). The second claim of (3.6) follows from standard com-
pactness arguments applied to the sequence (¢~>f ) on the domains 2/ and '\ € respectively,
as on these domains, the functions q?f are uniformly bounded in C! for every fixed ¢.
Having thus established (3.6), we note that compactness of the sequence ¢; now follows
by a standard diagonal sequence argument. Furthermore, the fact that the limit is holomorphic
in the case ||d¢; || — 0 can be obtained exactly as in [21, Lemma 2.3], as the maps qgi have
zero residues. o

Proof of Corollary 2.2 We first remark that since the functions ¢; are real on the boundary,
they can be extended by reflection ¢ (—s + i0) = ¢ (s 4+ 16) to 2xi periodic functions on
the strip {z = s +1i0 € C : |s| < A} which are still in W"! away from the singular
points. We may then apply Lemma 2.1 on a neighbourhood of a fundamental domain, say of
V = (—A, A) x[—m, ] if none of the limit points coincide with i, to obtain that for every
subsequence of the ¢;, there exists a further subsequence for which the modified functions
$; defined in Lemma 2.1 converge strongly in L' ('), where Q' = (—A’, A') x [—7, 7],
A’ € (0, A) any fixed number. We then note that the uniform bound on ||¢; ||L1(Q/)+||43i (FAYRs%)

implies thatalso the functions ) jres,, (0i) ﬁ have bounded L !-norm which in turn yields
i z—ib);
a uniform bound on the sum(s)

Z res;! ().
1:6L, =0,

Passing to a subsequence so that the above sum(s) converge, we hence obtain a sequence of

~ J i .
functions, obtained as modifications by M;(z) = Y j afe 7 al.J as in the corollary, which
z—ib;

converges
¢ — M; — o strongly in L' ()

to a limit ¥, which is meromorphic with poles of order at most one at i6Z,, compare
Lemma 2.1.

As we already know that ¢; itself converges to ¢, away from S, it hence suffices to
show that ¢oo = Vo0, Or equivalently that

M; — 0locally in '\ Se, (3.7
and that
I1M; — M|l 1y — O (3.8)

where M;(z) =Y aijhie/ (z) is as in the corollary.

In the case that all limit points 10, are distinct, these claims trivially hold true as M; =
M; = 0. In the case that two or three of the limit points coincide, we remark that since the
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corresponding sums Y i a] = 0 and since the residues must be purely imaginary, we may
setw =i(z — i@iz), and instead consider functions of the form

m(w) = bl(wisl - i) +b2($ - w-tl-Bz)’

where 612 € (0, ¢) and b; » € R, respectively

m(w) :bl( +b2(

1 o [ 1
2tan(%(w—81)) 2tan(%w)) 2tan(%w) 2tan(%(w+82)))’

and show that the analogues of (3.7) and (3.8) hold true for any sequence of such functions
m;, m; for which ||m;| ;1 is bounded and for which the maximally allowed distance ¢;
between the points tends to zero.

To see this, we note that a short calculation, obtained by rewriting m as

mw) = sy - LG181 + b2d2)w + (b — b2)818]

and considering the norm of the function on suitable annuli and sectors around 0, implies
that

181 + b285| < C|loge|™" while [(by — b2)8182| < Cmax(81,82) < Ce

which immediately yields (3.7).
These estimates furthermore imply that |b; 2|12 < C and hence give that

i (w) — m(w)| < |b18) + badal - | f'(w)| + [1b1187 + 1521831 sup | £ (2)] < Cllog(e)| ™" + Ce,
7€

f the holomorphic function f(w) = 1 1 Hence m — m converges to zero not just

w Ztan(%w)'

in L' as needed in (3.8) but indeed uniformly on €’ as ¢ — 0. O

4 Controlling the residues of the Hopf-differential

The goal of this section is to establish the control on the residues of the Hopf-differentials
of our sequence of maps claimed in Lemma 2.7 and on the length of the central geodesic
claimed in Lemma 2.8 that were used in the proof of Theorem 1.5.

The proofs of both of these lemmas use the following standard angular energy estimates.

Lemma4.1 For arbitrary maps u € H'(C,R") from a hyperbolic cylinder (C, g) as in
(2.13), the following estimates on the angular energy v (s) := f{s}xsl lug|>d0 hold true.

For any number q < /2, we have
. Y+
9 (s) < CyEge 4™ —s54YD 4 ¢ / / eS| Agu*dodr.  (4.1)
—_y— Js!
In particular,

yt—1
/ p~*(luol + luso|?) d6 ds < CllAgul7s . o, + CEo 4.2)
—Y—+1J8s! ’
and, for every0 < A < min(YT,Y~) — 1,

A . _
/ / lug|? + |ugo|> do ds < CpZ(A)nAguniz(c o CEge~1min(Y™.Y)=A) - (4 3y
—A Sl ’
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Here and in the following, go = ds> + d0? is the flat metric on the cylinder, Ey denotes
an upper bound on the energy of u, and the constants C and C, depend on the numbers
1,2, Lo > Oin the definition of the cylinder, and of course on q for Cy.

Similar estimates on ¢ can be found e.g. in [10] and [28]. In addition we also need

Lemma4.2 Let (C, g) be a cylinder as described in (2.13) and let u € H'(C, R") be a map
for which (2.15) is satisfied for some o > 0. Then M,/ (s) := Jf{s}xsl u do satisfies

1
’ Y4 1/2
M, (s) — M, (0)] < \/27'() () 1Agullr2(c,g)s (4.4)
and so in particular
|M,(0)| > cla — CLY?| Agull 2c.q)- (4.5)

Moreover, we have upper bounds of

|M,(0)] < CE'2+ CO'2||Agull 12c g (4.6)
and, if M, (YT) — M, (=Y 7)| < R as in Theorem 1.5, then also

|M},(0)] < CER + CL* || Agullr2(c.q)- .7

The constants C, ¢ > 0 depend only on the constants c 2, £y in the definition of the cylinder
in (2.13) and an upper bound E on the energy.

Based on these two lemmas, which will be proven at the end of this section, we can now
give

Proof of Lemma 2.8 Let u be as in the lemma and let ® = ®(u, g). Then, by definition,

Re(dz?) 2 v -
Yl 2 |/ / (s = lugP)p~2 d6 ds
[Re(dz?)l 2 IRe(@z)ll;2 ')y [

where we continue to compute all norms and inner products over (C, g) unless indicated
otherwise.
To obtain a lower bound on this quantity, we estimate

1P (Re(®))[| 2 =|(Re(®),

)

s > =ML (O) | + (1t — M, (0)) (15 — M, (0) + 2M (0)) > LM (0)]> = Clus —M(0)*
> LML) = Clus — M (s)]” = CIML(©0) — ML (s)|”
(4.8)

and recall that
ct™3? < |Re(dz?)|| 2 < Ce73? (4.9)

holds true for some constants C, ¢ > 0 that depend only on the fixed upper bound ¢y on ¢
and the fixed positive numbers ¢ > from the definition of the cylinder in (2.13).
We may thus bound

C
1P Re(@)) 12 = € 2IMO) — 1 (4.10)
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for a remainder term / that we can bound, using Lemmas 4.1 and 4.2, as

[:=Ce3? / [luol? + lus — ML (5> + 1ML (0) — M., ()" ] p~2d6 ds

yt—1
< cz3/2/ /l(|u9|2+ luso|Hp ™2 d0 ds + CL*Eg + COP || Agull?, ~/p_1ds
—Y=+1JS

< COP - (Eo+ (1+ CO)||Agull7,) < COZ+ 2 Agul7,

where we used that [ p~! < C¢7? in the penultimate step.
Inserting this bound into (4.10) and using the lower bound (4.5) on | M/, (0)| thus yields

IPH Re(®@)) |2 = Ca?e'/> — CO¥* — Ce7' 2| Agul3,

as claimed in (2.19). So, provided =10, cy,c2, Eg) > 0is chosen sufficiently small, we
have that for £ < ¢

€< C(IPF Re(@)I72 + €7 1Agull;2).

which easily implies the estimate (2.20) claimed in the lemma. Indeed, if Al ol IIi2 <1,
then (2.20) is a direct consequence of the above estimate, while for £ < [|Agu ||i2 the claimed
bound (2.20) is trivially satisfied. ]

As a next step towards the proof of Lemma 2.7, we show

Lemma 4.3 In the setting of Lemma 2.7, the residues of the function ¢ describing the Hopf-
differential ® = ®(u, g) may be controlled by

1D respi @ =ClIAgull2c. ) +exp(—c/ I Py Re(@NI72 ¢ o) + E1Agull7 e ]
4.11)

while, forany 0 < A < L :=YT + Y~ and q < ~/2, furthermore

1Y e respi @) = Coe (I Agull2c o)+ 1 Agu 172 gy + 11 Py RPN oy +e40)
(4.12)

and hence, if || Agull ;2 + ||P;1(Re(<l>))||Lz < M for some M < oo, then

i0: 1-1 4(1-1
| eres ()] = Com[IlAgull 2l + 1P Re@)IS ] @13)

where as in Lemma 2.7 the constants ¢, C, C4 > 0 depend only on o > 0, upper bounds E
and R on the energy and on |M,,(YT) — M, (=Y )| and as usual the constants ci 7 in the
definition of the cylinder, respectively additionally on q (and M) for C, (respectively Cy pm ).

Remark 4.4 1t is useful to observe that the first claim (4.11) of this lemma still remains valid
if we drop the assumption of an upper bound R on |M, (Y+) — M, (—Y ~)|, while the only
adjustment needed for the other claims (4.12) and (4.13) is to replace || P;’ (Re(d)) ||‘£2 by

I P (Re(®))]2,.

Proof of Lemma 4.3 As the function u satisfies the stationarity condition on the boundary
curve {—Y 7} x S! (except at the points P/), we know that the trace of the Hopf-differential
on this curve is real so that we can extend ¢ by ¢(—Y~ — 5,0) := ¢(—=Y~ +s5,0) to a
meromorphic function on the cylinder (=Y~ — L, Y+) x [—m, 7] with poles only at PJ.
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We will prove the first two claims of the lemma by applying the Cauchy formula (3.3)
for ¢ and for e*¢ on suitable domains and estimating the resulting terms using Lemmas 4.1
and 4.2.

To prove (4.11) we apply (3.3) for [-2Y ™+ X, —A] x[—m, ] and integrate over A € [0, 1]
to get

0 1
ZNIZrest(fj))ng/ /1 |5¢|d9ds+‘/ /lqﬁ(—k,@)—q;(—x,@)d@dk‘
-Y-JS 0 N

<CllAgyitll 2c g0y + C’ / (uy, o) d6 ds
[—1,0]x 8!

=C|[Agyutll 12 g0 —|—C'/ (us — M) (s), ug) do ds
[~1.0]xS!

0 1/2 1/2
<CllAgull 2. + c(/ z?(s)ds) . (/ lugo|* do ds>
—1 [—1,0]xS!

where the last step follows by using Wirtinger’s inequality as well as the uniform upper bound
p < C(c1, £o) on the conformal factor.
Thanks to Lemma 4.1, we may thus bound for every ¢ < V2,

| resp, ()] <C(IlAgull2 + e~ + )| Agull7,)
where here and in the following norms are computed over (C, g) unless indicated oth-
erwise. If || P;{(Re(CD))IILz > ||Agull;2, then Lemma 2.8 tells us that Y~ > ¢! >
cl P (Re(®))[| ;7. If instead [|Agullz2 > [|PH (Re(®))]| 2. the same lemma yields that

Y= > c||Agu||222 and so certainly e 1 < Cl|Agull ;2. In either case, we have that

—c/IIPH (Re(@))]?
| Y res, @) = C(IAgul 2 +e ROz 2 u)2,).

This concludes the proof of (4.11).

To prove (4.12), we argue similarly, integrating now ¢ e*, z = s + 16, over the rectangles
[-Y " —A—X,—-Y +A+ A x[-m, 7], € [-1,0], where A € (0, Y_ — 1) is any fixed
number. Writing for short /5 :=[-Y~ + A — 1, =Y~ + A], this yields

1> resp,(¢) - €| <Ce™ | Agull +2/ ¢l (s, 0)do ds

IAXSI
SCeA||Agu||L2+CeA/ z?(s)ds—i—CeA/ ug|>do ds 414
In IpxS1

<Ce™|[Agull2 + Ce DA 4 Ce[Agul?, + Ce T,

where we applied Lemma 4.1 in the last step and where J := fIA st |Us |2d0 ds. Asin (4.8),
we now split

lug|> < CIML ()% + Clus — ML, (s)]* + C|M.(0) — M., (s)|*

into terms that can be bounded using Lemmas 4.1 and 4.2. Combined with Lemma 2.8 we
thus get

J< c/ lugo* + |M,(s) — M,,(0)[* d0 ds + C(R*(* + || Agull?,)
IxxS! (4.15)

< C(Iagul?s + | P Re(@) 4, +e712),
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where C = C(Ey, «, 1,2, R). Inserted into (4.14) this gives the second claim (4.12) of the
lemma.

To obtain the final claim, we first note that if § := [[Agu|; 2 + ||P;1 (Re(<l>))||‘z2 is no
less than some fixed number 69 = do(c1,2, €0, Eg) > O chosen later, then we can choose
A = 1 and obtain (4.13) immediately from (4.12). Conversely, for § < 6y we may choose
A = —1/glogé so that ehs =MD = 81_$ as, for 8o = d8p(c1,2, £o, Eo) suitably small,
Lemma 2.8 ensures that L > ¢§~1/2 > A. Hence, by (4.12),

1

|3 e resp (@) < C8(1 + [|Agull 2)e™ + Ce=PA < €y 8"
which gives the final claim of the lemma. O

We note that the only adjustment needed in the above argument in a situation where we
drop the assumption of a uniform upper bound R on |M, (Y ) — M, (—Y )| as considered
in Remark 4.4 is that we have a weaker upper bound on |M,,(0)| now given by (4.6) instead
of (4.7) so that in (4.15) and the subsequent estimates we need to replace || P;{ Re(P)) ||‘£2
by | P{! (Re(®)) 7.

Based on this lemma, we can now finally establish Lemma 2.7 which played a key role in
the proof of Theorem 1.5.

Proof of Lemma 2.7 We first remark that (2.16) was already proven in Lemma 4.3. To prove

the other claims, we may assume without loss of generality that 62 = 0, so 8! = —g,
03 =gy for0 < e < &1 < 27w — (g + &2). We set
1 1 1
Ag ey = | cos(—e1) 1 cos(er)

sin(—ep) O sin(ey)

and note that Lemma 4.3 gives bounds of C,, M(Sl_é for each of the components of the
vector Ag, ¢, - (resp1 (), resp2 (@), resP3(¢))T since the trace of ¢ on {—Y~ 410} x S!is
real, and hence the residues are purely imaginary. Here and in the following, ¢ < +/2 and
8 = llAgull 2 + | P (Re(@))]},-

As |det(Ag ¢,)| > caleg > 0 and

sin(&y) —sin(g) cos(er) — 1
A;{sz = det(Asl,gz)’l - | —sin(e1) — sin(ey) sin(eg) + sin(ez) — cos(ez) + cos(er) |
sin(ey) —sin(ey) —cos(ep) + 1
we have
(A;')ijl < Cepley! fori=1,2and j =1,2,3
while

I(A;',)ijl < Ces?fori =3and j =1,2,3

€1,€2

so the claimed estimate (2.17) on the residues immediately follows.
To obtain (2.18) we finally note that, by Lemma 4.3, | sin(—e&1)res p1 (¢)+sin(e2)res p3 (¢)|

1
< C81_5, so, combined with the estimate (2.17) we have just proven, we obtain that
|earesp3 (@) — e1respi(@)| <|sin(ez)resps(¢) — sin(ep)respi ()| + Cef|resP1 (@) + Cs%|respz (]
<cs'u

as claimed in the lemma. O
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For the sake of completeness, we finally include proofs of the auxiliary Lemmas 4.1
and 4.2.

Proof of Lemma 4.1 We follow closely the arguments of [23, Lemma 3.7] and [10, Lemma
2.5], which further simplify as our target manifold is R”. As in these papers, we first note
that

' (s) = 2/ luso|* + lugg|* — ugp - Agyu.
{s}x St
For any fixed ¢ < V2, we thus have, applying Wirtinger’s inequality in the second step,

9" (s) Zqz/ |M99|2—Cq/ |Agoul* ZqZMs)—cq/ |Agoul®
{s}><Sl {s}><Sl {s}xS‘

so that the first claim (4.1) follows from the maximum principle.

To bound the weighted integral of ¥ considered in (4.2) we observe that f e~ 151 p=2(5) ds
< Cp~2(t) for any s,t € [—Y ™, YT]. Integrating (4.1) and using Fubini thus allows us to
bound

/ p2lugl*d6 ds <CEo(p>(Y*) +p (=Y ") +C / p 2| Agyul® dug, w6

<CEo + CllAgul}a e

as claimed, where integrals are always computed over the whole of the cylinder unless
indicated otherwise and where we used in the last step that the conformal factor is bounded
away from zero uniformly at the ends of the cylinder. We note that the same argument, using
now also that p is increasing in |s|, implies the bound on the integral of ¥ claimed in (4.3).

To obtain the claimed estimates for us, we let n = n(s) € C°([—A — 1, A+ 1], [0, 1])
be a smooth cut-off function, chosen so that n = 1 on [—A, A] and |||~ < 2. As
[(p~2)| <2p~' < Cp~2, we can then bound

Pim [P dods = - [uo- 0,070 ) o ds
1
< 51 +C/,0_2|u9|2d6’ ds —/ugussgp_znzdéds,
so that, by (4.16),
1< CEy+ CllAgulfo g —2 / ugitsso p”>n* do ds
=CEo + C”Ag””iz(c’g) — 2/14(9 - 09 (Agyu — Mgg)p_2n2 df ds
_ 2 2y =22
=CEy+ C”Aé’””Lz(c,g) +2/ (uggAgou — |lugo|?)p " “n“dO ds

<CEo+ CIIAgulliz(c,g) + / |Agul>p™2d6 ds = CEy + CIIAguHiZ(C,g)

asclaimedin (4.2). Finally, the estimate for f luso|?in (4.3) may be obtained by the same argu-
ment, in this situation simply yielding an additional factor of sup <4 02(s) < Cp2(A).
O

We finally include a brief proof of the auxiliary Lemma 4.2.
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Proof of Lemma 4.2 As [ p? = %tan(s) < p(s) and M/(s) = 2n)~! f{s}xSl Agyu we
have that for every so € [-Y ~, Y]

50
/ / Agoudfds
0 s!

as claimed. To show the second claim, we observe that the assumption (2.15) ensures that

|M},(s0) — M, (0)| = (2m) " < @m) ' 2p(s0) 2 Agull 2. g)-

)as

)as
< LM+ [ 1,60 = M0 ds

a < ML/, (s)ds

so that the claimed lower bound on | M/ (0)| follows from the fact that L = YT + Y~ < g
the above estimate, and the fact that

y+ N2 3
/ p'%ds < 2<—) / cos™V2(t)dr < ce~V2.
Y- 2 0

Asalso L > % , we obtain by the same argument that an upper bound on |M,, (Y ) — M, (=Y )|
yields (4.7), while more generally we can bound

Y+
LIM,0)] < <2n>*1|/u,y d6 ds| +/ \ML(s) — M,(O)|ds < CEGLY? + Ce™2| Aqull 2.
.

so that (4.6) holds. m]
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Appendix A
A.1 Remarks on the flow

In this appendix, we explain why the results of [ 19] remain valid for general coupling functions
as considered in the present paper.

We first note as in [19], that also for general coupling functions 7., the evolution equation
for the metric reduces to a system of 7 ordinary differential equations (coupled with the
equation (1.5) for the map). Short-time existence of solutions can hence be obtained exactly
as in [19, Section 3] and solutions exist for as long as £ remains bounded away from zero
and (b, ¢) remains in a compact region of the parameter domain.

We then recall that the variations of the metric induced by changes of the parameters
(b*, ) are supported in fixed compact regions of C*, to be more precise in {=£s € [%, 11}
Hence the delicate argument of [19, Lemma 4.4] (which is based on [23]) that prevents
£ — 0 in finite time applies without change also for the flow (1.4), (1.5) with general
coupling functions, as this analysis is carried out only on the central part of the cylinder.

The argument of [19, Lemma 4.1] that (b, ¢) remains in a compact set of €22 also applies
with only minor changes as 7 is assumed to be bounded above. Indeed, we recall that the
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generating vector field Y+ is so that
1Ly, gllr2cog = CA = 16D (A1)

We note that while we would need this only for |b™| close to 1, and that this is the range of
|bT| for which (A.1) was proven in [19], a short calculation shows that (A.1) is indeed true
for all values of |bT| € [0, 1). So, with Ay = sup n+, we have that

+ = I +R 1
|%|b+||'||Ly|b+\g”L2(C0,g) <—||‘s}} 02 cy.0) %ﬂi'“ ‘5}} (Re@ - Mlzcop
A *
<T+"+||PS)} Re(®(u, )N 12(cy )

excluding the possibility that [p*| — 1 in finite time, compare also Section 2.3. Likewise,
the bound on %qbi in [19, Lemma 4.1] changes only by a factor of A .

Having thus explained why the arguments of [19] yield long-time existence of solutions
to (1.4), (1.5) for any fixed coupling functions 1+, we finally remark that the asymptotic
analysis of [19, Theorem 2.7] in the case that the three-point condition does not degenerate
is also unaffected by the choice of coupling function as, in this case, |b=(#;)] is contained in
a compact subset of [0, 1) so that n4 (¢;) is bounded away from 0. Along a sequence of times
t; as considered in [19, Theorem 2.7], we hence still obtain that

1A gu()ll 2 + IPH Re(@ @)l 2 + 1PY” Re(@(1))) ]2 — 0

so that the proof of [19, Theorem 2.7] applies without change.

A.2. Remarks on the stationarity condition and on almost meromorphic functions

In this part of the appendix, we present some of the properties and uses of the stationarity
condition (1.9) that was used extensively throughout the paper. We first recall that the sta-
tionarity condition can be thought of as a weak formulation of the condition that the function
¢ defining the Hopf-differential ® = ¢ (ds + id#)? of a map u : Cy — R” is real on the
boundary. Indeed, if u € H2(Co, g), then (1.9) is equivalent to faco Re(CD)(aa—s, X)do =0
by Stokes’ Theorem. So, as Re(®) = Re(¢)(ds? — d6?) — Im(¢)(ds ® d6 + db ® ds), the
stationarity condition reduces to f 9Co Im(¢)X? do = 0.

As all limit maps we obtain are harmonic, it is useful to observe that in this case, the
stationarity condition reduces to

/LXg -Re(®) dvg =0, (A.2)
and that we have the following.

Remark A.1 Let ® = ¢ dz> be a quadratic differential described by a function ¢ € L! (DHN
Wﬁ;cl (D;" \ {0}) such that E_)qb = 0. As observed above, if (A.2) is satisfied forall X € I (TD;")
with X (0) = 0, then ¢ isreal on D;" N{s = 0}\ {0}, so can be reflected to give a meromorphic
function ¢ on D, with only a possible pole at 0. Moreover, if (A.2) is satisfied for all
X € I'(T D,), then resp(¢p) = 0, and hence ¢ is holomorphic.

Proof To see that resg(¢) = 0, we apply (A.2) for X = n - %, where 7 is a cut-off function
such that n = 1 on Dj'/z. Now Stokes’ Theorem and (A.2) imply

|/ X91m(¢)d9|=|/ LXg-Re(¢)dvg|=|/ Lxg -Re(®)dvg| — 0ase — 0.
{s=¢} {s>¢} {s<e}
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Conversely, as ¢ is integrable, it cannot have a pole of order two or higher, and so we can
write ¢ (z) = % ~+ (), where v (z) is holomorphic and so bounded. As ¢ is real on {s = 0},
we must have a € R, so Im(¢) = ﬁ + Im(¥(z)) and Im(¢/) |s=0; = 0. Thus

e € 1
li X1 dol = li — 46| > i — 46 = Zla|,
tim [ gy do] = i | [ n S| 2 et [ gy do =51
(A3)

hence |a| = |resp(¢p)| = 0. O

Finally, for the sake of completeness, we provide

Sketch of proof of estimate (3.4) from Lemma 3.2 A short calculation, based on the gen-
eralised Cauchy formula, establishes that there exists a number §y9 > 0 such that for every
0<6 < éop,

J;

where C is a universal constant and where m/ (§) = I (p) — 217 faDé ¢dz — 0 as
8 — 0. Estimate (3.4) is then an immediate consequence of this bound, the integrability of
S faDa(pj) |¢| ds and the fact that § — (] log(S)I)’l is not integrable near zero. ]

res ;i (@) 1 ¢ (2)

w—pl 27 Jypspiy w—2

dz‘de§C8|log3|/ |¢|ds+C|mj(8)|,
9Ds(p/)
(A4)
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