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Abstract We define and develop an interior partial regularity theory for intrinsic energy min-
imising fractional harmonic maps from Euclidean space into smooth compact Riemannian
manifolds for fractional powers strictly between zero and one. Intrinsic fractional harmonic
maps are critical points of an energy whose first variation is a Dirichlet to Neumann map
for the harmonic map problem on a half-space with a Riemannian metric which can degen-
erate/become singular along the boundary, depending on the fractional power. Similarly to
the approach used to prove regularity for stationary intrinsic semi-harmonic maps, we take
advantage of the connection between fractional harmonic maps and free boundary problems
for harmonic maps in order to develop a partial regularity theory for the fractional harmonic
maps we consider. In particular, we prove partial regularity for locally minimising harmonic
maps with (partially) free boundary data on half-spaces with the aforementioned metrics up
to the boundary; fractional harmonic maps then inherit this regularity. As a by-product of
our methods we shed some new light on the monotonicity of the average energy of solutions
of the degenerate linear elliptic equation related to fractional harmonic functions.
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1 Introduction

Harmonic maps are critical points of the Dirichlet energy for mappings of Riemannian mani-
folds and are non-linear analogues of solutions to Laplace’s equation. They play an important
role in geometry and one of the most fundamental aspects of the theory of harmonic maps,
which is intimately connected to the geometry and topology of the codomain manifold N ,
is their regularity. For maps with domains of dimension 2, the Dirichlet energy is invari-
ant under conformal transformations of the domain; Hélein proved that harmonic maps are
smooth in this case [21]. The fact that harmonic maps are smooth on domains of dimension
two is also now a consequence of a result of Rivière [34] asserting the continuity of critical
points of functionals with conformally invariant Lagrangian on two dimensional domains.
Motivated by Rivière’s regularity result, at least partially, Da Lio and Rivière [8] introduced
the notion of fractional harmonic mappings of manifolds; on a domain of dimension one
these maps are critical points of functionals which satisfy a type of conformal invariance.
Such maps generalise the notion of both harmonic mappings of manifolds and fractional
harmonic functions (maps u with (−Δ)su = 0) and Da Lio and Rivière showed the maps
they considered are smooth on domains of one dimension.

Since the results of Da Lio and Rivière, fractional harmonic mappings of manifolds have
been increasingly studied in recent years, particularly pertaining to their regularity. The
purpose of this article is to extend the notion of a type of fractional harmonic map introduced
by Moser [30]. In particular, we generalise the notion of intrinsic 1

2 -harmonic maps to all
powers in (0, 1) and consider the regularity of a class of such maps. In contrast to other
types of fractional harmonic maps, the maps we consider are intrinsic meaning that they are
derived from an energy which only depends on the geometry of the target N and not on the
embedding of N into Euclidean space. As we will discuss in more detail subsequently, we take
advantage of the connection between free boundary harmonic maps and fractional harmonic
maps to establish regularity for the latter. The results we obtain and methods we use lay
the foundation for future studies into the connection between the regularity and singularities
of intrinsic fractional harmonic maps, free boundary harmonic maps and the geometric and
topological properties of N .

In order to motivate our definition of fractional harmonic mappings of manifolds, we first
outline the pertinent aspects of the theory of fractional harmonic functions from Euclidean
space into R. Let m ∈ N and R

m+1+ = R
m × (0,∞). Caffarelli and Silvestre [2] established

that, for given boundary data u: ∂Rm+1+ → R, solutions v:Rm+1+ → R of the Dirichlet
problem:

div(xβ
m+1∇v) = 0 in R

m+1+ and v|
∂Rm+1+

= u (1.1)

satisfy (−Δ)
1−β

2 u = ∂
β
m+1v := −(xβ

m+1∂m+1v)|
∂Rm+1+

, where (−Δ)s is the fractional

Laplace operator of order s ∈ (0, 1). One way to prove this result is to establish that

C ||(−Δ)
s
2 u||2

L2(∂Rm+1+ )
= inf

{
Eβ(v): v|

∂Rm+1+
= u

}
, (1.2)

where Eβ(v) := 1
2

∫
R
m+1+

xβ
m+1|∇v|2dx , s = 1−β

2 , C = C(m, s) and the infimum is taken
over a suitable Sobolev space. We conclude that the first variation of the preceding functionals,

respectively u �→ (−Δ)
1−β

2 u and u �→ ∂
β
m+1v, must therefore coincide. Furthermore, if we

wish to study u with (−Δ)su = 0, then we may equivalently consider minimisers (or even
critical points) of Eβ which satisfy v|

∂Rm+1+
= u and ∂

β
m+1v = 0. It further follows from
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(1.2) that fractional harmonic functions u:O → R, where O ⊂ ∂Rm+1+ is a domain, may
reasonably be defined as critical points of either ||(−Δ)

s
2 u||2

L2(O)
or inf{Eβ(v): v|O = u}

(which are no longer equivalent). In order to define intrinsic fractional harmonic maps, we
will work with a modification of the latter energy. For u:O → R, the first variation of
inf{Eβ(v): v|O = u} is the Dirichlet to Neumann map u �→ −(xβ

m+1∂m+1v)|O but we may
no longer identify this with a fractional Laplace operator. Moreover, v satisfies (1.1) but with
v|O = u.

We generalise the notion of fractional harmonic function to mappings u:O → N in the
following way, where O ⊂ ∂Rm+1+ is an open domain but not necessarily all of Rm+1+ and N
is a smooth compact Riemannian manifold. For technical reasons, we assume henceforth that
N is isometrically embedded in R

n for some n, which can always be achieved for smooth
compact N by the theorem of Nash [31]. The forthcoming definition will be made rigorous
at the beginning of Sect. 3. Define

I β(u) = inf
{
Eβ(v): v|O = u, v ∈ Ẇ 1,2

β (Rm+1+ ; N )
}

where β ∈ (−1, 1), Ẇ 1,2
β (Rm+1+ ; N ) := {v ∈ Ẇ 1,2

β (Rm+1+ ;Rn): v(x) ∈ N for a.e x ∈ R
m+1+ }

and Ẇ 1,2
β (Rm+1+ ;Rn) is the homogeneous Sobolev space with the square root of Eβ as the

norm. If we setO = ∂Rm+1+ and N is replaced byR then I β reduces to the energies considered
by Caffarelli and Silvestre. Moreover, I β is independent of the choice of embedding of N
into Euclidean space since Eβ is invariant under isometries of N . Hence we define critical
points of I β as intrinsic 1−β

2 -harmonic maps.
Our main result regarding fractional harmonic maps, see Theorem 3.8 in Sect. 3, asserts:

Theorem 1.1 Fix O ⊂ ∂Rm+1+ . When m ≥ 3 let β ∈ (−1, 1) and when m = 2 let β ∈
(−3−1, 1). Suppose u:O → N is a 1−β

2 -harmonic map that locally minimises Iβ inO. Then
u is smoothwith the possible exception of a set of points with vanishingm+β−1-dimensional
Hausdorff measure.

We observe that the domain of I β plays a role in the regularity theory. We will take the domain
of I β , again see Sect. 3 for details, to be the image of Ẇ 1,2

β (Rm+1+ ; N ) under some trace
operator. The domain we choose does not necessarily coincide with the fractional Sobolev

space H
1−β

2 (O; N ); there are circumstances in which it is possible to construct H
1−β

2 (O; N )

maps which do not have extensions to R
m+1+ . This can happen for topological reasons, for

example, such as when N is not simply connected [1]. We further note that the bound on the
Hausdorff dimension of the singular set stated in the theorem may not be optimal; the given
dimension is that which one would conjecture for u which are critical points of I β with respect
to inner and outer variations and is consistent with the scale-invariance of the problem. We
expect that the dimension bound on the singular set can be improved using our constructions
in Sect. 4 and similar arguments to Chapter 3 of [39] for example. It is also possible that our
choice to minimise over v ∈ Ẇ 1,2

β (Rm+1+ ; N ) may preclude some singularities, for example

the map v = |(x ′, xm+1)|−1(x ′, xm+1) is not an admissible extension of u = |x ′|−1x ′ as it
does not have finite Eβ energy. However, the arguments we use are local and we expect our
methods to apply to modifications of I β which allow extensions v with only locally finite Eβ

energy. The restriction β > −3−1 whenm = 2 is of a technical nature and results from the use
of a Sobolev embedding theorem to identify elements of Ẇ 1,2

β (Rm+1+ ;Rn) with functions,
so that we may require they take values in N almost everywhere. It is possible that this
restriction can be lifted with the use of an appropriate embedding theorem, we are not aware
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of such a result. An alternative would be to replace Ẇ 1,2
β with a Sobolev space of measurable

functions from the outset (as opposed to representatives of Cauchy sequences). We further
note that we do not consider the case m = 1 and will indicate our reasons subsequently.

To prove Theorem 1.1 we will take advantage of the connection between the extensions
v:Rm+1+ → N of fractional harmonic u:O → N and free boundary harmonic maps from
R
m+1+ to N , similarly to Moser [30]. Moser observed that whenever I 0 is differentiable at u,

its first variation is the Dirichlet to Neumann map Λ: u �→ (−∂m+1v)|O where v:Rm+1+ → N
is a harmonic map with I 0(u) = E0(v). Hence, intrinsic 1

2 -harmonic maps satisfy Λu =
(−∂m+1v)|O = 0, which may be interpreted as a zero Neumann condition on O for any v

which minimises E0 among maps with u as boundary values on O. Using this observation
Moser established (partial) regularity for stationary 1

2 -harmonic u:O → N , which are critical
points of I 0 with respect to inner and outer variations, using regularity theory for stationary
free boundary harmonic maps v:Rm+1+ → N up to the free boundary O. He showed the
maps he considered are smooth when m = 1 and smooth with the possible exception of a set
of vanishing Hausdorff dimension m−1 when m ≥ 2. The following theorem is an abridged
version of Theorem 4.3 in Sect. 4 which is our main theorem regarding the extensions v of
fractional harmonic u.

Theorem 1.2 Suppose u:O → N locally minimises I β and suppose v satisfies I β(u) =
Eβ(v). There exists sets Σint ⊂ R

m+1+ and Σbdry ⊂ O such that the following holds. The
set Σint is relatively closed in R

m+1+ and has Hausdorff dimension at most m − 2. The
set Σbdry is relatively closed in O and has vanishing m + β − 1-dimensional Hausdorff
measure. The set Σ := Σint ∪ Σbdry is relatively closed in R

m+1+ ∪ O and has vanishing
m+β −1-dimensional Hausdorff measure. Furthermore, we have v ∈ C∞(Rm+1+ \Σint; N ),

v ∈ C0,1
loc ((R

m+1+ ∪O)\Σ; N ) and for every multi-index α′ ∈ N
m+1 with α′

m+1 = 0 we have

Dα′
v ∈ C0,1

loc ((R
m+1+ ∪ O)\Σ;Rn).

Synonymously with our discussion following Theorem 1.1, we observe that the dimension
bound on the singular set of v in O may not be optimal. The main purpose of this article
is to give a proof of Theorem 1.2 which, to our knowledge, is new for all β �= 0. When
β = 0, existing theories actually improve the bound we have given on the dimension of
the singular set in O; this improvement comes from a dimension reduction argument as
mentioned previously. This translates to a lower bound on the dimension of the singular set
of u. In particular, as a consequence of the results of Hardt and Lin [18] and Duzaar and
Steffen [10,11], any v:Rm+1+ → N with I 0(u) = E0(v) are smooth up to O away from a
set in O of Hausdorff dimension at most dimO − 3. They also give examples of minimisers
with singular sets in O which have precisely the stated Hausdorff dimensions, thus showing
that the dimension bounds for the singular set are optimal.

We would like to take advantage of Moser’s observation regarding the connection between
fractional harmonic u and harmonic v with free boundary data in order to develop a theory
for intrinsic fractional harmonic maps for powers in (0, 1). In R

m+1+ we are free to utilise the
theory of harmonic mappings of manifolds to obtain the stated regularity in Theorem 1.2,
provided the energies Eβ correspond to the energy for harmonic mappings from (Rm+1+ , g)
to N for some metric g. To see that this is the case and facilitate our subsequent analysis, we
first recall the definition of harmonic maps for a class of conformally Euclidean metrics on
R
m+1+ . Let (Rm+1+ , g) be a smooth Riemannian manifold and suppose g = f (xm+1)δ, where

δ is the Euclidean metric, f :Rm+1+ → (0,∞) is smooth and xm+1 is the m + 1th Euclidean
coordinate. Let W 1,2(Ω; N ) := {v ∈ W 1,2(Ω;Rn): v(x) ∈ N for almost every x ∈ Ω},
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where Ω ⊂ R
m+1+ is open. If x1, . . . , xm+1 are Euclidean coordinates on Ω , the energy

density of v ∈ W 1,2(Ω; N ) is given by e(v) = f −1∑
i

〈
∂v
∂xi

, ∂v
∂xi

〉
:= f −1〈∇v,∇v〉 =

f −1|∇v|2, where 〈·, ·〉 is the Euclidean inner product in R
n . The energy of v, see [22], is

defined as

Eg(v) = 1

2

∫

Ω

f −1|∇v|2(det( f δ))
1
2 dx = 1

2

∫

Ω

f
m−1

2 |∇v|2dx . (1.3)

Observe that when m = 1, for this class of metric g we have Eg ≡ Eδ . The Euler–Lagrange
equations for Eg have the form

f − (m+1)
2 div( f

(m−1)
2 ∇v) + f −1A(v) (∇v,∇v) = 0 in Ω (1.4)

where A is the second fundamental form of N , A(v) (∇v,∇v) := ∑
i A(v) (∂iv, ∂iv)

and div,∇ are the Euclidean divergence and gradient operators. Critical points of Eg in
W 1,2(Ω; N ) with respect to the dependent variable (weakly) satisfy (1.4) and are called
(weakly) harmonic maps with respect to g.

When m ≥ 2 the Dirichlet energy Eβ is the energy for maps Rm+1+ → N where R
m+1+

is equipped with a Riemannian metric xα
m+1δ; it follows from (1.3) that β = α(m−1)

2 . When
m = 1, any metric of the form xα

m+1δ gives rise to the energy E0 in view of (1.3). It is

therefore not possible that Eβ corresponds to the energy of mappings from (Rm+1+ , xα
m+1δ)

for β �= 0 when m = 1 and, in this case, we would need a different approach. We do not
consider this further in this article and hence assume m ≥ 2.

Near the boundary O we would like to apply the theory for free boundary harmonic
mappings of Riemannian manifolds in order to obtain regularity for fractional harmonic
maps defined on O. However, for fractional powers 1−β

2 ∈ (0, 1) with β �= 0 (i.e fractional
powers in (0, 1) other than 1

2 ) the metrics xα
m+1δ may degenerate or become singular along

the boundary depending on β = α(m−1)
2 . Known theory for free boundary harmonic maps is

not applicable in this case and the main focus of this article will be to develop a regularity
theory in this context.

Without geometric constraints on the target manifold N (such as requiring N has non-
positive sectional curvature), harmonic maps and harmonic maps with free boundary data
may exhibit discontinuities. For harmonic maps defined on a domain of dimension at least 3,
free boundary data can have discontinuities on the boundary [11,17,18] and there are even
harmonic maps into spheres which are discontinuous everywhere [33]. However, it is possible
to establish (partial) regularity for harmonic maps which are minimising (or stationary) with
respect to free boundary conditions. This is the primary reason that we consider minimisers.

The methodology we use to prove our theorem is based on existing theories for minimising
(free boundary) harmonic maps. Similarly to these theories, our task is divided into two parts.
First we prove Hölder continuity, and then that this continuity implies higher regularity. To
establish Hölder continuity our main construction will be comparison maps. Such maps were
first used in the theory of harmonic maps by Morrey in order to prove interior regularity of
energy minimising harmonic maps on two dimensional domains [27]. Schoen and Uhlenbeck
later showed that on domains of dimension at least three, minimising harmonic maps are
regular away from a set of Hausdorff dimension at most the dimension of the domain minus
three [37]; they also used manifold valued comparison maps, which are more difficult to
construct on domains of dimension greater than two. The aforementioned results of Hardt
and Lin and Duzaar and Steffen for minimising free boundary harmonic maps are established
using methods based the constructions of Schoen and Uhlenbeck. We develop a (partial)
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generalisation of a construction of Luckhaus [23] as presented by Simon [39]; the advantage
of this construction, at least in existing theories of harmonic maps, is that it can be used to
show blow-up limits of sequences of minimisers are again locally minimising. We do not
establish this fact here but expect similar results to follow from our constructions. In Sect. 4
we construct comparison maps on a half-cylinder and use these to construct comparison maps
on half-balls in R

m+1+ centred on ∂Rm+1+ . We also establish monotonicity of a local, re-scaled
version of Eβ and estimates on the mean squared oscillation of the maps we consider via a
blow-up argument. The combination of these results is enough to prove continuity. In order
to prove Hölder continuity implies higher regularity (away from the singular set), we use
a version of harmonic replacement to show ∇v ∈ L∞ similarly to [38]. We then establish
energy decay for the derivatives of v via another blow-up argument which yields control of
the mean squared oscillation of the derivatives of v tangential to O.

To conclude our discussion, we compare the notions of intrinsic and extrinsic fractional
harmonic maps and remark on known results regarding their regularity. The first to con-
sider such maps were Da Lio and Rivière [8]. They analysed critical points u of the energy

||(−Δ)
1
4 u||2

L2(∂R2+)
in Ḣ

1
2 under the constraint that u takes values in the unit n − 1 sphere

S
n−1 almost everywhere. In other words, they considered critical points of the functional

L(u) = inf
{
E0(v): v|∂R2+ = u, v ∈ Ẇ 1,2(R2+;Rn), u(x) ∈ S

n−1 for a.e x ∈ ∂R2+
}

.

The maps Da Lio and Rivière considered fall into a larger class of maps known as extrinsic
(fractional) harmonic maps. In contrast to intrinsic fractional harmonic maps, the energies
for which extrinsic fractional harmonic maps are critical points depend upon the choice of
embedding of the target manifold N into some Euclidean space. Moser [30] proposed to
remove this dependence in the energy L so that only the geometry of N plays a role in the
theory. In particular, to define I 0(u) he minimised E0(v) over extensions v:Rm+1+ → N
with v|O = u as opposed to minimising over extensions v:Rm+1+ → R

n with v|O = u as is
done to define L(u) (for O = ∂R2+). This choice results in another fundamental difference
between intrinsic and extrinsic fractional harmonic maps which we illustrate for the power
1
2 (when β = 0). Observe that any v:R2+ → R

n for which L(u) = E0(v) satisfies Δv = 0
in R

2+ and is hence smooth on R
2+ (Δ is the usual Laplace operator on Euclidean space). In

contrast, any v:Rm+1+ → N for which I 0(u) = E0(v) is a (weakly) harmonic map from
R
m+1+ to N and satisfies

Δv + A(v)(∇v,∇v) = 0 in R
m+1+ . (1.5)

Unlike solutions of Δv = 0, solutions of (1.5) may have singularities in R
m+1+ in general. We

conclude extrinsic 1
2 -harmonic maps always have a smooth extension to R

m+1+ but intrinsic
1
2 -harmonic maps need not. The same is true for all powers in (0, 1).

The regularity theory for extrinsic 1
2 -harmonic maps has been extended to a range of

fractional powers for maps into general target manifolds N by Da Lio et al. [6,7,9,35,36]
etc, as well as Millot and Sire [25] for the power 1

2 . Millot–Sire and Yu have also considered the
regularity of extrinsic minimising fractional harmonic maps defined on the real line for powers
in (0, 1

2 ) [26]. The methods Da Lio, Rivière and Schikorra used to obtain regularity take
advantage of compensation phenomena, namely higher than expected regularity which can
be derived from the Euler–Lagrange equations for the energies they considered. The higher
regularity is revealed using a well chosen gauge transformation, in analogy to techniques
used in the theory of harmonic maps. One of the earliest applications of this technique
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was used by Hélein to prove regularity for harmonic maps from Riemannian surfaces into
spheres [20]. Millot, Sire and Yu instead consider the extensions of fractional harmonic maps
and exploit their connection with free boundary problems for harmonic maps, a method first
applied by Moser in the intrinsic case for 1

2 -harmonic maps to obtain (partial) regularity. To
our knowledge, aside from the results we establish in this article, the only results regarding
intrinsic fractional harmonic maps are those of Moser [30].

2 Preliminaries

The Euler–Lagrange equations for Eβ at critical points v:Rm+1+ → N are semi-linear with

leading order term div(xβ
m+1∇v). We will require Sobolev spaces suited to the analysis of

solutions of such equations, as well as the associated linear equation div(xβ
m+1∇v) = 0. For

β �= 0 the coefficient xβ
m+1 degenerates or becomes singular on ∂Rm+1+ depending on the

sign of β and the theory of uniformly elliptic second order partial differential equations does
not apply on sets overlapping ∂Rm+1+ . Viewing the coefficient xβ

m+1 as a weighting (density)
of the Lebesgue measure dx , we may instead appeal to the theory of weighted second order
degenerate elliptic equations. We recall and define the function spaces, and some of their
analytical properties, necessary for our analysis and then record properties of solutions to
div(xβ

m+1∇v) = 0 which we will require for the study of solutions of the Euler–Lagrange
equations of Eβ .

For every β ∈ (−1, 1), there existsC > 0 such that 1∫
B dx

∫
B |xm+1|βdx 1∫

B dx

∫
B |xm+1|−β

dx ≤ C for every ball B ⊂ R
m+1, where dx is the Lebesgue measure on R

m+1. Hence
|xm+1|β is a weight of Muckenhoupt class A2, see [19] for an overview of these weights.
Every such weight is canonically associated to corresponding Sobolev and Lebesgue spaces.
Let Ω ⊂ R

m+1. Define

L2
β(Ω;Rn) =

{
f : Ω → R

n : f is measurable,
∫

Ω

| f |2 |xm+1|βdx < ∞
}

which is a Hilbert space, see [5, Theorem 3.4.1], where the inner product of f, g ∈ L2
β(Ω;Rn)

is given by 〈 f, g〉L2
β (Ω;Rn) = ∫

Ω
〈 f, g〉 |xm+1|βdx where 〈 f, g〉 is the inner product of f and

g in R
n . Define

W 1,2
β (Ω;Rn) =

{
v: Ω → R

n : v, ∂iv ∈ L2
β(Ω;Rn) for i = 1, . . . ,m + 1

}

where ∂iv denotes the weak partial derivative of v with respect to xi . Proposition 2.1.2 of [40]
guarantees that W 1,2

β (Ω;Rn) is a Hilbert space with the inner product 〈v,w〉W 1,2
β (Ω;Rn)

=
∫
Ω

〈v,w〉 |xm+1|βdx + ∫
Ω

〈∇u,∇v〉 |xm+1|βdx for v,w ∈ W 1,2
β (Ω;Rn), where we write

〈∇v,∇w〉 =∑m+1
i=1 〈∂iv, ∂iw〉. We also define the Hilbert space W 1,2

β,0(Ω;Rn) as the closure

of C∞
0 (Ω;Rn) in W 1,2

β (Ω;Rn) with respect to the norm induced by the inner product on

W 1,2
β (Ω;Rn). When β = 0 we omit the subscript β from the preceding notation.
It is worth noting that, for every β ∈ (−1, 1)\{0}, approximation by smooth functions

in L2
β(Ω;Rn) and W 1,2

β (Ω;Rn) works in the same way as for the spaces L2(Ω;Rn) and

W 1,2(Ω;Rn). The details of this process are given in Theorem 2.1.4 and Corollary 2.1.5 in
[40]. The spaces W 1,2

β ,W 1,2
β,0 and L2

β also have essentially the same analytical properties, such

as completeness, reflexivity etc. as the unweighted spaces W 1,2,W 1,2
0 and L2 respectively.
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Moreover, since |xm+1|β is an A2 weight, many inequalities that hold for the spaces W 1,p ,
such as the Poincaré inequality, have counterparts for functions in W 1,2

β [19].

We will need to refer to the relationship between W 1,2
β and W 1,p and record it in the

following Lemma.

Lemma 2.1 Let β ∈ (−1, 1) and suppose Ω ⊂ R
m+1+ is open and bounded.

1. If Ω ⊂ R
m+1+ then W 1,2

β (Ω;Rn) = W 1,2(Ω;Rn).

2. If β ≤ 0 then W 1,2
β (Ω;Rn) ⊂ W 1,2(Ω;Rn).

3. If β > 0 then W 1,2
β (Ω;Rn) ⊂ W 1,p(Ω;Rn) for every 1 ≤ p < 2

1+β
.

Proof Part 1 follows as in this case the norms on W 1,2
β (Ω;Rn) and W 1,2(Ω;Rn) are equiva-

lent. Part 2 follows as in this case the W 1,2(Ω;Rn) norm is dominated by a constant multiple
(depending on Ω) of the W 1,2

β (Ω;Rn) norm. Part 3 follows from Hölder’s inequality. ��
2.1 Weighted homogeneous Sobolev spaces

Consider the Dirichlet energies

Eβ(v) = 1

2

∫

R
m+1+

xβ
m+1|∇v|2dx (2.1)

where β ∈ (−1, 1), which are well defined on

D+(Rm+1+ ;Rn) :=
{

φ | φ = f |
R
m+1+

for some f ∈ C∞
0 (Rm+1;Rn)

}
.

The energy Eβ is naturally associated to the following Sobolev space.

Definition 2.2 Letβ ∈ (−1, 1). TheWeightedHomogeneousSobolev Space Ẇ 1,2
β (Rm+1+ ;Rn)

is the completion of D+(Rm+1+ ;Rn) with respect to the metric induced by the square root of
Eβ .

The elements of Ẇ 1,2
β (Rm+1+ ;Rn) are, strictly speaking, equivalence classes of Cauchy

sequences and it will be necessary to have tangible representatives of these classes which
may take values in N .

Lemma 2.3 Let m ∈ N with m ≥ 2 and Ω be an open bounded subset of Rm+1+ . If
m = 2 let β ∈ (−3−1, 1) and if m ≥ 3 let β ∈ (−1, 1). Then the restriction opera-
tor I :D+(Rm+1+ ;Rn) → W 1,2

β (Ω;Rn): f �→ f |Ω extends to a bounded linear operator

I : Ẇ 1,2
β (Rm+1+ ;Rn) → W 1,2

β (Ω;Rn). Moreover,

||Iv||W 1,2
β (Ω;Rn)

≤ C ||v||Ẇ 1,2
β (Rm+1+ ;Rn)

(2.2)

for every v ∈ Ẇ 1,2
β (Rm+1+ ;Rn) where C is a positive constant depending on m and Ω .

Proof It suffices to establish that (2.2) holds for all φ ∈ D+(Rm+1+ ;Rn) as this space is

dense in Ẇ 1,2
β (Rm+1+ ;Rn) and W 1,2

β (Ω;Rn) is a Banach Space. Let φ ∈ D+(Rm+1+ ;Rn). By

definition we have ||∇φ||2
L2

β (Ω;Rn)
≤ ||φ||2

Ẇ 1,2
β (Rm+1+ ;Rn)

so we need to estimate ||φ||2
L2

β (Ω;Rn)

in terms of ||φ||2
Ẇ 1,2

β (Rm+1+ ;Rn)
.
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Suppose m ≥ 3. We have φ(·, xm+1) ∈ W 1,2(Rm;Rn) for every xm+1 ∈ [0,∞). Let
∇′ denote the derivative of φ with respect to x ′ for (x ′, xm+1) ∈ R

m × [0,∞), define
a = infΩ(xm+1) and b = supΩ(xm+1) and set l(xm+1) = Ω ∩ (Rm × {xm+1}). We apply
Fubini’s Theorem, together with Hölder’s inequality, for conjugate exponents m

m−2 and m
2 ,

and the Sobolev inequality in R
m to see that

∫

Ω

xβ
m+1|φ|2dx =

∫ b

a
xβ
m+1

∫

l(xm+1)

|φ|2dx ′dxm+1

≤ C (diam(Ω))2
∫ b

a
xβ
m+1

(∫

Rm
|φ| 2m

m−2 dx ′
)m−2

m

dxm+1

≤ C (diam(Ω))2
∫ b

a
xβ
m+1

∫

Rm
|∇′φ|2dx ′dxm+1

≤ C (diam(Ω))2
∫

R
m+1+

xβ
m+1|∇′φ|2dx .

We conclude that ||φ||2
W 1,2

β (Ω;Rn)
≤ C ||φ||2

Ẇ 1,2
β (Rm+1+ ;Rn)

.

In order to apply the preceding method of proof when m = 2 we would need to use the
Sobolev Embedding Theorem on R. However, in this case the theorem yields W 1,2(R) ↪→
L∞(R) and our previous method of proof is no longer viable. However, provided β > −3−1,
Corollary 2 in Section 2.1.7 of [24] implies that for every φ ∈ C∞

0 (R3;Rn), and therefore

by approximation every φ ∈ W 1,2
β (R3;Rn), we have

(∫

R3
|x3|3β |φ|6dx

) 1
3 ≤ C

∫

R3
|x3|β |∇φ|2dx .

The even reflection with respect to ∂Rm+1+ , denoted φ̃, of a φ ∈ D+(Rm+1+ ;Rn) is in

W 1,2
β (R3;Rn) and hence, applying Hölder’s inequality, we find

∫

Ω

xβ
3 |φ|2dx ≤ |Ω| 2

3

(∫

R3
|x3|3β |φ̃|6dx

) 1
3 ≤ C |Ω| 2

3

∫

R3
|x3|β |∇φ̃|2dx

= 2C |Ω| 2
3

∫

R
3+
xβ

3 |∇φ|2dx,

for every φ ∈ D+(R3+;Rn). We again conclude ||φ||2
W 1,2

β (Ω;Rn)
≤ C ||φ||2

Ẇ 1,2
β (Rm+1+ ;Rn)

. ��

Remark 2.4 We can further embedd Ẇ 1,2
β (Rm+1+ ;Rn) into W 1,p(Ω;Rn), where p depends

on β, for open bounded Ω ⊂ R
m+1+ using Lemma 2.1.

2.2 Compactness of the embedding W1,2
β

↪→ L2
β

We will require an analogue of the compact embedding W 1,2 ↪→ L2 in order to analyse re-
scaled limits of bounded sequences of Sobolev functions. Away from the boundary, that is, for
Ω with Ω ⊂ R

m+1+ , the compactness of the inclusion W 1,2 ↪→ L2 yields the compactness

of the inclusion W 1,2
β ↪→ L2

β in view of Lemma 2.1. We have not been able to find a

proof of compactness near ∂Rm+1+ in the literature so present one for completeness. Let
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Br (y) = {x ∈ R
m+1: |x− y| < r} and Qr (y) = {x ∈ R

m+1: |xi − yi | < r, i = 1, . . . ,m+1}
and define B+

r (y) = Br (y) ∩ R
m+1+ and Q+

r (y) = Qr (y) ∩ R
m+1+ for y ∈ ∂Rm+1+ .

Lemma 2.5 Let r > 0, y ∈ ∂Rm+1+ and suppose (v j ) j∈N is a sequence in W 1,2
β (Ω;Rn)

which satisfies sup j ||v j ||W 1,2
β (Ω;Rn)

< ∞ where Ω is either Q+
r (y) or B+

r (y). Then there

exists a subsequence (v jk )k∈N and a v ∈ W 1,2
β (Ω;Rn) such that

1. v jk ⇀ v in W 1,2
β (Ω;Rn)

2. v jk → v in L2
β(Ω;Rn)

3.
∫
Ω
xβ
m+1|∇v|2dx ≤ lim infk→∞

∫
Ω
xβ
m+1|∇v jk |2dx.

Proof For β = 0, a proof can be found in [39, Section 1.3, Lemma 1]. Otherwise, statement
1 follows from the weak sequential compactness of the unit ball in a Hilbert space and
statement 3 follows from statement 2 and the lower semi-continuity of a Hilbert space norm.
Hence, the main task is to prove statement 2. We may assume r = 1 and y = 0 since
statement 2 is invariant under rescaling and translations with respect to xi for i = 1, . . . ,m.
We further assume that Ω = Q+

1 (0) since if Ω = B+
1 (0) and the result is true on Q+

1 (0)

then we may compose with the bi-Lipschitz, piecewise C1 with piecewise C1 inverse map
Q+

1 (0) → B+
1 (0): x �→ maxi |xi ||x |−1x and deduce the statement on B+

1 (0).

Suppose (v j ) j∈N is a sequence withv j ∈ W 1,2
β (Q+

1 (0);Rn) for every j and which satisfies

sup
j∈N

||v j ||W 1,2
β (Q+

1 (0);Rn)
≤ M (2.3)

for some positive constant M . Relabelling if necessary, suppose (v j ) j∈N is also the subse-
quence which satisfies v j ⇀ v for v ∈ W 1,2

β (Q+
1 (0);Rn). Then

||v||W 1,2
β (Q+

1 (0);Rn)
≤ M. (2.4)

Let Q′ = (−1, 1)m , define Qi = {
(x ′, xm+1) ∈ Q+

1 (0): (i + 1)−1 < xm+1 ≤ 1
}

for

i ∈ N and let Q̂i = Q+
1 (0)\Qi = Q′ × [0, (i + 1)−1]. In view of (2.3), we have

sup j∈N ||v j ||W 1,2
β (Qi ;Rn)

≤ M for each i ∈ N. Hence, using the compactness of the embed-

ding W 1,2
β (Q1;Rn) ↪→ L2

β(Q1;Rn), we find a ṽ ∈ W 1,2
β (Q1;Rn) and a subsequence, which

we denote (v j ) j∈Λ1 for an infinite set Λ1 ⊂ N, which satisfies v j ⇀ ṽ in W 1,2
β (Q1;Rn),

v j → ṽ in L2
β(Q1;Rn) and almost everywhere as j → ∞ with j ∈ Λ1. Notice that (v j ) j∈Λ1

converges weakly to v in W 1,2
β (Q1;Rn) because (v j ) j∈N does and so, by the uniqueness of

weak limits, we deduce ṽ = v in Q1. Hence v j → v in L2
β(Q1;Rn) and almost everywhere

as j → ∞ as well. Repeating this process inductively for every i ∈ N, we obtain sequences
(v j ) j∈Λi with Λi+1 ⊂ Λi such that (v j ) j∈Λi converges to v in L2

β(Qi ;Rn) and almost
everywhere in Qi . Hence we can choose an increasing sequence of numbers (ki )i∈N with
ki ∈ Λi such that

∫

Qi

xβ
m+1|vk − v|2dx <

∫ 1
i
1

i+1
xβ
m+1dxm+1

2i
≤ 1

i2+β2i
(2.5)

for k ≥ ki . Then the sequence (vki )i∈N converges to v almost everywhere in Q+
1 (0) and in

L2
β(Qk;Rn) for all k ∈ N as i → ∞. Observe that

∫

Q+
1 (0)

xβ
m+1|vki − v|2dx =

∫

Q̂i

xβ
m+1|vki − v|2dx +

∫

Qi

xβ
m+1|vki − v|2dx . (2.6)
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By (2.5) we have
∫
Qi

xβ
m+1|vki − v|2dx < 1

i2+β2i
→ 0 as i → ∞ so we consider the

remaining term in (2.6). Using Chebychev’s inequality combined with Fubini’s Theorem, we
may choose ci ∈ ((i + 1)−1, i−1

)
such that

∫

Q′
|vki (x ′, ci ) − v(x ′, ci )|2dx ′ ≤ 1(∫ 1

i
1

i+1
xβ
m+1dxm+1

)
∫ 1

i

1
i+1

∫

Q′
xβ
m+1|vki − v|2dx . (2.7)

Now for each i ∈ N, we calculate
∫

Q̂i

xβ
m+1|vki − v|2dx ≤ 4

∫

Q̂i

xβ
m+1|vki − vki (x

′, ci )|2dx + 4
∫

Q̂i

xβ
m+1|v − v(x ′, ci )|2dx

+ 4
∫

Q̂i

xβ
m+1|vki (x ′, ci ) − v(x ′, ci )|2dx . (2.8)

We apply Hölder’s inequality and (2.4) to see that

∫

Q̂i

xβ
m+1|v(x ′, xm+1) − v(x ′, ci )|2dx =

∫

Q̂i

xβ
m+1

∣∣∣∣
∫ ci

xm+1

s− β
2 s

β
2 ∂m+1v(x ′, s)ds

∣∣∣∣
2

dx

≤ c1−β
i

1 − β2 c
1+β
i

∫ ci

0

∫

Q′
xβ
m+1 |∂m+1v|2 dx

≤ 1

1 − β2

1

i2 M
2. (2.9)

The bound for the integral on the left hand side of (2.9) but with v replaced by vki is identical.
We apply (2.7) followed by (2.5) to see that

∫

Q̂i

xβ
m+1|vki (x ′, ci ) − v(x ′, ci )|2dx ≤

∫ 1
i+1

0 xβ
m+1dxm+1

∫ 1
i
1

i+1
xβ
m+1dxm+1

∫ 1
i

1
i+1

∫

Q′
xβ
m+1|vki − v|2dx

≤ 1

(1 + β)i1+β2i
. (2.10)

Finally we combine (2.5), (2.6), (2.8), (2.9) and (2.10) and let i → ∞ to conclude the proof.
��

Remark 2.6 The method of proof of Lemma 2.5 is also valid for Ω of the form Ω = O×[0, r ]
for r > 0 and O ⊂ ∂Rm+1+ .

2.3 Energy decay for a linear Neumann-type problem

When examining the limit of re-scaled sequences of Sobolev functions, as in the proof of
Lemma 4.18, we will obtain a weak solution of the Neumann-type problem

div(xβ
m+1∇v) = 0 in B+

R (x0) and xβ
m+1∂m+1v = 0 in ∂B+

R (x0) ∩ ∂Rm+1+ , (2.11)

for some R > 0 and x0 ∈ ∂Rm+1+ . The rate of decay of the re-scaled energy of such solutions
on concentric half-balls centred at x0 will play a role in the proof of the aforementioned
lemma and we estimate this decay here.
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Lemma 2.7 Let β ∈ (−1, 1), x0 ∈ ∂Rm+1+ and suppose v ∈ W 1,2
β (B+

R (x0);Rn) satisfies

∫

B+
R (x0)

xβ
m+1〈∇v,∇ψ〉dx = 0 (2.12)

for everyψ ∈ C∞
0 (BR(x0);Rn). There exists a γ = γ (m, β) ∈ (0, 1) and a positive constant

C such that
( r

2

)1−m−β
∫

B+
r
2
(x0)

xβ
m+1|∇v|2dx ≤ Cr2γ (2.13)

for every r ≤ R
2 .

Proof The even reflection of v in ∂Rm+1+ , which we do not relabel, belongs to W 1,2
β (BR(x0);

R
n) and satisfies

∫

BR(x0)

|xm+1|β〈∇v,∇ψ〉dx = 0 (2.14)

for every ψ ∈ C∞
0 (BR(x0);Rn). A result of Fabes et al., see [13, Theorem 2.3.12], implies

the local Hölder continuity of v in BR(x0). In particular, there exists a constant C such that

|v(x) − v(y)| ≤ C |x − y|γ (2.15)

for some γ ∈ (0, 1) and every x, y ∈ B R
2
(x0).

By approximation, (2.14) holds for every ψ ∈ W 1,2
β,0(BR(x0);Rn). Let η ∈ C∞

0 (Br
(x0); [0, 1]) be a cutoff function with η ≡ 1 in Br

2
(x0) and |∇η| ≤ C

r for a fixed positive

C ≥ 2. We observe that φ = η2(v − λ) is an admissible test function for every λ ∈ R
n .

Testing (2.14) against φ and using Young’s inequality, ab ≤ δ a2

2 + b2

2δ
for a, b ≥ 0 and δ > 0,

we see that
∫

Br (x0)

|xm+1|βη2|∇v|2dx ≤ δ

∫

Br (x0)

|xm+1|βη2|∇v|2dx

+ C

δ

∫

Br (x0)

|xm+1|β |∇η|2|v − λ|2dx .

We choose δ = 1
2 , set λ = v(x0), recall |∇η| ≤ C

r and apply (2.15) to see that
∫

Br (x0)

|xm+1|βη2|∇v|2dx ≤ Crm+β−1+2γ (2.16)

for another positive C > 0, independent of r ≤ R
2 . Multiplying (2.16) by (2−1r)1−m−β

concludes the proof. ��
2.4 Boundary monotonicity formula for the average energy of solutions to the

degenerate linear equation

In order to utilise a version of the method of harmonic replacement, see Lemma 4.23 in
Sect. 4.12, we need to know how the average energy of solutions to div(|xm+1|β∇v) = 0
behaves on concentric balls. When these balls are centred on ∂Rm+1+ , we have the following.
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Lemma 2.8 Let BR(x0) ⊂ R
m+1 with x0 ∈ ∂Rm+1+ and R ≤ 1. Suppose v ∈

W 1,2
β (BR(x0);Rn) is a weak solution of div(|xm+1|β∇v) = 0 in BR(x0). If β ∈ (−1, 0], or

if β ∈ (0, 1) and v is symmetric with respect to ∂Rm+1+ in BR(x0), then

s−(1+m+β)

∫

Bs (x0)

|xm+1|β |∇v|2dx ≤ r−(1+m+β)

∫

Br (x0)

|xm+1|β |∇v|2dx

for every 0 < s ≤ r ≤ R.

Remark 2.9 It appears that Lemma 2.8 is a particular case of Theorem 2.6 of [3]. The function

ṽ(x ′, xm+1) =
{

1
1−β

x1−β
m+1 if xm+1 ≥ 0

− 1
1−β

(−xm+1)
1−β if xm+1 < 0

= (1 − β)−1xm+1|xm+1|−β

fulfils the hypothesis of Lemma 2.8, with the exception that it is not symmetric with respect to
∂Rm+1+ when β ∈ (0, 1). Furthermore, s−(1+m+β)

∫
Bs (0)

|xm+1|β |∇ṽ|2dx = C(m, β)s−2β .
It follows that ṽ does not satisfy the conclusion of the lemma (e.g on B1(0)) when β ∈ (0, 1).
Hence Lemma 2.8 does not hold in general when β ∈ (0, 1). This also potentially affects the
aforementioned theorem.

The remainder of this section is predominantly devoted to a proof of Lemma 2.8. We also
establish a similar monotonicity formula for balls BR(x0) with (x0)m+1 ≥ θR for θ ≥ 2 and
give explicit dependence on θ . Our method is essentially that used to show the well known
monotonicity results for the average energy of sub-harmonic functions, which is based on
the observation Δ|∇v|2 ≥ 0 if Δv = 0. When β = 0 our result reduces to the usual growth
formula for the average energy of sub-harmonic functions.

Define v∗ := |xm+1|β∂m+1v. This function will be integral to our proof of Lemma 2.8
because, as we will see in more detail later, it satisfies div(|xm+1|−β∇v∗) = 0 when
div(|xm+1|β∇v) = 0. The fact that if div(xβ

m+1∇v) = 0 in R
m+1+ then div(x−β

m+1∇v∗) = 0
was first observed by Caffarelli and Silvestre [2].

First, we consider the regularity of solutions of div(|xm+1|β∇v) = 0; the following
regularity results are known and have essentially been obtained in, for example [4]. We give
a proof regardless, as an illustration that the method of difference quotients works essentially
unchanged in the directions x1, . . . , xm , which we will take advantage of when considering
the regularity of manifold valued minimisers of Eβ .

Let i = 1, . . . ,m, Ω ⊂ R
m+1 and let h ∈ R\{0}. Define the difference quotient of

v: Ω → R
n by Δh

i v(x) = h−1(v(x + hei ) − v(x)) where ei denotes the i th basis vector in
R
m+1 and dist(x, ∂Ω) < |h|.

Lemma 2.10 Let Ω ⊂ R
m+1 be open and v ∈ W 1,2

β (Ω;Rn). Then for any i = 1, . . . ,m

we have Δh
i v ∈ L2

β(K ;Rn) for any compact K ⊂ Ω , provided |h| < dist(K , ∂Ω). In
particular,

∫

K
|xm+1|β |Δh

i v|2dx ≤
∫

Ω

|xm+1|β |∂iv|2 dx .

Proof This proof follows the proof of Lemma 7.23 in [15]. We assume that h ≥ 0, the
argument for negative h is analogous. Let v ∈ C1(Ω;Rn)∩W 1,2

β (Ω;Rn). Using the notation

Kh = {x ∈ R
m+1: dist(x, K ) ≤ h} and noting Kh ⊂ Ω , by Fubini’s Theorem and the

compactness of K , for h with |h| < dist(K , ∂Ω) and any i = 1, . . . ,m, we calculate
∫

K
|xm+1|β |Δh

i v|2dx ≤
∫

K
|xm+1|β 1

h

∫ h

0
|∂iv(x + tei )|2 dtdx
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≤ 1

h

∫ h

0

∫

Kh

|xm+1|β |∂iv|2 dxdt

≤
∫

Ω

|xm+1|β |∂iv|2 dx .

We deduce the result for v ∈ W 1,2
β (Ω;Rn) by approximation. ��

Next we prove a criterion for the existence of weak derivatives in the directions xi for
i = 1, . . . ,m.

Lemma 2.11 Suppose Ω ⊂ R
m+1 is open and bounded and let v ∈ L2

β(Ω;Rn). For any

i = 1, . . . ,m, suppose there exist constants M > 0 and h̃ > 0 such that
∫

K
|xm+1|β |Δh

i v|2dx ≤ M

for every h �= 0 with |h| < h̃ and compact K ⊂ Ω with dist(K , ∂Ω) > |h|. Then the weak
derivative ∂iv exists in Ω and satisfies

∫

Ω

|xm+1|β |∂iv|2 dx ≤ M.

Proof First choose a sequence (hk)k∈N with hk → 0. We discard hk with |hk | ≥ h̃ and re-
index to k ∈ N. Define v

hk
i (x) = Δ

hk
i v(x) when x ∈ Ω and dist(x, ∂Ω) ≥ 2|hk | and v

hk
i = 0

otherwise. It follows that {vhki }k∈N is a bounded sequence in L2
β(Ω;Rn). Hence there is a

subsequence, which we index again by k ∈ N, such that hk → 0 and v
hk
i → ṽi weakly in

L2
β(Ω;Rn). Furthermore, this convergence, together with the weak lower semi-continuity of

a Hilbert space norm, guarantees that
∫
Ω
xβ
m+1 |ṽi |2 dx ≤ M . Note that Hölder’s inequality

implies L2
β(Ω;Rn) ⊂ L p(Ω;Rn) for some p ∈ (1, 2] depending on β. Thus each linear

functional on L p(Ω;Rn) restricts to a linear functional on L2
β(Ω;Rn) and v

hk
i converges

to ṽi weakly in L p(Ω;Rn). As in the proof of Lemma 7.24 in [15], it follows that ṽi is the
weak derivative ∂iv. ��

We now establish the regularity properties of solutions of div(|xm+1|β∇v) = 0 needed
for the proof of Lemma 2.8.

Lemma 2.12 Letv ∈ W 1,2
β (BR(x0);Rn)and supposev is aweak solutionof div(|xm+1|β∇v)

= 0 in BR(x0). For every r < R and i = 1, . . . ,m it follows that ∂iv ∈ W 1,2
β (Br (x0);Rn),

∂iv is a weak solution of div(|xm+1|β∇v) = 0 in Br (x0) and ∂iv is locally Hölder con-
tinuous in BR(x0). In addition, v∗ ∈ W 1,2

−β (Br (x0);Rn) and v∗ is a weak solution of

div(|xm+1|−β∇v∗) = 0 in Br (x0) and v∗ is locally Hölder continuous in BR(x0).

Proof Elliptic regularity theory shows that v is smooth in BR(x0)\∂Rm+1+ [15]. Observe that
v satisfies ∫

BR(x0)

|xm+1|β 〈∇v,∇φ〉 dx = 0 (2.17)

for every φ ∈ W 1,2
β,0(BR(x0);Rn) by approximation. Let r < R and choose η ∈ C∞

0 (BR(x0))

with η ≡ 1 in Br (x0), η ≡ 0 in BR(x0)\Br+ R−r
2

(x0), 0 ≤ η ≤ 1 and |∇η| ≤ C
R−r . Let Δh

i v
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be the difference quotient of v for some i = 1, . . . ,m and suppose |h| < R−r
4 . Then

φ = −Δ−h
i (η2Δh

i v) ∈ W 1,2
β,0(BR(x0);Rn) is an admissible test function for (2.17) and an

application of Young’s inequality, ab ≤ δ a2

2 + δ−1 b2

2 for a, b ≥ 0 and δ > 0, together with
an integration by parts and Lemma 2.10 implies

∫

BR(x0)

η2|xm+1|β |∇Δh
i v|2dx = −

∫

BR(x0)

2η|xm+1|β
〈
∇Δh

i v · ∇η,Δh
i v
〉

dx

≤ C

R − r
δ

∫

BR(x0)

η2|xm+1|β |∇Δh
i v|2dx

+ C

R − r
δ−1

∫

BR(x0)

|xm+1|β |∂iv|2dx .

Since η ≡ 1 in Br (x0), choosing δ = R−r
2C we deduce that

∫

Br (x0)

|xm+1|β |∇Δh
i v|2dx ≤ C

(R − r)2

∫

BR(x0)

|xm+1|β |∂iv|2dx .

The right hand side above is independent of h and thus Lemma 2.11 implies the weak deriva-
tive ∇∂iv exists and is in L2

β(Br (x0);R(m+1)n). Hence ∂iv ∈ W 1,2
β (Br (x0);Rn) for every

r < R. We integrate by parts in (2.17) to see that ∂iv is a weak solution of div(|xm+1|β∇v) = 0
in Br (x0) for every r < R. It follows from [13, Theorem 2.3.12] that each ∂iv is locally Hölder
continuous in BR(x0). We inductively deduce that for any multi-index α′ with α′

m+1 = 0,

Dα′
v ∈ W 1,2

β (Br (x0);Rn) is a weak solution of div(|xm+1|β∇Dα′
v) = 0 in Br (x0) for every

r < R and Dα′
v is locally Hölder continuous in BR(x0).

Since ∂iv ∈ W 1,2
β (Br (x0);Rn) for every r < R and i = 1, . . . ,m, we have

∫

Br (x0)

|xm+1|−β |∂iv∗|2dx =
∫

Br (x0)

|xm+1|β |∂i∂m+1v|2dx < ∞. (2.18)

We also have Δ′v ∈ W 1,2
β (Br (x0);Rn), where Δ′ is the Laplace operator with respect

to the variables x1, . . . , xm . Furthermore, as v solves div(|xm+1|β∇v) = 0 classically in
BR(x0)\∂Rm+1+ , we have |xm+1|−β∂m+1v

∗ = −Δ′v ∈ W 1,2
β (Br (x0);Rn) for every r < R.

Hence ∫

Br (x0)

|xm+1|−β |∂m+1v
∗|2dx =

∫

Br (x0)

|xm+1|β |Δ′v|2dx < ∞. (2.19)

Together, (2.18) and (2.19) imply
∫
Br (x0)

|xm+1|−β |∇v∗|2dx < ∞ for every r < R. More-
over, we have

∫

Br (x0)

|xm+1|−β |v∗|2dx =
∫

Br (x0)

|xm+1|β |∂m+1v|2dx < ∞, (2.20)

since v ∈ W 1,2
β (BR(x0);Rn). We can directly verify that ∂iv

∗, i = 1, . . . ,m, are the
weak derivatives of v∗ and omit the details. Now consider ∂m+1v

∗. Let ∇′ denote the
gradient operator with respect to the variables x1, . . . , xm and let ψ ∈ C∞

0 (BR(x0);Rn).

Since |xm+1|−β∂m+1v
∗ = −Δ′v ∈ W 1,2

β (Br (x0);Rn) and v is a weak solution of

div(|xm+1|β∇v) = 0, we see that
∫

BR(x0)

〈
∂m+1v

∗, ψ
〉
dx = −

∫

BR(x0)

|xm+1|β
〈
Δ′v,ψ

〉
dx
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=
∫

BR(x0)

|xm+1|β
〈∇′v,∇′ψ

〉
dx

= −
∫

BR(x0)

〈
v∗, ∂m+1ψ

〉
dx .

It follows that v∗ ∈ W 1,2
−β (Br (x0);Rn) for every r < R. In a similar manner we calculate

∫

BR(x0)

|xm+1|−β
〈∇v∗,∇ψ

〉
dx =

∫

BR(x0)

|xm+1|−β
〈
∂m+1v

∗, ∂m+1ψ
〉
dx

+
∫

BR(x0)

|xm+1|−β
〈∇′v∗,∇′ψ

〉
dx

= −
∫

BR(x0)

〈
Δ′v, ∂m+1ψ

〉
dx +

∫

BR(x0)

〈
Δ′v, ∂m+1ψ

〉
dx

= 0.

Hence v∗ is a weak solution of div(|xm+1|β∇v∗) = 0 in Br (x0) for every r < R. It follows
from [13, Theorem 2.3.12] that v∗ is locally Hölder continuous in BR(x0). ��
Corollary 2.13 Suppose v ∈ W 1,2

β (BR(x0);Rn) and assume v weakly satisfies

div(|xm+1|β∇v) = 0 in BR(x0). Then the derivatives Dα′
v, where α′ is a multi-index with

(α′)m+1 = 0, are elements of W 1,2
β (Br (x0);Rn) and weak solutions of div(|xm+1|β∇v) = 0

in Br (x0) for every r < R and are locally Hölder continuous in BR(x0). Furthermore, the
functions (Dα′

v)∗ := |xm+1|β∂m+1Dα′
v are elements of W 1,2

−β (Br (x0);Rn) and weak solu-

tions of div(|xm+1|−β∇(Dα′
v)∗) = 0 in Br (x0) for every r < R and are locally Hölder

continuous in BR(x0).

Proof This follows from a direct application of Lemma 2.12. ��
Next we record a condition on the integral of the normal derivative of Sobolev functions

which implies the type of monotonicity we want to establish in Lemma 2.8.

Lemma 2.14 Suppose that v ∈ W 1,2
β (BR(x0)), where x0 ∈ ∂Rm+1+ , and that

∫

∂Bρ(x0)

ν · |xm+1|β∇vdS(x) ≥ 0

for almost every ρ ∈ (0, R), where ν is the outward pointing unit normal on ∂Bρ(x0), then

s−(1+m+β)

∫

Bs (x0)

|xm+1|βvdx ≤ r−(1+m+β)

∫

Br (x0)

|xm+1|βvdx (2.21)

for every 0 < s ≤ r ≤ R.

Proof This proof follows the proof of Theorem 2.1 in Section 2 of [15] and the proof of
Proposition 2.2 in Section III of [14]. For almost every 0 < s ≤ r < R, using Fubini’s
Theorem, we see that

r−(m+β)

∫

∂Br (x0)

|xm+1|βvdS(x) − s−(m+β)

∫

∂Bs (x0)

|xm+1|βvdS(x)

=
∫

∂B1(0)

|ωm+1|β
∫ r

s

∂

∂t
v(tω + x0)dtdω
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=
∫ r

s
t−(m+β)

∫

∂Bt (x0)

|xm+1|βν · ∇vdS(x)dt

≥ 0. (2.22)

Define the absolutely continuous function f (r) = ∫Br (x0)
|xm+1|βvdx for 0 ≤ r ≤ R. Using

(2.22) we calculate

f (r) =
∫ r

0
f ′(ρ)dρ =

∫ r

0
ρm+βρ−(m+β) f ′(ρ)dρ

≤
∫ r

0
ρm+βr−(m+β) f ′(r)dρ = r

1 + m + β
f ′(r)

for 0 < r < R. It follows that (r−(1+m+β) f (r))′ ≥ 0 and integrating between s ≤ r ≤ R
completes the proof. ��
Proof of Lemma 2.8 Note that v is smooth in BR(x0)\∂Rm+1+ . Hence div(|xm+1|β∇∂iv) = 0
and div(|xm+1|−β∇v∗) = 0 classically in this set. Furthermore, we have

0 = ∂m+1div(|xm+1|β∇v) = div(|xm+1|β∇∂m+1v) + sgn(xm+1)
β

|xm+1|div(|xm+1|β∇v)

− β|xm+1|β−2∂m+1v

= div(|xm+1|β∇∂m+1v) − β|xm+1|β−2∂m+1v,

so that div(|xm+1|β∇∂m+1v) = β|xm+1|β−2∂m+1v in BR(x0)\∂Rm+1+ . Hence on BR(x0)\
∂Rm+1+ we have

div
(|xm+1|β∇|∂iv|2) = 2|xm+1|β |∇∂iv|2 + 2〈∂iv, div(|xm+1|β∇∂iv)〉 ≥ 0,

div
(|xm+1|−β∇|v∗|2) = 2|xm+1|β |∇v∗|2 + 2〈v∗, div(|xm+1|−β∇v∗)〉 ≥ 0,

and, when β ∈ (0, 1),

div
(|xm+1|β∇|∂m+1v|2) = 2|xm+1|β |∇∂m+1v|2 + 2β|xm+1|β−2|∂m+1v|2 ≥ 0,

classically where i = 1, . . . ,m.
Fix R > r > ε > 0 and let Bε

r (x0) = Br (x0) ∩ {x ∈ R
m+1: |xm+1| ≥ ε}. Using the

divergence theorem, we calculate

0 ≤
∫

∂Br (x0)

1Bε
r (x0)|xm+1|βν · ∇|∂iv|2dS(x)

−
∫

Bm√
r2−ε2

(x0)

εβem+1 · (∇|∂iv|2(x ′, ε) − ∇|∂iv|2(x ′,−ε)
)

dx ′, (2.23)

0 ≤
∫

∂Br (x0)

1Bε
r (x0)|xm+1|−βν · ∇|v∗|2dS(x)

−
∫

Bm√
r2−ε2

(x0)

ε−βem+1 · (∇|v∗|2(x ′, ε) − ∇|v∗|2(x ′,−ε)
)

dx ′ (2.24)

and, when β ∈ (0, 1),

0 ≤
∫

∂Br (x0)

1Bε
r (x0)|xm+1|βν · ∇|∂m+1v|2dS(x)
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−
∫

Bm√
r2−ε2

(x0)

εβem+1 · (∇|∂m+1v|2(x ′, ε) − ∇|∂m+1v|2(x ′,−ε)
)

dx ′ (2.25)

where 1Bε
r (x0) is the indicator function of Bε

r (x0), ν is the outward unit normal on ∂Br (x0),
dS is the Lebesgue measure on ∂Br (x0) and Bm

s (x0) = {x ∈ R
m : |x − x0| < s}.

We consider the terms on the right hand side of (2.23)–(2.25) separately with a view
to taking the limit as ε → 0+. Lemma 2.12 and Corollary 2.13 imply that ∂iv, ∂ j∂iv ∈
W 1,2

β (Br (x0);Rn) and are locally Hölder continuous in BR(x0) for i, j = 1, . . . ,m. The

lemma and corollary further imply that v∗, (∂iv)∗ ∈ W 1,2
−β (Br (x0);Rn), where i = 1, . . . ,m,

are locally Hölder continuous in BR(x0) and hence uniformly continuous in Br (x0). We can
therefore check that |∂iv|2 ∈ W 1,2

β (Br (x0)), integrating over Bε
r (x0) and letting ε → 0+ for

the m + 1th derivative. It follows that

||xm+1|βν · ∇|∂iv|2| ≤ 2
∣∣〈νm+1(∂iv)∗, ∂iv

〉∣∣+ 2
m∑
j=1

∣∣|xm+1|β
〈
ν j∂ j∂iv, ∂iv

〉∣∣

≤ C(1 + |xm+1|β), (2.26)

where C is a positive constant that may depend on r but is independent of ε. Furthermore,
since ∂iv and (∂iv)∗ are uniformly continuous in Br (x0), we see that

1Bm√
r2−ε2

(x0)em+1ε
β · (∇|∂iv|2(x ′, ε) − ∇|∂iv|2(x ′,−ε)) → 0 uniformly as ε → 0+

(2.27)

for (x ′, 0) ∈ Br (x0).
Since each ∂ j∂iv ∈ W 1,2

β (Br (x0);Rn) is locally Hölder continuous in BR(x0) for

i, j = 1, . . . ,m and div(|xm+1|β∇v) = 0 classically in BR(x0)\∂Rm+1+ , we have

|xm+1|−β∂m+1v
∗ = −Δ′v ∈ W 1,2

β (Br (x0);Rn) is uniformly continuous in Br (x0) for every

r < R. We can hence check |v∗|2 ∈ W 1,2
−β (Br (x0)). We also have

||xm+1|−βν · ∇|v∗|2| ≤ 2
∣∣|xm+1|−β

〈
νm+1∂m+1v

∗, v∗〉∣∣+ 2
m∑
i=1

∣∣|xm+1|−β
〈
νi∂iv

∗, v∗〉∣∣

≤ C(1 + |xm+1|−β) (2.28)

and

1Bm√
r2−ε2

(x0)em+1ε
−β · (∇|v∗|2(x ′, ε) − ∇|v∗|2(x ′,−ε)

)→ 0 uniformly as ε → 0+

(2.29)

for (x ′, 0) ∈ Br (x0).
In order to derive similar conclusions to (2.26) and (2.27) for the constituent integrands

of (2.25), we assume that β ∈ (0, 1) and that v is symmetric with respect to ∂Rm+1+ , namely
v(x ′, xm+1) = v(x ′,−xm+1) for every (x ′, xm+1) ∈ BR(x0). The symmetry of v implies
v∗ must be odd with respect to ∂Rm+1+ , that is v∗(x ′, xm+1) = −v∗(x ′,−xm+1) for every
(x ′, xm+1) ∈ BR(x0) and hence, as it is also continuous in BR(x0) we have v∗(x ′, 0) = 0 for
every (x ′, 0) ∈ BR(x0).

Fix (x ′, 0) ∈ BR(x0) and note that (x ′, 0) ∈ Br (x0) for some r < R and choose h with
|h| sufficiently small as to ensure (x ′, h) ∈ Br (x0). We see that

|h|−1|v(x ′, h) − v(x ′, 0)| = |∂m+1v(x ′, xm+1)|
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= |xm+1|−β |v∗(x ′, xm+1) − 0|
= |xm+1|−β |∂m+1v

∗(x ′, ξ)||xm+1|
≤ |xm+1|||ξ |−β∂m+1v

∗(x ′, ξ)|
≤ C |h| → 0 as h → 0,

where xm+1 with |xm+1| ∈ (0, |h|) and ξ with |ξ | ∈ (0, |xm+1|) are chosen such that the Mean
Value Theorem holds. Thus we see that ∂m+1v(x ′, 0) = 0 classically for (x ′, 0) ∈ BR(x0).
Analogous calculations to those on the right hand side above show that ∂m+1v is continuous
at (x ′, 0) and hence continuous in BR(x0). We also have

|xm+1|β∂2
m+1v = ∂m+1v

∗ − βx−1
m+1v

∗

for (x ′, xm+1) ∈ Br (x0)\∂Rm+1+ and hence

||xm+1|β∂2
m+1v(x ′, xm+1)| ≤ |∂m+1v

∗| + β|x−1
m+1v

∗|
≤ C + β|∂m+1v

∗(x ′, ξ)|
≤ C,

in Br (x0)\∂Rm+1+ , where ξ is chosen with |ξ | ∈ (0, |xm+1|) such that the Mean Value
Theorem holds. It follows that |xm+1|β∂2

m+1v is essentially bounded in Br (x0) and ∂Br (x0).

The preceding discussion implies |∂m+1v|2 ∈ W 1,2
β (Br (x0)) and

||xm+1|βν · ∇|∂m+1v|2| ≤ C (2.30)

on Br (x0)\∂Rm+1+ . Furthermore, using the symmetry of v, we see that

1Bm√
r2−ε2

(x0)em+1ε
β · (∇|∂m+1v|2(x ′, ε) − ∇|∂m+1v|2(x ′,−ε)) → 0 uniformly as ε → 0+

(2.31)

for (x ′, 0) ∈ Br (x0).
Using Lebesgue’s Dominated Convergence Theorem, we combine (2.23) with (2.26) and

(2.27), (2.24) with (2.28) and (2.29) and (2.25) with (2.30) and (2.31) to see that

0 ≤
∫

∂Br (x0)

|xm+1|βν · ∇|∂iv|2dS(x), 0 ≤
∫

∂Br (x0)

|xm+1|−βν · ∇|v∗|2dS(x)

and, when β ∈ (0, 1) and v is symmetric with respect to ∂Rm+1+ ,

0 ≤
∫

∂Br (x0)

|xm+1|βν · ∇|∂m+1v|2dS(x)

respectively. Noting that |xm+1|−β |v∗|2 = |xm+1|β |∂m+1v|2, we apply Lemma 2.14, to see
that

s−(1+m+β)

∫

Bs (x0)

|xm+1|β |∇′v|2dx ≤ r−(1+m+β)

∫

Br (x0)

|xm+1|β |∇′v|2dx, (2.32)

s−(1+m−β)

∫

Bs (x0)

|xm+1|β |∂m+1v|2dx ≤ r−(1+m−β)

∫

Br (x0)

|xm+1|β |∂m+1v|2dx (2.33)

and, when β ∈ (0, 1) and v is symmetric with respect to ∂Rm+1+ ,

s−(1+m+β)

∫

Bs (x0)

|xm+1|β |∂m+1v|2dx ≤ r−(1+m+β)

∫

Br (x0)

|xm+1|β |∂m+1v|2dx (2.34)
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for every 0 < s ≤ r < R. We apply Lebesgue’s Dominated Convergence Theorem,
sending r → R− and combine (2.32), (2.33) and (2.34) to see the Lemma holds for
0 < s ≤ r ≤ R. ��
Remark 2.15 We observe from (2.33) and (2.34) that without the symmetry condition on v,
the monotonicity of the average energy of |∂m+1v|2 is better than required if β ∈ (−1, 0] and
may be worse than required if β ∈ (0, 1); the symmetry of v resolves this issue by implying
continuity of ∂m+1v on ∂Rm+1+ which, as the function given in Remark 2.9 illustrates, cannot
be expected in general.

2.5 Interior monotonicity formula

We need a counterpart to Lemma 2.8 for balls in the interior ofRm+1+ . Since the weight xβ
m+1 is

not scale invariant on a (Euclidean) ball Bρ(y) with ym+1 ≥ 2ρ, we only expect monotonicity

of the average energy (with respect to the Lebesgue measure) of solutions to div(xβ
m+1∇v) =

0 up to a correcting factor. As the radius tends to zero, the coefficients of uniform ellipticity
for the preceding equation tend to constants. Accordingly, the correcting factor becomes
smaller with the radius. General monotonicity-type formulas for linear uniformly elliptic
equations are available in [14] for example. We perform the following calculations in order
to determine how the correcting factor behaves explicitly as the radius decays geometrically.
We first establish monotonicity on the boundary of concentric balls.

Lemma 2.16 Let β ∈ (−1, 1), BR(y) ⊂ R
m+1+ with BR(y) ⊂ R

m+1+ and suppose v ∈
C2(BR(y);Rn) satisfies div(xβ

m+1∇|v|2) ≥ 0 classically in BR(y). Then, letting dS denote
Lebesgue surface measure and sgn denote the sign function, for 0 < s ≤ r < R we have

s−m 1

(ym+1 − sgn(β)s)β

∫

∂Bs (y)
xβ
m+1|v|2dS(x)

≤ r−m 1

(ym+1 − sgn(β)r)β

∫

∂Br (y)
xβ
m+1|v|2dS(x).

Proof Let ρ < R. We calculate 0 ≤ ∫
∂Bρ(y) x

β
m+1ν ·∇|v|2dS(x), where ν is the unit outward

normal on ∂Bρ(y). Now using variables ρ = |x − y| and ω = x−y
ρ

we have

0 ≤ ρm
∫

Sm
(ρωm+1 + ym+1)

β ∂

∂ρ
(|v(ρω + y)|2)dω

= ρm
∫

Sm

∂

∂ρ

(
(ρωm+1 + ym+1)

β |v(ρω + y)|2) dω

− ρm
∫

Sm
βωm+1(ρωm+1 + ym+1)

β−1|v(ρω + y)|2dω

= ρm ∂

∂ρ

(
ρ−m

∫

∂Bρ(y)
xβ
m+1|v|2dS(x)

)
−
∫

∂Bρ(y)

β

ρ
xβ−1
m+1(xm+1 − ym+1)|v|2dS(x).

We define f (ρ) = ρ−m
∫
∂Bρ(y) x

β
m+1|v|2dS(x) and divide by ρm to see that

0 ≤ f ′(ρ) − β

ρ
f (ρ) + ym+1β

ρm+1

∫

∂Bρ(y)
xβ−1
m+1|v|2dS(x)

≤ f ′(ρ) − β

ρ
f (ρ) + ym+1β

ρ(ym+1 − sgn(β)ρ)
f (ρ)
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= f ′(ρ) +
( |β|
ym+1 − sgn(β)ρ

)
f (ρ).

Hence 0 ≤ ((ym+1 − sgn(β)ρ)−β f (ρ)
)′

and integrating between s < r concludes the proof.
��

With this lemma in hand we can establish the following counterpart to Lemma 2.8.

Lemma 2.17 Let BR(y) ⊂ R
m+1 with ym+1 ≥ θR for θ ≥ 2. Supposev ∈ C2(BR(y);Rn)∩

W 1,2
β (BR(y);Rn) satisfies div(xβ

m+1∇v) = 0 in BR(y). Then there exists C = C(m) such
that

(
R

2

)−(m+1) ∫

B R
2

(y)
xβ
m+1|∇v|2dx ≤

(
1 + C

θ − 1

)
R−(m+1)

∫

BR(y)
xβ
m+1|∇v|2dx .

Proof Let g(r) := ∫Br (y) x
β
m+1| f |2dx where f satisfies the assumptions of Lemma 2.16 and

r ∈ (0, R). Then we have

g(r) =
∫ r

0

∫

∂Bρ(y)
xβ
m+1| f |2dS(x)dρ

=
∫ r

0
(ym+1 − sgn(β)ρ)βρm(ym+1 − sgn(β)ρ)−βρ−m

∫

∂Bρ(y)
xβ
m+1| f |2dS(x)dρ

≤
∫ r

0
(ym+1 − sgn(β)ρ)βρmdρ(ym+1 − sgn(β)r)−βr−m

∫

∂Br (y)
xβ
m+1| f |2dS(x)

≤ yβ
m+1

r

m + 1
(ym+1 − sgn(β)r)−β

∫

∂Br (y)
xβ
m+1| f |2dS(x). (2.35)

Hence

0 ≤ g′(r) − g(r)y−β
m+1

m + 1

r
(ym+1 − sgn(β)r)β

= g′(r) − g(r)
m + 1

r

(
1 − sgn(β)

r

ym+1

)β

= g′(r) − g(r)
m + 1

r

(
1 + β(1 − sgn(β)

s

ym+1
)β−1sgn(β)

−r

ym+1

)

= g′(r) − g(r)
m + 1

r
+ g(r)

m + 1

r
|β|
(

1 − sgn(β)
s

ym+1

)β−1 r

ym+1
,

where s ∈ (0, r) is such that the Mean Value Theorem holds for the function r �→ (1 −
sgn(β) r

ym+1
)β . Now recall that ym+1 ≥ θR ≥ θr for θ ≥ 2. We hence find

0 ≤ g′(r) − g(r)
m + 1

r
+ g(r)

m + 1

r
|β| 1

θ − 1
.

It follows that 0 ≤ (r−(m+1)r
|β|(m+1)

θ−1 g(r))′ and consequently, if R
2 ≤ r < R, we have

(
R

2

)−(m+1)

g

(
R

2

)
≤ 2

|β|(m+1)
θ−1 r−(m+1)g(r)

=
(

1 + |β|(m + 1)

θ − 1
ξ

|β|(m+1)
θ−1 −1

)
r−(m+1)g(r)
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≤
(

1 + |β|(m + 1)

θ − 1
2|β|(m+1)

)
r−(m+1)g(r) (2.36)

where ξ ∈ (1, 2) is such that the Mean Value theorem holds for the function t �→
t

|β|(m+1)
θ−1 . Since div(xβ

m+1∇v) = 0, as observed in the proof of Lemma 2.8, we have

div(xβ
m+1∇|∂iv|2) ≥ 0 for i = 1, . . . ,m and div(x−β

m+1∇|xβ
m+1∂m+1v|2) ≥ 0. We apply

(2.36) with f = ∂iv for i = 1, . . . ,m, and with f = xβ
m+1∂m+1v and −β in place of β and

combine the results, letting r → R− to conclude the proof. ��
2.6 Solutions of the linear degenerate Dirichlet problem

We require further results regarding the following Dirichlet problem: solve

div(|xm+1|β∇v) = 0 in BR(x0) and v = φ on ∂BR(x0) (2.37)

for a given φ, where x0 ∈ R
m+1, in order to apply a version of the method of harmonic

replacement in the proof of Lemma 4.23. A weak solution of (2.37) is av ∈ W 1,2
β (BR(x0);Rn)

which weakly satisfies div(|xm+1|β∇v) = 0 in BR(x0) with v −φ ∈ W 1,2
β,0(BR(x0);Rn). We

collect the results we require, which can be found in [19], in the form of a lemma.

Lemma 2.18 Suppose φ ∈ W 1,2
β (BR(x0);Rn). Then there exists a v ∈ W 1,2

β (BR(x0);Rn)

which is a weak solution of the Dirichlet problem (2.37). Any such solution is unique and
continuous in BR(x0), if φ ∈ C(BR(x0);Rn) then v(x) → φ(z) as x → z for z ∈ ∂BR(x0)

and the weak maximum principle

max
BR(x0)

v = max
∂BR(x0)

v = max
∂BR(x0)

φ

and weak minimum principle

min
BR(x0)

v = min
∂BR(x0)

v = min
∂BR(x0)

φ

both hold, where we take the maximum and minimum component-wise. Ifw ∈ W 1,2
β (BR(x0);

R
n) also satisfies w − φ ∈ W 1,2

β,0(BR(x0);Rn) then
∫

BR(x0)

|xm+1|β |∇v|2dx ≤
∫

BR(x0)

|xm+1|β |∇w|2dx .

Proof Since |xm+1|β is of Muckenhoupt class A2 it follows from 1.6 of [19] that |xm+1|β
is a 2-admissible weight so we may apply the theory of [19]. Aside from the minimising
property of v, the assertions of the lemma are consequences of Theorem 3.70, Corollary
6.32, the strong maximum principle 6.5 and lastly 3.17 in [19]. If v is a weak solution of
(2.37) for a given φ and w ∈ W 1,2

β (BR(x0);Rn) with w − φ ∈ W 1,2
β,0(BR(x0);Rn) then

w − v ∈ W 1,2
β,0(BR(x0);Rn). Hence, by approximation, we have

∫

BR(x0)

|xm+1|β〈∇v,∇(w − v)〉dx = 0,

so that∫

BR(x0)

|xm+1|β |∇w|2dx =
∫

BR(x0)

|xm+1|β |∇v|2dx +
∫

BR(x0)

|xm+1|β |∇(w − v)|2dx

which concludes the proof. ��
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The uniqueness of solutions to the Dirichlet problem (2.37) implies that solutions with
boundary data which are symmetric with respect to ∂Rm+1+ are themselves symmetric. More
precisely, we have the following.

Lemma 2.19 Let x0 ∈ ∂Rm+1+ and suppose v, φ ∈ W 1,2
β (BR(x0);Rn) and v is a weak

solution of theDirichlet problem (2.37)withφ as boundary data. Letφ ∈ C(BR(x0);Rn) and
suppose φ(x ′, xm+1) = φ(x ′,−xm+1) for every (x ′, xm+1) ∈ BR(x0). Then v(x ′, xm+1) =
v(x ′,−xm+1) for every (x ′, xm+1) ∈ BR(x0).

Proof The continuity of φ in BR(x0), combined with an application of Lemma 2.18, implies
that v and, consequently, ṽ(x ′, xm+1) := v(x ′,−xm+1) are continuous in BR(x0). We observe
that ṽ ∈ W 1,2

β (BR(x0);Rn) weakly satisfies div(|xm+1|β∇ṽ) = 0 in BR(x0) and ṽ|∂BR(x0) =
φ|∂BR(x0) so that ṽ−φ ∈ W 1,2

β,0(BR(x0);Rn). Hence v and ṽ solve the same Dirichlet problem;
solutions to this problem are unique by Lemma 2.18 and thus ṽ = v. ��

3 Intrinsic fractional harmonic maps

We assume, translating N if necessary, that 0 ∈ N . For reasons discussed in the introduction
we always assume m ≥ 2; when m ≥ 3 we let β ∈ (−1, 1) and when m = 2 we let
β ∈ (−3−1, 1). This allows us to apply Lemma 2.3 and we can define

Ẇ 1,2
β (Rm+1+ ; N ) =

{
v ∈ Ẇ 1,2

β (Rm+1+ ;Rn): v(x) ∈ N for almost every x ∈ R
m+1+

}
.

Henceforth, in this section and Sect. 4, we fix an open O ⊂ ∂Rm+1+ such that a continu-
ous linear trace operator with respect to O exists; we do not assume O is necessarily the
whole of ∂Rm+1+ . We can, for example, obtain such a trace operator T : Ẇ 1,2

β (Rm+1+ ;Rn) →
L p(O;Rn), where p = p(β) ∈ (1, 2], by combining Lemmata 2.1 and 2.3 with [12, Section
4.3, Theorem 1] whenever O is contained in the boundary of a Lipschitz Ω ⊂ R

m+1+ . Define

I β(u) = inf
{
Eβ(v): v ∈ Ẇ 1,2

β (Rm+1+ ; N ), T v = u
}

for u ∈ T (Ẇ 1,2
β (Rm+1+ ; N )). Recall from the introduction that I β serves as an intrinsic energy

for u; it does not depend on the choice of embedding of N into Euclidean space. Moreover, I β

coincides with the square of the fractional Sobolev norm ||u||
Ḣ

1−β
2 (∂Rm+1+ ;Rn)

when N = R
n

and O = ∂Rm+1+ .

For every u ∈ T (Ẇ 1,2
β (Rm+1+ ; N )), an application of the direct method of the calculus of

variations shows that there exists v ∈ Ẇ 1,2
β (Rm+1+ ; N ) with T v = u, where T is the trace

operator with respect to O, such that I β(u) = Eβ(v). For a given u, such a v is referred to
henceforth as a minimal harmonic map. Any minimal harmonic map v is weakly harmonic
in R

m+1+ with respect to the metric represented in Euclidean coordinates by xα
m+1δi j , where

β = α(m−1)
2 ; the Dirichlet energy on R

m+1+ for this metric is precisely Eβ . Such a v therefore
satisfies

∫

R
m+1+

xβ
m+1 (〈ψ, A(v)(∇v,∇v)〉 − 〈∇v,∇ψ〉) dx = 0 (3.1)
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for every φ ∈ C∞
0 (Rm+1+ ;Rn), where A is the second fundamental form of N and

〈∇v,∇ψ〉 =
m+1∑
i=1

〈∂iv, ∂iψ〉 and A(v) (∇v,∇v) =
m+1∑
i=1

A(v) (∂iv, ∂iv) .

Formally, if v is sufficiently regular in R
m+1+ ∪ O, we calculate

∫

R
m+1+

xβ
m+1 (〈ψ, A(v)(∇v,∇v)〉 − 〈∇v,∇ψ〉) dx =

∫

O

〈(
xβ
m+1∂m+1v

)
(x ′, 0), φ(x ′)

〉
dx ′,

for every φ ∈ C∞
0 (O;Rn) and any ψ ∈ D+(Rm+1+ ;Rn) with ψ(x ′, 0) = φ(x ′), where dx ′

is the Lebsegue measure on R
m . In general, the integral in (3.1) defines a distribution on O

given by

∂
β
m+1v(φ) :=

∫

R
m+1+

xβ
m+1 (〈ψ, A(v)(∇v,∇v)〉 − 〈∇v,∇ψ〉) dx

for φ ∈ C∞
0 (O;Rn). This observation allows us, analogously to [30, Proposition 1.1], to

identify a superdifferential for I β . Recall that since N is compact, Theorem 1 in Section
2.12.3 of [39] gives a tubular neighbourhood of N , which has the form Uδ(N ) = {x ∈
R
n : dist(x, N ) < δ} for a δ = δ(N ) > 0, and a smooth map πN : Uδ(N ) → N such that

|πN (y) − y| = dist(y, N ) for every y ∈ Uδ(N ). Using the same method of proof as [30,
Proposition 1.1] we deduce the following.

Lemma 3.1 Let u ∈ T (Ẇ 1,2
β (Rm+1+ ; N )) and v ∈ Ẇ 1,2

β (Rm+1+ ; N ) be a minimal harmonic
map with T v = u. Then for φ ∈ C∞

0 (O;Rn),

I β(πN (u + tφ)) ≤ I β(u) − t∂β
m+1v(φ) + o(|t |) (3.2)

as t → 0.

It follows from this proposition that if ∂
∂t

∣∣
t=0 I β(πN (u + tφ)) exists then it is equal to

−∂
β
m+1v(φ) where v is any minimal harmonic map with T v = u; this indicates a candidate

for the first variation of I β .

Definition 3.2 Let β ∈ (−1, 1) and Dβ be the collection of all u ∈ T (Ẇ 1,2
β (Rm+1+ ; N ))

such that there exists a distribution λβ ∈ (
C∞

0 (O;Rn)
)∗ with λβ = −∂

β
m+1v for every

minimal harmonic map v ∈ Ẇ 1,2
β (Rm+1+ ; N ) with T v = u. Then we may define a map

Λβ :Dβ → (
C∞

0 (O;Rn)
)∗ : u �→ λβ = Λβu.

In [30, Theorem 1.1] Moser showed that Λ0 is the first variation of I 0. The method of proof
of Moser’s theorem, applied with the Lebesgue measure dx on R

m+1 replaced by xβ
m+1dx ,

yields the following.

Lemma 3.3 If u ∈ Dβ , then

∂

∂t

∣∣∣∣
t=0

I β(πN (u + tφ)) = Λβu(φ)

for all φ ∈ C∞
0 (O;Rn). If u /∈ Dβ , then there exists φ ∈ C∞

0 (O;Rn) such that the function
t �→ I β(πN (u + tφ)) is not differentiable at 0.
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Consequently, we may define intrinsic fractional harmonic maps as follows.

Definition 3.4 Let β ∈ (−1, 1) and u ∈ T (Ẇ 1,2
β (Rm+1+ ; N )). If Λβu = 0 then we say that

u is an intrinsic 1−β
2 -harmonic map.

As discussed in the introduction, intrinsic 1−β
2 -harmonic maps are the boundary values of

free boundary harmonic maps from R
m+1+ to N . Such maps may have singularities in O and

we may not expect regularity in general. We consider a smaller class of fractional harmonic
maps which locally minimise I β in order to obtain partial regularity in O.

Definition 3.5 We say that u ∈ T (Ẇ 1,2
β (Rm+1+ ; N )) is an intrinsic locally minimising 1−β

2 -

harmonic map, or a local minimiser of I β , if for every compact K ⊂ O and every ũ ∈
T (Ẇ 1,2

β (Rm+1+ ; N )) with u|O\K = ũ|O\K we have I β(u) ≤ I β(ũ).

This definition allows us to consider interior regularity for a class of critical points of
I β without explicitly specifying boundary conditions. For example, minimisers of I β with
respect to Dirichlet or free boundary conditions satisfy the definition. In order to deduce
regularity results for u, we analyse their minimal harmonic extensions in more detail. To this
end, we make the following definition.

Definition 3.6 Let v ∈ Ẇ 1,2
β (Rm+1+ ; N ). We say that v is Eβ minimising, or energy minimis-

ing, in R
m+1+ relative to O ⊂ ∂Rm+1+ , if for every compact K ⊂ R

m+1 with K ∩∂Rm+1+ ⊂ O
and for every w ∈ Ẇ 1,2

β (Rm+1+ ; N ) with v|
R
m+1+ \K = w|

R
m+1+ \K we have Eβ(v) ≤ Eβ(w).

Local minimisers of I β and minimisers of Eβ relative to O are connected as follows.

Lemma 3.7 Suppose u ∈ T (Ẇ 1,2
β (Rm+1+ ; N )) locally minimises I β in the sense of Defini-

tion 4.11 and fix a minimal harmonic map v ∈ Ẇ 1,2
β (Rm+1+ ; N ) with T v = u. Then v is a

minimiser of Eβ relative to O.

Proof Let K ⊂ R
m+1 be compact such that the compact set Km := K ∩ ∂Rm+1+ ⊂ O and

suppose that w ∈ Ẇ 1,2
β (Rm+1+ ; N ) satisfies v|

R
m+1+ \K = w|

R
m+1+ \K . Define ũ = Tw and

let ṽ be a minimal harmonic map with T ṽ = ũ. Since O is open in ∂Rm+1+ and Km ⊂ O
is compact we have distm(Km; ∂O) > 0, where distm is the distance in ∂Rm+1+ . We can

therefore choose an open set Õ ⊂ O with Km ⊂ Õ ⊂ Õ ⊂ O. Since Km is closed and Õ
is open we have distm(Km; ∂Õ) > 0 as well. It follows that dist(O\Õ; K ) := κ > 0, where

dist is the Euclidean distance in R
m+1+ . The continuity of the trace operator yields

∫

O\Õ
|u − ũ|pdx =

∫

O\Õ
|T (v − w)|pdx ≤ C ||v − w||p

W 1,p((O\Õ)×(0,κ);Rn)
= 0,

since v = w in O\Õ × (0, κ), where p is the number from Lemma 2.1 depending on β.
Since v and ṽ are minimal harmonic maps and u is a minimiser of I β , we have

Eβ(v) = I β(u) ≤ I β(ũ) = Eβ(ṽ) ≤ Eβ(w)

as required. ��
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As a consequence of the preceding lemma, we can consider the regularity of minimisers of Eβ

relative toO on relatively open balls (in the Euclidean topology) centred onRm+1+ ∪O in order
to prove regularity of fractional harmonic maps. Our main results, stated and proved in Sect. 4,
constitute an ε-regularity and a corresponding partial regularity theorem for minimisers of
Eβ relative to O which translate into the following partial regularity result for fractional
harmonic maps.

Theorem 3.8 Fix O ⊂ ∂Rm+1+ . When m ≥ 3 let β ∈ (−1, 1) and when m = 2 let β ∈
(−3−1, 1). Suppose u ∈ T (Ẇ 1,2

β (Rm+1+ ; N )) is a local minimiser of I β . Then there exists a

relatively closed set Σ ⊂ O with Hm+β−1(Σ) = 0 such that u ∈ C∞(O\Σ; N ).

Proof Fix a minimal harmonic map v ∈ Ẇ 1,2
β (Rm+1+ ; N ) with T v = u. As u is a minimiser

of I β , Lemma 3.7 implies v is a minimiser of Eβ relative toO. An application of Theorem 4.3
implies the result. ��

4 Partial regularity of minimisers of Eβ relative to O
The main result of this section is the following ε-regularity theorem for minimisers of Eβ

relative toO. To state the theorem and subsequent results we will need the following notation.
For a set Ω ⊂ R

m+1+ we will sometimes split the boundary ∂Ω into the (possibly empty)
sets ∂+Ω = ∂Ω ∩R

m+1+ and ∂0Ω = ∂Ω ∩ ∂Rm+1+ . Let x0 ∈ ∂Rm+1+ and recall the notation
B+
R (x0) = {x ∈ R

m+1+ : |x − x0| < R}.
Theorem 4.1 If m ≥ 3, let β ∈ (−1, 1) and if m = 2 let β ∈ (−3−1, 1). Let
v ∈ Ẇ 1,2

β (Rm+1+ ; N ) be a minimiser of Eβ relative to O, let x0 ∈ ∂Rm+1+ and B+
R (x0) be a

half-ball with R ≤ 1 and ∂0B+
R (x0) ⊂ O. There exists ε = ε(m, N , β) > 0 such that the fol-

lowing holds. If R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε then there is a θ = θ(m, N , β) ∈ (0, 1)

and a γ = γ (m, N , β) ∈ (0, 1) such that v ∈ C0,γ (B+
θR(x0); N ). Furthermore, for every

l ∈ N there is a θ = θ(m, N , β, l) ∈ (0, 1) and a γ = γ (m, N , β, l) ∈ (0, 1) such that

Dα′
v ∈ C0,γ (B+

θR(x0);Rn) for every α′ ∈ N
m+1
0 with |α′| ≤ l and α′

m+1 = 0.

Remark 4.2 Henceforth, we assume the conditions on m and β from Theorem 4.1. We have
restricted to considering α′ with α′

m+1 = 0 as (partial) regularity of these derivatives up to the
boundary will yield the desired regularity for fractional harmonic maps stated in Theorem 3.8.
The main purpose of the theorem is to provide regularity estimates which are uniform up to
O; such estimates do not follow from known theory.

Theorem 4.1, combined with the partial regularity theory for harmonic maps yields the
following. We use the notation Ht to denote the t-dimensional Hausdorff measure, with
respect to the Euclidean metric on R

m+1, for t ≥ 0.

Theorem 4.3 Let v ∈ Ẇ 1,2
β (Rm+1+ ; N ) be a minimiser of Eβ relative to O. There exists

sets Σint ⊂ R
m+1+ and Σbdry ⊂ O such that the following holds. The set Σint is relatively

closed in R
m+1+ and has Hausdorff dimension at most m − 2. The set Σbdry is relatively

closed in O and Hm+β−1(Σbdry) = 0. The set Σ := Σint ∪ Σbdry is relatively closed in
R
m+1+ ∪ O and Hm+β−1(Σ) = 0. Furthermore, we have v ∈ C∞(Rm+1+ \Σint; N ), v ∈

C0,1
loc ((R

m+1+ ∪ O)\Σ; N ) and for every multi-index α′ ∈ N
m+1 with α′

m+1 = 0 we have
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Dα′
v ∈ C0,1

loc ((R
m+1+ ∪O)\Σ;Rn) and∇Dα′

v ∈ L∞
loc((R

m+1+ ∪O)\Σ;R(m+1)n). Finally, for

everyα′ ∈ N
m+1
0 withα′

m+1 = 0, we have xβ
m+1∂m+1Dα′

v ∈ C0,γ

loc ((Rm+1+ ∪O)\Σ;R(m+1)n)

for some γ = γ (m, N , β, α′) ∈ (0, 1).

Remark 4.4 The existence and properties of Σint follows from the theory of Schoen and
Uhlenbeck [37].

4.1 Euler–Lagrange and stationary equations for minimisers

Minimisers of Eβ relative to O are critical points of Eβ with respect to outer and inner
variations, including those which vary their boundary data in O. As a consequence, they
satisfy two systems of partial differential equations which we describe presently.

Let ψ ∈ D+(Rm+1+ ;Rn), as defined in Sect. 2.1, with ψ(·, 0) ∈ C∞
0 (O;Rn). For suffi-

ciently small t we define an outer variation of v by vt = πN (v + tψ) ∈ N , where πN is the
nearest point projection onto N . Critical points of Eβ with respect to variations of the form
vt satisfy

∫

R
m+1+

xβ
m+1 (〈∇v,∇ψ〉 − 〈ψ, A(v) (∇v,∇v)〉) dx = 0. (4.1)

Note that there is a Neumann-type boundary condition implicit in (4.1). In particular, if v is
sufficiently smooth in R

m+1+ ∪ O we have

xβ
m+1∂m+1v = 0 in O. (4.2)

A (weakly) harmonic map satisfying (4.1) is said to be (weakly) harmonic with respect to
the Neumann type boundary condition (4.2).

Define Φt (x) = x + tφ(x) for x ∈ R
m+1+ , where φ ∈ D+(Rm+1+ ;Rm+1) is such that

φ(·, 0) ∈ C∞
0 (O; ∂Rm+1+ ) and |t | is small enough to make Φt into a diffeomorphism of

R
m+1+ with Φt (O) ⊂ O. We say v ∈ Ẇ 1,2

β (Rm+1+ ; N ) is a critical point of the Dirichlet
energy corresponding to inner variations vt := v ◦ Φt , or variations of the independent
variable, if v satisfies

∫

R
m+1+

m+1∑
i=1

m+1∑
k=1

xβ
m+1

(
2

〈
∂v

∂xi
,

∂v

∂xk

〉
− δik |∇v|2

)
∂φk

∂xi
dx

=
∫

R
m+1+

βxβ−1
m+1φm+1|∇v|2dx (4.3)

for every φ as above. A weakly harmonic map with respect to the Neumann type bound-
ary condition (4.2) which satisfies (4.3) for every φ ∈ D+(Rm+1+ ;Rm+1) with φ(·, 0) ∈
C∞

0 (O; ∂Rm+1+ ) is called weakly stationary harmonic, or stationary harmonic, with respect
to the Neumann type boundary condition (4.2).

4.2 Energy monotonicity

Stationary harmonic maps satisfy a monotonicity formula for an appropriately scaled version
of the energy over balls with closure in R

m+1+ . This property was proved by Schoen and
Uhlenbeck for energy minimisers, see [37, Proposition 2.4], and Price, see the remark after
Theorem 1 in [32], for stationary harmonic maps.
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As a consequence of (4.3), we show that stationary harmonic maps with respect to the
Neumann-type boundary condition (4.2) satisfy a similar monotonicity formula on half-balls

B+
ρ (y) with centre y in O and which satisfy ∂0B+

ρ (y) = Bm(y) ⊂ O. Moreover, we state a

version of the formula for balls with closure contained in R
m+1+ , giving an explicit expression

for the factors that the constants involved depend upon.

Lemma 4.5 Suppose v ∈ Ẇ 1,2
β (Rm+1+ ; N ) is a weakly stationary harmonic mapwith respect

to the Neumann-type boundary condition (4.2). Suppose y in O and consider B+
R (y) with

∂0B+
R (y) ⊂ O. Then

r1−m−β

∫

B+
r (y)

xβ
m+1 |∇v|2 dx − s1−m−β

∫

B+
s (y)

xβ
m+1 |∇v|2 dx

= 2
∫

B+
r (y)\B+

s (y)
xβ
m+1

|(x − y) · ∇v|2
|x − y|m+1+β

dx

whenever 0 ≤ s ≤ r ≤ R and therefore ρ �→ ρ1−m−β
∫
B+

ρ (y) x
β
m+1 |∇v|2 dx is a non-

decreasing function of ρ for 0 < ρ ≤ R.

Proof The proof is analogous to that of the monotonicity formula for stationary harmonic
maps. We follow [39, Section 2.4] and [29, Lemma 3.3]; we test (4.3) with φ(x) = (x −
y)η(x), where η ∈ C∞

0 (Bρ(y)), which yields

(m − 1 + β)

∫

R
m+1+

xβ
m+1 |∇v|2 ηdx +

∫

R
m+1+

xβ
m+1(x − y) · ∇η |∇v|2 dx

= 2
∫

R
m+1+

xβ
m+1 〈(x − y) · ∇v,∇η · ∇v〉 dx . (4.4)

Let χ ∈ C∞
0 (R; [0, 1]) with χ(s) ≡ 1 for s ≥ 1 and χ(s) ≡ 0 for s ≤ 1

2 . The smooth
functions defined by η j (x) = χ( j (ρ − |x − y|)) are admissible choices for η in (4.4) and
{η j } j∈N converges pointwise to the indicator function of B+

ρ (y). We substitute η j for η in (4.4)
and take the limit as j → ∞, using Lebesgue’s Dominated Convergence and Differentiation
Theorems, to see that

(m − 1 + β)

∫

B+
ρ (y)

xβ
m+1 |∇v|2 dx − ρ

∫

∂+B+
ρ (y)

xβ
m+1 |∇v|2 dS(x)

= − 2

ρ

∫

∂+B+
ρ (y)

xβ
m+1 |(x − y) · ∇v|2 dS(x)

for almost every ρ > 0, where dS is the Lebesgue measure on ∂Bρ(y). Multiplying

the above by the factor −ρ−(β+m) and bearing in mind that d
dρ

∫
B+

ρ (y) x
β
m+1 |∇v|2 dx =

∫
∂+B+

ρ (y) x
β
m+1 |∇v|2 dS(x) for almost all ρ > 0, we find

d

dρ

(
ρ1−m−β

∫

B+
ρ (y)

xβ
m+1 |∇v|2 dx

)
= 2

∫

∂+B+
ρ (y)

xβ
m+1

|(x − y) · ∇v|2
|x − y|m+1+β

dS(x)

for almost every ρ > 0. Integrating between 0 < s < r concludes the proof. ��
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Remark 4.6 A consequence of Lemma 4.5 is that we can define the density function

Θβ
v (y) = lim

ρ→0+ ρ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx

for every y ∈ O, analogously to Definition 1 in Section 2.5 of [39]. Using Lemma 4.5 we
deduce Θ

β
v is upper semi-continuous inO for any map v which is weakly stationary harmonic

with respect to the Neumann-type boundary condition (4.2).

The following version of the energy monotonicity formula is due to Grosse-Brauckm-
ann [16, Theorem 1]. We do not give a proof, but remark that the explicit form of the constant
in the forthcoming formula can be determined using the method of proof of Lemma 4.5.

Lemma 4.7 Suppose v ∈ Ẇ 1,2
β (Rm+1+ ; N ) is a minimiser of Eβ relative to O. Fix a ball

Bρ0(y) with Bρ0(y) ⊂ R
m+1+ for some ρ0 > 0 and suppose r and s satisfy 0 < s < r < ρ0.

Then

erC |β|r1−m
∫

Br (y)
xβ
m+1 |∇v|2 dx − esC |β|s1−m

∫

Bs (y)
xβ
m+1 |∇v|2 dx

≥ 2
∫

Br (y)\Bs (y)
xβ
m+1e

|x−y|C |β| |(x − y) · ∇v|2
|x − y|m+1 dx (4.5)

and therefore, for 0 < ρ < ρ0, ρ �→ eρC |β|ρ1−m
∫
Bρ(y) x

β
m+1 |∇v|2 dx is a non-decreasing

function of ρ where C = (ym+1 − ρ0)
−1 =

(
dist(Bρ0(y), ∂R

m+1+ )
)−1

.

4.3 A modified lemma of Morrey

In order to prove Theorem 4.21, in analogy with the regularity theory of harmonic maps,
we will show that the re-scaled, scale-invariant energies in the monotonicity formulas in
Sect. 4.2 decay slightly faster than implied by the Lemmata as the radius decreases. This
will permit the application of a well-known lemma of Morrey, see [29, Lemma 2.1] for
example, which is used to derive Hölder continuity from sufficiently fast energy decay. We
will reduce the hypothesis of this lemma to similar hypothesis for the re-scaled energies from
the monotonicity formula. To this end, we introduce a class of ball with closure in R

m+1+
on which the metrics xα

m+1δi j , discussed in Sect. 3 and corresponding weights xβ
m+1 are

uniformly equivalent to the Euclidean metric and 1 respectively. We also introduce classes
of balls and half-balls contained in the interior of a given larger half-ball B+

R (x0) for R > 0
and x0 ∈ ∂Rm+1+ .

Define

B =
{
Bρ(y) ⊂ R

m+1+ : ym+1 ≥ 2ρ
}

and Bθ =
{
Bρ(y) ⊂ R

m+1+ : ym+1 ≥ θρ
}

for θ ≥ 2. Then Bθ ⊂ B and B2 = B. We further define

Bθ (x0, R, r) = {Bρ(y) ⊂ B+
R (x0): ym+1 ≥ θρ, y ∈ B+

r (x0)},
omitting the subscript θ in the case θ = 2, and let

B+(x0, R, r) = {B+
ρ (y) ⊂ B+

R (x0): ym+1 = 0, |x0 − y| < r, ρ ≤ r}.
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Observe that, on any Bρ(y) ∈ B, we can choose constants c,C, c0 and C0 independently of
β such that for every x ∈ Bρ(y) and β ∈ (−1, 1) we have

cyβ
m+1 ≤ xβ

m+1 ≤ Cyβ
m+1 and c0 ≤ supBρ(y) x

β
m+1

infBρ(y) x
β
m+1

≤ C0. (4.6)

Lemma 4.8 Let γ > 0, x0 ∈ ∂Rm+1+ , a > 0, θ1 ≥ 2 and θ2 ≤ 1
2 . Define θ = θ2

2θ1
. Then

there exists a constant C0 = C0(m, γ, θ1, β) such that if v ∈ W 1,2
β (B+

R (x0);Rn) with

r−2m
∫

B
|xm+1|−βdx

∫

B
|∇v|2|xm+1|βdx ≤ arγ (4.7)

for every B = B+
r (y) ∈ B+(x0, R, θ2R) and every B = Br (y) ∈ Bθ1(x0, R, θ2R), then for

almost every x1, x2 ∈ B+
θR(x0),

|v(x1) − v(x2)| ≤ C0a
1
2 |x1 − x2|

γ
2 .

Proof Let Br (y) ⊂ B2θR(x0) with ym+1 ≥ 0, y ∈ BθR(x0) and r ≤ θR, for a γ ∈ (0, 1),
an a > 0 and θ as specified. Such a Br (y) must satisfy either Br (y) ∈ Bθ1(x0, 2θR, θR) or
Br (y) /∈ Bθ1(x0, 2θR, θR). We consider these cases in turn and we work with the even reflec-
tion of v with respect to ∂Rm+1+ , which we do not relabel and which is in W 1,2

β (BR(x0);Rn).
Suppose Br (y) ∈ Bθ1(x0, 2θR, θR) with r ≤ θR. Then Br (y) ∈ Bθ1(x0, R, θ2R) and an

application of Hölder’s inequality and the assumptions of the lemma yields

r−m
∫

Br (y)
|∇v|dx ≤

(
r−2m

∫

Br (y)
|xm+1|−βdx

∫

Br (y)
|∇v|2|xm+1|βdx

) 1
2 ≤ a

1
2 r

γ
2 .

(4.8)

Now suppose Br (y) /∈ Bθ1(x0, 2θR, θR) and r ≤ θR. In this case, since Br (y) ⊂
B2θR(x0) and y ∈ BθR(x0) by assumption, we must have ym+1 < θ1r . Hence ym+1−r < ζr ,
where ζ ≥ 1 is such that θ1 = ζ+1, and thus Br (y) ⊂ B(2+ζ )r (y0) where y0 = y−(0, ym+1).
We observe that B+

(2+ζ )r (y0) ∈ B+(x0, R, θ2R). Therefore, defining s = (2 + ζ )r and using
the assumptions of the lemma, the symmetry of v and applying Hölder’s inequality, we find

r−m
∫

Br (y)
|∇v|dx ≤ r−m

∫

Bs (y0)

|∇v|dx

= 2r−m
∫

B+
s (y0)

|∇v|dx

≤ 2(2 + ζ )m
(
s−2m

∫

B+
s (y0)

|xm+1|−βdx
∫

B+
s (y0)

|∇v|2|xm+1|βdx

) 1
2

≤ 2(2 + ζ )m+ γ
2 a

1
2 r

γ
2 . (4.9)

Since v is even with respect to ∂Rm+1+ , we deduce that either (4.8) or (4.9) holds on
any Br (y) ⊂ B2θR(x0) with y ∈ BθR(x0) and r ≤ θR. Hence we have established that
the hypothesis of the decay lemma of Morrey hold on B2θR(x0), see [29, Lemma 2.1]. An
application of this lemma concludes the proof. ��
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4.4 Interior estimates for Hölder continuity

Using the regularity theory of Schoen and Uhlenbeck [37] and Schoen [38], we show that
minimisers v ∈ Ẇ 1,2

β (Rm+1+ ; N ) of Eβ relative to O essentially satisfy (4.7) in Lemma 4.8,

provided the scale-invariant energy R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx is sufficiently small. To

this end, we show that the preceding scale-invariant energy B+
R (x0) controls the scale-

invariant Euclidean energy on a class of ball with closure in B+
R (x0). We also recall the

relevant theory from [37,38, Sections 1, 2 and 3], stating the results in our context with
slightly different notation. Our goal is to prove the following.

Lemma 4.9 Suppose v ∈ Ẇ 1,2
β (Rm+1+ ; N ) is a minimiser of Eβ relative to O. Let B+

R (x0)

be a half-ball with R ≤ 1 and ∂0B+
R (x0) ⊂ O. There exists an ε0 = ε0(m, N ) > 0, a

θ = θ(m, N ) ≥ 2 and a positive C = C(m, N ) such that if

R1−m−β

∫

B+
R (x0)

xβ
m+1 |∇v|2 dx ≤ ε0,

then

ρ1−m
∫

Bρ(y)
|∇v|2dx ≤ C

(ρ

r

)γ

r1−m
∫

Br (y)
|∇v|2dx (4.10)

on every Br (y) ∈ Bθ (x0, R, R
3 ) for 0 < ρ ≤ r and a γ = γ (m, N ) ∈ (0, 1).

To establish the preceding lemma, we observe the following relationship between the
scale-invariant energy on B+

R (x0) and the scale-invariant Euclidean energy on a class of ball
with closure in B+

R (x0).

Lemma 4.10 Suppose v ∈ Ẇ 1,2
β (Rm+1+ ; N ) is a minimiser of Eβ relative to O. Let B+

R (x0)

be a half-ball with ∂0B+
R (x0) ⊂ O and suppose Bρ(y) ∈ B(x0, R, R

3 ). Then there is a
constant C = C(m) such that

ρ1−m
∫

Bρ(y)
|∇v|2dx ≤ CR1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx . (4.11)

Proof Notice that any ball Bρ(y) ∈ B satisfies Bρ(y) ⊂ B ym+1
2

(y) so we can choose the

scaling factor e
2|β|ρ
ym+1 in Lemma 4.7. Furthermore, e

2|β|ρ
ym+1 ≤ e since ym+1 ≥ 2ρ and β ∈

(−1, 1). Hence, using (4.6) and applying Lemma 4.7, we find

ρ1−m
∫

Bρ(y)
|∇v|2 dx ≤ Cy−β

m+1e
2|β|ρ
ym+1 ρ1−m

∫

Bρ(y)
xβ
m+1 |∇v|2 dx

≤ C
( ym+1

2

)1−m−β
∫

B ym+1
2

(y)
xβ
m+1 |∇v|2 dx . (4.12)

Let y = (y1, . . . , ym+1) and y+ = (y1, . . . , ym, 0). Note that B ym+1
2

(y) ⊂ B+
3ym+1

2

(y+) and,

since Bρ(y) ∈ B (x0, R, R
3

)
, we have y ∈ B+

R
3
(x0) and B+

3ym+1
2

(y+) ⊂ B+
R
2
(y+) ⊂ B+

R (x0).

Using these facts we apply Lemma 4.5 to see that

( ym+1

2

)1−m−β
∫

B ym+1
2

(y)
xβ
m+1 |∇v|2 dx ≤ C

(
3ym+1

2

)1−m−β ∫

B+
3ym+1

2

(y+)

xβ
m+1 |∇v|2 dx
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≤ C

(
R

2

)1−m−β ∫

B+
R
2

(y+)

xβ
m+1 |∇v|2 dx

≤ CR1−m−β

∫

B+
R (x0)

xβ
m+1 |∇v|2 dx (4.13)

where C = C(m). The combination of (4.12) and (4.13) yields (4.11). ��
The maps considered in [37,38] belong to

W 1,2(Ω; N ) = {v ∈ W 1,2(Ω;Rn): v(x) ∈ N for almost every x ∈ Br (y)
}
,

for open Ω ⊂ R
m+1+ . Consider the compact Riemannian manifold B1(0) with metric g̃.

Recall from the introduction that the Dirichlet energy functional on B1(0) is given by

Eg̃(v) =
∫

B1(0)

|∇v|2g̃
√

det(g̃)dx .

A minimiser of Eg̃ with fixed boundary data is defined in Section 1 of [37] as follows.

Definition 4.11 Any v ∈ W 1,2(B1(0); N ) is an Eg̃ minimising map if it satisfies Eg̃(v) ≤
Eg̃(w) for any w ∈ W 1,2(B1(0); N ) with v − w ∈ W 1,2

0 (B1(0);Rn).

The metric g̃ is assumed to be of class C2 on B1(0). For Λ > 0 denote by EΛ the class of
functionals Eg̃ on B1(0) with metric g̃ such that g̃i j (0) = δi j and

∑
i, j,k

∣∣∂k g̃i j
∣∣ ≤ Λ.

If v is Eg̃-minimising with Eg̃ ∈ EΛ then we say v ∈ HΛ.
Schoen and Uhlenbeck [37] proved their ε-regularity theorem for minimisers of function-

als of the form Ẽg̃ + F , where F gives rise to terms in the Euler–Lagrange equations which
are lower order than those coming from the energy. We state the result of their theorem with
F = 0. The following Lemma is Theorem 3.1 in [37].

Lemma 4.12 There exists ε = ε(m, N ) > 0 such that if v ∈ HΛ, Λ ≤ ε and∫
B1(0)

|∇v|2 dx ≤ ε, then v is Hölder continuous in B 1
2
(0) and

|v(x1) − v(x2)| ≤ C |x1 − x2|γ

for constants C = C(m, N ) and γ = γ (m, N ) ∈ (0, 1) and every x1, x2 ∈ B 1
2
(0).

It is well known that continuous weakly harmonic maps are smooth, see [22] for example.
It is more readily shown that Hölder continuous harmonic maps are smooth; this is the content
of the following lemma, which is Lemma 3.1 of [38].

Lemma 4.13 Consider a ball Br (y) ⊂ R
m+1+ and suppose v ∈ W 1,2(Br (y); N ) is a weakly

harmonic map which is Hölder continuous on Br (y). Then v is smooth on Br (y).

The final lemma we will need is Theorem 2.2 from [38].

Lemma 4.14 Let v ∈ C2(Br (0); N ) and g̃ be a Riemannian metric on Br (0). Suppose v is
harmonic with respect to g̃ in Br (0) and g̃ satisfies

∣∣∂k g̃i j
∣∣ ≤ Λr−1 for i, j, k = 1, . . . ,m+1
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andΛ−1(δi j ) ≤ (g̃i j ) ≤ Λ(δi j ) in the sense of tensors, where δi j = 1when i = j and δi j = 0
otherwise. Then there exists an ε = ε(Λ,m, N ) > 0 such that if

r1−m
∫

Br (0)

|∇v|2g̃ (det(g̃))
1
2 dx ≤ ε

then

sup
B r

2
(0)

|∇v|2g̃ ≤ Cr−(1+m)

∫

Br (0)

|∇v|2g̃ (det(g̃))
1
2 dx (4.14)

for a constant C = C(Λ,m, N ).

Proof of Lemma 4.9 Suppose R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε0 for an ε0 > 0 to be cho-

sen small and let ε be the number from Lemma 4.12.
Recall the metric g given in Euclidean coordinates by g := xα

m+1δi j and define ĝ on B1(0)

by

ĝi j (x) = δi j

(
1 + ry−1

m+1xm+1

)α = y−α
m+1gi j (r x + y). (4.15)

The energy corresponding to ĝ is

Eĝ(v̂) = 1

2

∫

B1(0)

(
1 + ry−1

m+1xm+1

)β ∣∣∇v̂
∣∣2 dx

for maps v̂ ∈ W 1,2(B1(0);Rn). Since Br (y) ∈ Bθ (x0, R, R
3 ) for a θ ≥ 2 to be chosen,

we have Br (y) ∈ B. Hence, using (4.6) and noting that β = α
(m−1

2

) ∈ (−1, 1), we find
constants c,C depending only on m such that

c ≤
(

1 + ry−1
m+1xm+1

)β ≤ C and c ≤ ĝi j (x) ≤ C. (4.16)

We note that ∂k ĝ = 0 for k �= m + 1 and, again using (4.6), we calculate

∣∣∣∂m+1

(
1 + ry−1

m+1xm+1

)α∣∣∣ = ry−1
m+1|α|

∣∣∣∣
(

1 + ry−1
m+1xm+1

)α−1
∣∣∣∣ ≤ Cry−1

m+1

whereC is chosen independently ofα. Hence, if we set θ = θ(m, N ) ≥ max
{
2, (m + 1)Cε−1

}
then we conclude that

∑
i, j,k

∣∣∂k g̃i j
∣∣ =

m+1∑
i=1

|∂m+1g̃i i | ≤ ε. (4.17)

We assume the preceding choice of θ henceforth so that (4.17) holds on any Br (y) ∈
Bθ (x0, R, R

3 ).

Definevr,y(x) = v(r x+y) for x ∈ B1(0). Lemmata 2.1 and 2.3 imply Ẇ 1,2
β (Rm+1+ ; N ) ↪→

W 1,2(Br (y); N ) for every Br (y) with Br (y) ⊂ R
m+1+ , regardless of β ∈ (−1, 1). A change

of variables then yields vr,y ∈ W 1,2(B1(0); N ). Furthermore, since v is a minimiser of Eβ

relative to O we readily calculate that vr,y is a minimiser of Eĝ in the sense of Definition 4.11
on B1(0), that is, vr,y minimises Eĝ among all maps in W 1,2(B1(0); N ) with the same
boundary values as vr,y .
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Our considerations so far imply that if Br (y) ∈ Bθ (x0, R, R
3 ), for our preceding choice

of θ , then vr,y ∈ Hε . Let C be the constant from Lemma 4.10 and suppose that ε0 ≤ C−1ε.
An application of this lemma, combined with a change of variables, yields
∫

B1(0)

∣∣∇vr,y
∣∣2 dx = r1−m

∫

Br (y)
|∇v|2 dx ≤ CR1−m−β

∫

B+
R (x0)

xβ
m+1 |∇v|2 dx ≤ Cε0 ≤ ε.

(4.18)

This holds for every Br (y) ∈ Bθ

(
x0, R, R

3

)
. We may therefore apply Lemma 4.12 to vr,y

to deduce that it is Hölder continuous in B 1
2
(0). Re-scaling implies v is Hölder continuous

in every Br
2
(y) ∈ Bθ (x0, R, R

3 ), or equivalently v is Hölder continuous in every Br (y) ∈
B2θ (x0, R, R

3 ).
Since v is weakly harmonic in R

m+1+ with respect to the metric represented by xα
m+1δi j

(where β = α m−1
2 ), it is weakly harmonic with respect to xα

m+1δi j on every Br (y) with

Br (y) ⊂ R
m+1+ . Thus it follows from Lemma 4.13 that v is smooth in each Br (y) ∈

B2θ (x0, R, R
3 ), which holds if and only if each vr,y corresponding to such a Br (y) is smooth

in B1(0). We further deduce that vr,y is harmonic in B1(0) with respect to ĝ using the chain
rule. Moreover, it follows from (4.16) and (4.17) that ĝ satisfies the assumptions required of
the metric in Lemma 4.14. We combine (4.16) with (4.18) to see that

∫

B1(0)

(
1 + ry−1

m+1xm+1

)β |∇vr,y |2dx ≤ C
∫

B1(0)

|∇vr,y |2dx ≤ Cε0. (4.19)

In addition to our previous stipulation for ε0, we further require that ε0 ≤ ε1
C where ε1 is the

number from Lemma 4.14. We apply this lemma, recalling β = α(m−1
2 ) and Br (y) ∈ B, to

see that

r2 sup
B r

2
(y)

(
xm+1y

−1
m+1

)β |∇v|2 = sup
B 1

2
(0)

(
1 + ry−1

m+1xm+1

)β |∇vr,y |2

≤ C sup
B 1

2
(0)

(
1 + ry−1

m+1xm+1

)−α |∇vr,y |2

≤ C
∫

B1(0)

(
1 + ry−1

m+1xm+1

)β |∇vr,y |2dx

= Cr1−m
∫

Br (y)

(
xm+1y

−1
m+1

)β |∇v|2dx .

As a result, for any σ ∈ (0, 1
2 ] we have

(σr)1−m
∫

Bσr (y)

(
xm+1y

−1
m+1

)β |∇v|2dx

≤ Cσ 2r1−m
∫

Br (y)

(
xm+1y

−1
m+1

)β |∇v|2dx .

Choose σ such that σ 2 ≤ 1
2C and let ρ ≤ r . Then

e
|β|σr

ym+1−r (σr)1−m
∫

Bσr (y)

(
xm+1y

−1
m+1

)β |∇v|2dx

≤ 1

2
e

|β|r
ym+1−r r1−m

∫

Br (y)

(
xm+1y

−1
m+1

)β |∇v|2dx
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on every Br (y) ∈ B2θ (x0, R, R
3 ). The mapρ �→ e

|β|ρ
ym+1−r ρ1−m

∫
Bρ(y)

(
xm+1y

−1
m+1

)β |∇v|2dx

is non-decreasing in ρ for ρ ≤ r as a result of Lemma 4.7. Lemma 8.23 of [15] hence implies

e
|β|ρ

ym+1−r ρ1−m
∫

Bρ(y)

(
xm+1y

−1
m+1

)β |∇v|2dx

≤ C
(ρ

r

)γ

e
|β|r

ym+1−r r1−m
∫

Br (y)

(
xm+1y

−1
m+1

)β |∇v|2dx

for every ρ ≤ r on every Br (y) ∈ B2θ (x0, R, R
3 ). It follows that

ρ1−m
∫

Bρ(y)
|∇v|2dx ≤ C

(ρ

r

)γ

r1−m
∫

Br (y)
|∇v|2dx

on every Br (y) ∈ B2θ (x0, R, R
3 ) for 0 < ρ ≤ r . This concludes the proof. ��

4.5 A modified lemma of Luckhaus

Here we begin our construction of comparison maps. We prove a partial extension (to the
particular case of our degenerate/singular metrics xα

m+1δi j ) of a lemma of Luckhaus, Lemma
3 in [23], as presented in Lemma 1 Section 2.6 of [39].

Let Sm ⊂ R
m+1 denote the m dimensional unit sphere, centred at the origin and equipped

with the metric induced by the Euclidean metric on R
m+1. Define Sm+ = S

m ∩R
m+1+ with the

metric induced from S
m . We let ω denote a point in S

m ⊂ R
m+1 or Sm+ ⊂ R

m+1+ and write
dω for the volume element corresponding to the induced metric. Recall the notation ∂+Ω =
∂Ω ∩ R

m+1+ for Ω ⊂ R
m+1 and Qr (y) = {x ∈ R

m+1: |xi − yi | < r, i = 1, . . . ,m + 1} for
y ∈ R

m+1. We also write Q+
r (y) = Qr (y) ∩ R

m+1+ for y ∈ ∂Rm+1+ .
In order to state the modified Luckhaus lemma precisely we introduce the notion of a

Sobolev space for functions whose domain is either Sm or Sm+.

Definition 4.15 Let ε > 0 and ρ > 0. Suppose S = ρSm and Vε = Bρ+ε(0)\Bρ−ε(0)

or S = ρSm+ and Vε = B+
ρ+ε(0)\B+

ρ−ε(0). An element v ∈ L2
β(S;Rn) is said to be in

W 1,2
β (S;Rn) if the map v(ρ x

|x | ) ∈ W 1,2
β (Vε;Rn) for some ε > 0. An element v ∈ L2

β(S ×
[a, b];Rn), with a < b real numbers, is said to be in W 1,2

β (S × [a, b];Rn) if the map

v(ρ x
|x | , s) ∈ W 1,2

β (Vε × [a, b];Rn) for some ε > 0. If N ⊂ R
n is compact, we say v

is in W 1,2
β (S; N ) or W 1,2

β (S × [a, b]; N ) if v is in W 1,2
β (S;Rn) or W 1,2

β (S × [a, b];Rn)

respectively and v(x) ∈ N for almost every x ∈ S.

We now state our version of the Luckhaus lemma.

Lemma 4.16 Let m ≥ 2 and β ∈ (−1, 1). Let N be a compact subset of Rn and suppose
u, v ∈ W 1,2

β (Sm+; N ). Then for all ε ∈ (0, 1) there is a w ∈ W 1,2
β (Sm+ × [0, ε];Rn) such that

w agrees with u on Sm+ × {0} and v on Sm+ × {ε} in the sense of traces and which satisfies the
following. Let D be the gradient on Sm+ ×[0, ε] and D the gradient on Sm+. Thenw = w(ω, s)
satisfies

∫

S
m+×[0,ε]

ω
β
m+1|Dw|2dωds

≤ C1ε

∫

S
m+

ω
β
m+1

(|Du|2 + |Dv|2) dω + C1

ε

∫

S
m+

ω
β
m+1|u − v|2dω

(4.20)
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where C1 = C1(m, β). Furthermore, w satisfies

dist2(w(ω, s), N )

≤ C2

εm+ β
2 + |β|

2

(∫

S
m+

ω
β
m+1

(|Du|2 + |Dv|2) dω

) 1
q
(∫

S
m+

ω
β
m+1|u − v|2dω

)1− 1
q

+ C2

εm+1+ β
2 + |β|

2

∫

S
m+

ω
β
m+1|u − v|2dω

(4.21)

for almost every (ω, s) ∈ S
m+ × [0, ε] where C2 = C2(m, β) and q satisfies the following.

If β ∈ (−1, 0] then (4.21) holds for q = 2. If β ∈ (0, 1), for any p ∈ (1, 2
1+β

), there exists
q ∈ {2, p} such that (4.21) holds.

Our proof of Lemma 4.16 follows the proof, given in Section 2.12.2 of [39], of Lemma 1
in Section 2.6 of [39].

4.6 Absolute continuity properties of functions in W1,2
β

We recall the discussion in [39, Section 2.12.1] regarding the absolute continuity properties
of W 1,p functions, which are inherited by W 1,2

β functions in view of Lemma 2.1. Let Ht

denote the t-dimensional Hausdorff measure with respect to the Euclidean metric. Consider

a rectangle Q ⊂ R
m+1+ of the form Q = [a1, b1] × · · · × [am+1, bm+1] where ai < bi .

Suppose v ∈ W 1,2
β (Q;Rn) with β ∈ (−1, 1). It follows from Lemma 2.1 that if am+1 > 0

then Q ⊂ R
m+1+ and v|Q ∈ W 1,2(Q;Rn). Lemma 2.1 also implies that if am+1 = 0 then

v|Q ∈ W 1,p(Q;Rn) for p = p(β). Hence, by Lemma 3.1.1 and Theorem 3.1.8 in [28],
if am+1 ≥ 0, we may infer the existence of a representative v̂ of v such that, for each i =
1, . . . ,m+1, v̂(x1, . . . , xi−1, xi , xi+1, . . . , xm+1) is an absolutely continuous function of xi
for almost all fixed values of x1, . . . , xi−1, xi+1, . . . , xm+1 with respect to the m dimensional
Hausdorff measure Hm on [a1, b1]× · · ·× [ai−1, bi−1]× [ai+1, bi+1]× · · ·× [am+1, bm+1].
The classical partial derivatives ∂v̂

∂xi
agree almost everywhere with the weak derivatives ∂v

∂xi
.

Furthermore, for any closed subset N of Rn , if v(x) ∈ N for almost every x then it is possible
to choose v̂(x) ∈ N for every x ∈ R

m+1+ .

4.7 Proof of Lemma 4.16

Proof of Lemma 4.16 We follow the proof, given in Section 2.12.2 of [39], of Lemma 1 in
Section 2.6 of [39]. Throughout, C denotes a constant only depending on m and β.

Suppose u, v ∈ W 1,2
β (Sm+; N ). We reflect u and v evenly in ∂Rm+1+ , without relabelling,

to get u, v ∈ W 1,2
β (Sm; N ) and choose extensions of u and v to R

m+1\{0} which are homo-
geneous of degree zero with respect to the origin. Then we choose representatives of these
extensions which satisfy the absolute continuity properties described in Sect. 4.6 on Q1(0).
We will denote the representatives of the extensions of u and v by û and v̂ respectively. Then
û(ρω) = û(ω), v̂(ρω) = v̂(ω) for almost every ρ > 0 and ω ∈ S

m . Moreover, we have the
identity ∇û = |x |−1∇û(ω(x)) = Du(ω(x)) for ω(x) = |x |−1x , where D is the gradient on
S
m+ and ∇ is the gradient on R

m+1+ . We therefore calculate

∫

Q+
1 (0)

xβ
m+1

(|∇û|2 + |∇v̂|2) dx ≤ C
∫

S
m+

ω
β
m+1

(|Du|2 + |Dv|2) dω (4.22)
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and ∫

Q+
1 (0)

xβ
m+1|û − v̂|2dx ≤ C

∫

S
m+

ω
β
m+1|u − v|2dω. (4.23)

Let ε ∈ (0, 1
8 ) and define the closed rectangles Qi,ε = [i1ε, (i1 + 1)ε] × · · · ×

[im+1ε, (im+1 + 1)ε] for i = (i1, . . . , im+1) ∈ Z
m+1. Fix ε ∈ (0, 1

8 ) arbitrarily henceforth.
Let Fl denote any l-dimensional face of a Qi,ε. We define

Q =
{
Qi,ε: i ∈ Z

m+1, Qi,ε ⊂ Q 1
2
(0)
}

and F l
i =

{
Fl faces of Qi,ε

}
.

In addition, we write x + F l
i to denote the collection of the translations of all faces in F l

i by
x ∈ R

m+1.
Consider a non-negative, measurable function f : Q1(0) → R which is even with respect

to the hyperplane ∂Rm+1+ . Invoking [39, Section 2.12.2] estimate (3), which is a consequence
of Chebychev’s inequality and Fubini’s theorem, we see that for every K ≥ 1 there exists a

set P ⊂ Q0,ε of measure |P| ≤ Cεm+1

K , with C = C(m), such that for all y ∈ Q0,ε\P and
l ∈ {0, . . . ,m + 1} we have

εm+1−l
∑

{i : Qi,ε∈Q}

∑

y+F l
i

∫

Fl
f dHl ≤ K

∫

Q1(0)

f dx = 2K
∫

Q+
1 (0)

f dx . (4.24)

Since we chose û and v̂ with the absolute continuity properties described in Sect. 4.6 on
Q1(0) it follows that for almost every x ∈ Q0,ε, with respect to the m + 1-dimensional
Lebesgue measure, all of the functions û, v̂,∇û,∇v̂ are Hl almost everywhere defined on
each of the l-dimensional faces of x+Qi,ε for Qi,ε ∈ Q and l = 1, . . . ,m+1. Moreover, the
gradients of û and v̂ on any l-dimensional face of x + Qi,ε coincide Hl almost everywhere
with the tangential parts of ∇û and ∇v̂ respectively. Thus we may choose x = a ∈ Q0,ε

such that these properties hold and, provided we choose K (depending on m) sufficiently
large in (4.24), such that am+1 ≥ ε

2 and such that we may apply (4.24) simultaneously for
f (x) = |xm+1|β f̃ (x) with f̃ (x) = |û(x)− v̂(x)|2 and f̃ (x) = |∇û(x)|2 + |∇v̂(x)|2 (where
∇ is the gradient on R

m+1). In particular, after discarding the integrals in (4.24) taken over
any cube faces which do not intersect Rm+1+ , we have

εm+1−l
∑

{
i : Qi,ε∈Q
im+1≥−1

}

∑

a+F l
i

∫

Fl∩Rm+1+
xβ
m+1 f̃ dHl ≤ C

∫

Q+
1 (0)

xβ
m+1 f̃ dx .

(4.25)

Now we begin the construction of w by defining a map on the one dimensional faces of
every Q × [0, ε] where Q := (a + Qi,ε) ∩ R

m+1+ with Qi,ε ∈ Q and im+1 ≥ −1. Let E j

denote a one dimensional face of Q parallel to the j th coordinate axis for j = 1, . . . ,m + 1.
Define w(x, 0) = û(x) on Q × {0} and w(x, ε) = v̂(x) on Q × {ε} and let w(x, s) =
(1− s

ε
)û(x)+ s

ε
v̂(x) for x ∈ E j and s ∈ [0, ε]. Since û(Rm+1+ ) ⊂ N by definition, it follows

that

dist2(w(x, s), N ) ≤ max j=1,...,m+1 sup
E j

|û − v̂|2 (4.26)

for x in the 1-dimensional edges of Q and s ∈ [0, ε].
We now estimate supE j

|û − v̂|2 using the Sobolev embedding theorem for W 1,2
β along

the line segments E j , which one can deduce analogously to the case for W 1,2 functions.
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Note that in our construction so far, we have discarded any edges E j ⊂ ∂Rm+1+ . If E j ,
j = 1, . . . ,m + 1, lies in a Q = (a + Qi,ε) ∩R

m+1+ with im+1 ≥ −1, with the exception of
the case im+1 = −1, j = m + 1 and β ∈ (0, 1), we calculate

sup
E j

|û − v̂|2 ≤ C

ε
β
2 + |β|

2

(∫

E j

xβ
m+1

(|∂ j û|2 + |∂ j v̂|2) dx j

) 1
2
(∫

E j

xβ
m+1|û − v̂|2dx j

) 1
2

+ C

ε1+ β
2 + |β|

2

∫

E j

xβ
m+1|û − v̂|2dx j . (4.27)

If β > 0, im+1 = −1 and j = m + 1 then we calculate

sup
Em+1

|û − v̂|2

≤ C

(∫

Em+1

xβ
m+1(|∂m+1û|2 + |∂m+1v̂|2)dxm+1

) 1
p
(∫

Em+1

xβ
m+1|û − v̂|2dxm+1

)1− 1
p

+ Cε−(1+β)

∫

Em+1

xβ
m+1|û − v̂|2dxm+1, (4.28)

for any p ∈ (1, 2
1+β

). The combination of (4.26), (4.27) and (4.28) with (4.25), applied with
l = 1, yields

dist2(w(x, s), N ) ≤ C

εm+ β
2 + |β|

2

(∫

Q+
1 (0)

xβ
m+1

(|∇û|2 + |∇v̂|2) dx

) 1
q

(∫

Q+
1 (0)

xβ
m+1|û − v̂|2dx

)1− 1
q

+ C

εm+1+ β
2 + |β|

2

∫

Q+
1 (0)

xβ
m+1|û − v̂|2dx, (4.29)

where q ∈ {p, 2}, for p fixed as above, depends on β.
Next we bound the gradient of w on the product of the 1-dimensional edges of Q with

[0, ε]. Let ∇ denote the gradient on E j × [0, ε]. Recall that û, v̂ are defined so that the
tangential parts of their gradients ∇û,∇v̂ on R

m+1+ coincide H1 almost everywhere with
their gradients on the edges E j . It follows that

sup
s∈[0,ε]

|∇w(x, s)|2 ≤ 8
(|∇û(x)|2 + |∇v̂(x)|2)+ 2

ε2 |û(x) − v̂(x)|2,

for x in any edge E j , j = 1, . . . ,m + 1, of Q. Integrating over E j × [0, ε] with respect to

xβ
m+1dx jds yields
∫

E j×[0,ε]
xβ
m+1|∇w|2dx jds ≤ 8ε

∫

E j

xβ
m+1(|∇û|2 + |∇v̂|2)dx j + 2

ε

∫

E j

xβ
m+1|û − v̂|2dx j .

(4.30)

Consider again Q × [0, ε] for Q = (a + Qi,ε) ∩ R
m+1+ with Qi,ε ∈ Q and im+1 ≥ −1.

Recall that we are excluding cube faces in ∂Rm+1+ from our construction. We use a slightly
different procedure to extend w to higher dimensions depending on whether im+1 = −1 or
im+1 ≥ 0. Accordingly we introduce some temporary notation for two classes of Fl that we
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consider. Let Fl⊥ denote any l-dimensional face of any Q with no edges in the m+1 direction
and let Fl

m+1 denote any face of any such Q with edges in the m + 1 direction. Suppose that

l ≥ 2 and w is already defined with L2 gradient on every Fl⊥ and Fl−1
⊥ × [0, ε], square

xβ
m+1dHl -integrable gradient on every Fl

m+1 and square xβ
m+1dHl−1ds-integrable gradient

on Fl−1
m+1 ×[0, ε]. Furthermore, suppose that w(x, 0) = û(x) and w(x, ε) = v̂(x) for x ∈ Fl⊥

or x ∈ Fl
m+1. These assumptions imply that w is defined Hl almost everywhere on all the

l-dimensional faces of Q for l ≥ 2. Since ∂(Fl⊥ ×[0, ε]) and ∂+(Fl
m+1 ×[0, ε]) are the union

of such l-dimensional faces, w is definedHl almost everywhere on these sets. If Q is such that
im+1 ≥ 0 then we do not distinguish between Fl⊥ and Fl

m+1 and extend w to each Fl⊥ ×[0, ε]
and Fl

m+1 × [0, ε] by homogeneous extension of degree zero with respect to (y, ε
2 ), where

y is the centre point of Fl⊥ or Fl
m+1. If im+1 = −1 then we extend w into Fl⊥ × [0, ε] using

the same method. We extend w homogeneously of degree 0 from ∂+(Fl
m+1 × [0, ε]) into

Fl
m+1 × [0, ε] with respect to the point

(
y+, ε

2

)
, where y is the centre point of Fl

m+1 and
y+ = y − (0, ym+1).

Now let Fl denote any l-dimensional face of any Q again. Since the tangential parts of
the gradients ∇û,∇v̂ on R

m+1 coincide with the gradients of û and v̂ on Fl for Hl almost
every x ∈ Fl , using the fact that û and v̂ are homogeneous of degree zero, we calculate

∫

Fl×[0,ε]
xβ
m+1|∇w|2dHlds ≤ Cε

∫

Fl
xβ
m+1(|∇û|2 + |∇v̂|2)dHl

+ Cε
∑

a+F l−1
i

∫

Fl−1×[0,ε]
xβ
m+1|∇w|2dHl−1ds, (4.31)

where ∇ is the gradient on the set it is integrated over. From (4.31), we inductively deduce
that for any l ∈ {2, . . . ,m + 1} we can extend w to each Fl × [0, ε] in Q × [0, ε] so that w

has an L2 or xβ
m+1dHlds-integrable gradient ∇w on these faces. Moreover, ∇w satisfies

∫

Fl×[0,ε]
xβ
m+1|∇w|2dHlds ≤ Cεl−1

∑

a+F1
i

∫

F1×[0,ε]
xβ
m+1|∇w|2dH1ds

+ C
l∑

j=1

εl− j+1
∑

a+F j
i

∫

F j
xβ
m+1(|∇û|2 + |∇v̂|2)dH j .

(4.32)

So far, we have constructed a map w = wi,ε on each cube and rectangle Q = (a +
Qi,ε) ∩ R

m+1+ such that Qi,ε ∈ Q with im+1 ≥ −1. It follows from the construction that
w(i,ε) = w( j,ε) Hl+1-almost everywhere on common faces Fl ×[0, ε] of (a+ Qi,ε)∩R

m+1+
and (a + Q j,ε) ∩ R

m+1+ . Furthermore, for 0 < ε < 1
8 it follows that

Q+
1
4
(0) ⊂

⋃
{
i : Qi,ε∈Q
im+1≥−1

}
a + Qi,ε.

We may therefore define w ∈ W 1,2
β (Q+

1
4
(0) × [0, ε];Rn) by w|

(a+Qi,ε)∩Rm+1+
(x, s) =

w(i,ε)(x, s) for s ∈ [0, ε]. Since w is homogeneous of degree 0 on any l-dimensional face
of any Q × [0, ε] with l ≥ 3, our inductive procedure preserves (4.29) for all (x, s) in
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Q+
1
4
(0) × [0, ε], with the possible exception of a set P of m-dimensional Hausdorff measure

0. It follows from (4.29) that for (x, s) ∈ (Q+
1
4
(0) × [0, ε])\P we have

dist2(w(x, s), N ) ≤ C

εm+ β
2 + |β|

2

(∫

Q+
1 (0)

xβ
m+1

(|∇û|2 + |∇v̂|2) dx

) 1
q

(∫

Q+
1 (0)

xβ
m+1|û − v̂|2dx

)1− 1
q

+ C

εm+1+ β
2 + |β|

2

∫

Q+
1 (0)

xβ
m+1|û − v̂|2dx (4.33)

where q ∈ {2, p} for some fixed p ∈ (1, 2
1+β

). Moreover, we combine (4.30), (4.32) and
(4.25) to see that∫

Q+
1
4
(0)×[0,ε]

xβ
m+1|∇w|2dxds ≤ Cε

∫

Q+
1 (0)

xβ
m+1

(|∇û|2 + |∇v̂|2) dx

+ C

ε

∫

Q+
1 (0)

xβ
m+1|û − v̂|2dx . (4.34)

The definition of w as required now follows from combining (4.33) and (4.34) with
(4.22) and (4.23). The absolute continuity properties, described in Sect. 4.6, of w, viewed
as a function defined on a rectangle in polar coordinates, guarantee that for almost every
ρ ∈ [ 1

8 , 1
4 ], w has square xβ

m+1dHmds-integrable gradient on ∂+B+
ρ (0) × [0, ε] which

coincides Hmds almost everywhere with the tangential part of ∇w. Using Fubini’s theorem
and Chebychev’s inequality, applied to the map ρ �→ ∫

∂+B+
ρ (0)×[0,ε] x

β
m+1|∇w|2dHmds, we

may therefore choose ρ ∈ [ 1
8 , 1

4 ] such that w has square xβ
m+1dHmds-integrable gradient on

∂+B+
ρ (0) × [0, ε] and satisfies
∫

∂+B+
ρ (0)×[0,ε]

xβ
m+1|∇w|2dHmds ≤ C

∫

B+
1
4
(0)×[0,ε]

xβ
m+1|∇w|2dHm+1ds.

We define w̃ on Sm+×[0, ε] by w̃(ω, s) = w(ρω, s) and observe that this map has the required
properties. ��
4.8 Comparison maps

With Lemma 4.16 in hand, we may now construct comparison maps for W 1,2
β functions which

have values in N and are defined on half-balls centred in ∂Rm+1+ , provided the re-scaled energy

is sufficiently small. We use the notation vB+
ρ (y),β =

(∫
B+

ρ (y) x
β
m+1dx

)−1 ∫
B+

ρ (y) x
β
m+1vdx .

Lemma 4.17 There exists a δ0 = δ0(m, N , β) > 0 such that the following holds. Let ε ∈
(0, 1) and v ∈ W 1,2

β (B+
ρ (y); N )with ρ1−m−β

∫
B+

ρ (y) x
β
m+1|∇v|2dx ≤ δ2

0εm+1+ β
2 + |β|

2 , where

y ∈ ∂Rm+1+ . Then there is a σ ∈ (
3ρ
4 , ρ) such that we can find a map wε ∈ W 1,2

β (B+
ρ (y); N )

which agrees with v in B+
ρ (y)\B+

σ (y) and such that

σ 1−m−β

∫

B+
σ (y)

xβ
m+1|∇w|2dx ≤ Cερ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx
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+ C

ε
ρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx (4.35)

for a constant C = C(m, β).

Proof We follow the proof of Corollary 1 in Section 2.7 of [39]. Throughout, C denotes
a constant which depends on m and possibly β and we only distinguish different C when
necessary. We also assume, without loss of generality, that ε ≤ 1

2 .
Let δ0 > 0 to be chosen as required and suppose the assumptions of the lemma hold for

δ0. As a consequence of Poincaré Inequality for the A2 weights |xm+1|β [19], we have

ρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx

≤ Cρ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx ≤ Cδ2

0εm+1+ β
2 + |β|

2 . (4.36)

As discussed in Sect. 4.6, we may work with a representative of v, which we do not relabel,
such that v(B+

ρ (y)) ⊂ N . It follows that

dist2(vB+
ρ (y),β , N ) ≤ |v(x) − vB+

ρ (y),β |2 (4.37)

for every x ∈ B+
ρ (y). Integrating (4.37) over B+

ρ (y) with respect to x
β
2 + |β|

2
m+1 dx and then

dividing by
∫
B+

ρ (y) x
β
2 + |β|

2
m+1 dx we see that

dist2(vB+
ρ (y),β , N ) ≤ Cρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx . (4.38)

Combining (4.38) with (4.36) we find

dist2(vB+
ρ (y),β , N ) ≤ Cρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx ≤ Cδ2
0εm+1+ β

2 + |β|
2 .

Hence, we may choose λ ∈ N such that

|λ − vB+
ρ (y),β |2 ≤ Cρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx

≤ Cδ2
0εm+1+ β

2 + |β|
2 . (4.39)

Using Chebychev’s inequality, we choose a C > 0 such that there exists σ ∈ (
3ρ
4 , ρ) such

that v̂ ∈ W 1,2
β (Sm+; N ), where v̂(ω) = v(σω + y), and such that

∫

S
m+

ω
β
m+1|Dv̂|2dω ≤ Cσ 2−m−β

∫

∂+B+
σ (y)

xβ
m+1|∇v|2dS(x)

≤ Cρ1−m−β

∫

B+
ρ (y)\B+

ρ
2

(y)
xβ
m+1|∇v|2dx

≤ Cδ2
0εm+1+ β

2 + |β|
2 (4.40)

where D is the gradient on S
m+, and

∫

S
m+

ω
β
m+1|v̂ − vB+

ρ (y),β |2dω ≤ σ−m−β

∫

∂+B+
σ (y)

xβ
m+1|v − vB+

ρ (y),β |2dS(x)
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≤ Cρ−(1+m+β)

∫

B+
ρ (y)\B+

ρ
2

(y)
xβ
m+1|v − vB+

ρ (y),β |2dx

≤ Cδ2
0εm+1+ β

2 + |β|
2 . (4.41)

We may therefore apply Lemma 4.16 to v̂ ∈ W 1,2
β (Sm+; N ) and λ. This yields a w0:Sm+ ×

[0, ε] → R
n with w0 = v̂ on S

m+ × {0} and w0 = λ on S
m+ × {ε} in the sense of traces.

Furthermore, (4.20) yields
∫

S
m+×[0,ε]

ω
β
m+1|Dw0|2dωds ≤ Cε

∫

S
m+

ω
β
m+1|Dv̂|2dω

+ C

ε

∫

S
m+

ω
β
m+1|v̂ − λ|2dω, (4.42)

where D is the gradient on Sm+×[0, ε] and D is the gradient on Sm+. In addition, (4.21) implies
that

dist2(w0(ω, s), N ) ≤ C

εm+ β
2 + |β|

2

(∫

S
m+

ω
β
m+1|Dv̂|2dω

) 1
q
(∫

S
m+

ω
β
m+1|v̂ − λ|2dω

)1− 1
q

+ C

εm+1+ β
2 + |β|

2

∫

S
m+

ω
β
m+1|v̂ − λ|2dω (4.43)

for every (ω, s) ∈ S
m+ × [0, ε], where q ∈ (1, 2] depends on β. Henceforth we assume that

δ0 ≤ 1. Using (4.39) and (4.41) we deduce that
∫

S
m+

ω
β
m+1|v̂ − λ|2dω ≤ 2

∫

S
m+

ω
β
m+1|v̂ − vB+

ρ (y),β |2dω + 2
∫

S
m+

ω
β
m+1|vB+

ρ (y),β − λ|2dω

≤ Cδ2
0εm+1+ β

2 + |β|
2 . (4.44)

The combination of (4.43) with (4.40) and (4.44) yields

dist(w0(x, s), N ) ≤ Cδ0 (4.45)

for every (ω, s) ∈ S
m+ × [0, ε].

Choose δ0, depending on N ,m, β, such that Cδ0 ≤ α̂ where C is the constant in (4.45)
and α̂ > 0 is sufficiently small to guarantee that the nearest point projection πN onto N exists
and has bounded derivatives in Nα̂ = {x ∈ R

n : dist(x, N ) ≤ α̂}. It then follows from (4.45)
that we may apply πN to w0. Let ω ∈ S

m+ satisfy ω = ω(x) = x−y
|x−y| , r = |x − y| and define

w ∈ W 1,2
β (B+

ρ (y); N ) by

w(x) = w(y + rω(x)) =
⎧
⎨
⎩

v(y + rω(x)) r ∈ (σ, ρ)

πN (w0(ω(x), (1 − r
σ
))) r ∈ [(1 − ε)σ, σ ]

λ r ∈ (0, (1 − ε)σ ).

Note that w agrees with v in B+
ρ (y)\B+

σ (y). We then readily calculate that w satisfies (4.35)
as required. ��
4.9 Control of the mean squared oscillation

The Euler–Lagrange equations of Eβ satisfy the structural conditions |div(xβ
m+1∇v)| ≤

c0x
β
m+1|∇v|2, together with the Neumann condition (4.2). For functions satisfying such
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conditions, if the re-scaled energy is sufficiently small it is possible to control their mean
squared oscillation using the energy as follows.

Lemma 4.18 For every δ > 0 and every c0 > 0 there exist two constants ε =
ε(m, n, δ, c0) > 0 and θ = θ(m, n, δ, c0) ∈ (0, 1

4 ] such that the following holds. Let

x0 ∈ ∂Rm+1+ , R > 0 and B+
R (x0) ⊂ R

m+1+ . Suppose v ∈ W 1,2
β (B+

R (x0);Rn) satisfies
∣∣∣∣∣
∫

B+
R (x0)

xβ
m+1 〈∇v,∇φ〉 dx

∣∣∣∣∣ ≤ c0

∫

B+
R (x0)

xβ
m+1 |φ| |∇v|2 dx

for every φ ∈ C∞
0 (BR(x0);Rn). If

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε

then

(θR)−(1+m+β)

∫

B+
θR(x0)

xβ
m+1|v − vB+

θR(x0),β |2dx ≤ δR1−m−β

∫

B+
R (x0)

xβ
m+1 |∇v|2 dx .

Proof The proof of the lemma is based on a blow-up procedure analogous to that of the proof
of Lemma 3.5 in [29] for example.

Observe that the statement of the lemma is invariant under rescaling and translation by
any point in ∂Rm+1+ ; henceforth we assume R = 1 and x0 = 0. Suppose, for a contradiction,
that there exist δ > 0 and c0 > 0 such that the claim is false. Then for any θ ∈ (0, 1

4 ] there

is a sequence of maps (vk)k∈N, with vk ∈ W 1,2
β (B+

1 (0);Rn) for every k, such that
∣∣∣∣∣
∫

B+
1 (0)

xβ
m+1 〈∇vk,∇φ〉 dx

∣∣∣∣∣ ≤ c0

∫

B+
1 (0)

xβ
m+1|φ||∇vk |2dx (4.46)

for every φ ∈ C∞
0 (B1(0);Rn) and

∫

B+
1 (0)

xβ
m+1|∇vk |2dx := εk → 0 as k → ∞

but

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1|vk − (vk)B+

θ (0),β |2dx > δ

∫

B+
1 (0)

xβ
m+1|∇vk |2dx = δεk . (4.47)

Consider the normalised sequence (wk)k∈N defined by wk = ε
− 1

2
k (vk −(vk)B+

θ (0),β). Then

∇wk = ε
− 1

2
k ∇vk and thus

∫

B+
1 (0)

xβ
m+1|∇wk |2dx = 1 and (wk)B+

θ (0),β = 0. (4.48)

Furthermore, we deduce from (4.47) that

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1 |wk |2 dx > δ. (4.49)

Using (4.48) and the Poincaré inequality for A2 weights, we deduce that the sequence
(wk)k∈N is bounded in W 1,2

β (B+
1 (0);Rn). Hence, the Compactness Lemma, Lemma 2.5,
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yields a subsequence (wk j ) j∈N which converges weakly in W 1,2
β (B+

1 (0);Rn) and strongly

in L2
β(B+

1 (0);Rn) to a w ∈ W 1,2
β (B+

1 (0);Rn).
In view of (4.46) and (4.48) we calculate

∣∣∣∣∣
∫

B+
1 (0)

xβ
m+1 〈∇wk,∇φ〉 dx

∣∣∣∣∣ ≤ c0||φ||L∞(B+
1 (0);Rn)ε

1
2
k

for every φ ∈ C∞
0 (B1(0);Rn). Since wk j ⇀ w in W 1,2

β (B+
1 (0);Rn), it follows that

∣∣∣∣∣
∫

B+
1 (0)

xβ
m+1〈∇w,∇φ〉dx

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣
∫

B+
1 (0)

xβ
m+1〈∇wk j ,∇φ〉dx

∣∣∣∣∣

≤ c0||φ||L∞(B+
1 (0);Rn) lim

j→∞ ε
1
2
k j

= 0

for every φ ∈ C∞
0 (B1(0);Rn). Hence w is a weak solution of the linear Neumann-type

problem (2.11) and, in particular, satisfies (2.12) from Lemma 2.7 in B+
1 (0).

We also conclude, using the Compactness Lemma to take limits in (4.48) and (4.49), that
∫

B+
1 (0)

xβ
m+1 |∇w|2 dx ≤ 1 and wB+

θ (0),β = 0

and

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1 |w|2 dx ≥ δ (4.50)

respectively. Now, since wB+
θ (0),β = 0, the Poincaré inequality yields

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1|w|2dx ≤ Cθ1−m−β

∫

B+
θ (0)

xβ
m+1|∇w|2dx . (4.51)

We apply Lemma 2.7 to w with θ ≤ 1
4 (so that 2θ ≤ 1

2 ). This gives a positive constant C
(independent of θ ) and a γ ∈ (0, 1) such that

θ1−m−β

∫

B+
θ (0)

xβ
m+1|∇w|2dx ≤ C(2θ)2γ . (4.52)

Combining (4.51) and (4.52) we see that

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1|w|2dx ≤ C(2θ)2γ . (4.53)

This holds for all fixed θ ∈ (0, 1
4 ] and we choose θ < 1

2

(
δ
C

) 1
2γ so that (4.53) contradicts

(4.50). ��

Remark 4.19 We could have used Lemma 2.8 in place of Lemma 2.7 to the same effect. In
using the latter lemma, we observe that Hölder continuity of solutions to the linear Neumann-
type problem (2.11) is sufficient to obtain energy decay and consequently Hölder continuity
of minimisers of Eβ relative to O; we do not need higher regularity for the linear problem at
this point.
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4.10 Energy decay

We combine our construction of comparison maps in Sect. 4.8 with the improved control of
the mean squared oscillation obtained in Sect. 4.9 in order to show that the re-scaled energy
decays faster than implied by the boundary monotonicity formula, Lemma 4.5.

Lemma 4.20 Let v ∈ Ẇ 1,2
β (Rm+1+ ; N ) be a minimiser of Eβ relative toO. Suppose B+

R (x0)

is a half-ball with R ≤ 1 and ∂0B+
R (x0) ⊂ O. There exist ε0 = ε0(m, N , β) > 0 and

θ0 = θ0(m, N , β) ∈ (0, 1
4 ) such that if

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε0,

then

(θ0r)
1−m−β

∫

B+
θ0r

(y)
xβ
m+1|∇v|2dx ≤ 1

2
r1−m−β

∫

B+
r (y)

xβ
m+1|∇v|2dx,

for every B+
r (y) ∈ B+(x0, R, R

2 ).

Proof Let B+
ρ (y) ⊂ B+

r (y) ∈ B+(x0, R, R
2 ). Then ρ ≤ r ≤ R

2 , y ∈ O and |x0 − y| < R
2 .

Suppose v satisfies R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε0 for ε0 > 0 to be chosen. Then for

any ρ ∈ (0, r ] the monotonicity formula, Lemma 4.5, yields

ρ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx ≤ r1−m−β

∫

B+
r (y)

xβ
m+1|∇v|2dx

≤
(
R

2

)1−m−β ∫

B+
R
2

(y)
xβ
m+1|∇v|2dx

≤ Cε0. (4.54)

We apply Lemma 4.17 on B+
ρ (y) ⊂ B+

r (y), with ρ ≤ r to be chosen later. This gives a δ0

such that for any ε ∈ (0, 1), if

ρ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx ≤ δ2

0ε1+m+ β
2 + |β|

2 (4.55)

then there is a σ ∈ (
3ρ
4 , ρ) such that we can find a wε ∈ W 1,2

β (B+
ρ (y); N ) which agrees with

v in B+
ρ (y)\B+

σ (y) and satisfies

σ 1−m−β

∫

B+
σ (y)

xβ
m+1|∇w|2dx ≤ Cερ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx

+ 1

ε
Cρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx . (4.56)

Assuming (4.55) and consequently (4.56) hold, we make use of the comparison property of
w. Since v = w in B+

ρ (y)\B+
σ (y) we may extend w to an element of Ẇ 1,2

β (Rm+1+ ; N ) by

requiring w = v on R
m+1+ \B+

ρ (y). As v is a minimiser of Eβ relative to O, we deduce that∫
B+

σ (y) x
β
m+1|∇v|2dx ≤ ∫

B+
σ (y) x

β
m+1|∇w|2dx . Combining this fact with the monotonicity
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formula, Lemma 4.5, and (4.56) gives

(
3ρ

4

)1−m−β ∫

B+
3ρ
4

(y)
xβ
m+1|∇v|2dx ≤ Cερ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx

+ 1

ε
Cρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx .

(4.57)

Fix ε = min{ 1
4 , 1

4C }, where C is the constant in (4.57) and let ε0 ≤ 1
C δ2

0ε1+m+ β
2 + |β|

2

where C is the constant from (4.54). It follows from (4.54) that (4.55) is satisfied and hence,
substituting this ε into (4.57), we have

(
3ρ

4

)1−m−β ∫

B+
3ρ
4

(y)
xβ
m+1|∇v|2dx ≤ 1

4
ρ1−m−β

∫

B+
ρ (y)

xβ
m+1|∇v|2dx

+ Ĉρ−(1+m+β)

∫

B+
ρ (y)

xβ
m+1|v − vB+

ρ (y),β |2dx

(4.58)

for a constant Ĉ and any ρ ≤ r ≤ R
2 . Observe that

∣∣∣∣
∫

B+
r (y)

xβ
m+1 〈∇v,∇φ〉 dx

∣∣∣∣ =
∣∣∣∣
∫

B+
r (y)

xβ
m+1 〈φ, A(v)(∇v,∇v)〉 dx

∣∣∣∣

≤ c0

∫

B+
r (y)

xβ
m+1|φ||∇v|2dx,

for every φ ∈ C∞
0 (Br (y);Rn) on every B+

r (y) ⊂ B+
R (x0) where c0 = c0(m, N ). Hence,

we may apply Lemma 4.18 for δ = min{ 1
4 , 1

4Ĉ
} and c0 as above to obtain a corresponding

ε1 > 0 and θ1 ∈ (0, 1
4 ] such that if r1−m−β

∫
B+
r (y) x

β
m+1|∇v|2dx ≤ ε1 then

(θ1r)
−(1+m+β)

∫

B+
θ1r

(y)
xβ
m+1|v − vB+

θ1r
(y),β |2dx

≤ 1

4Ĉ
r1−m−β

∫

B+
r (y)

xβ
m+1|∇v|2dx . (4.59)

Now choose ε0 = 1
C min{δ2

0ε1+m+ β
2 + |β|

2 , ε1} where C is the constant from (4.54). It fol-
lows that (4.58) and (4.59) hold on any B+

ρ (y) ⊂ B+
r (y) ∈ B+(x0, R, R

2 ). Thus we may
apply (4.58) with ρ = θ1r . In turn, assuming this choice of ρ, we combine (4.58) with the
monotonicity formula and (4.59) to see that

(
3θ1r

4

)1−m−β ∫

B+
3θ1r

4

(y)
xβ
m+1|∇v|2dx ≤ 1

2
r1−m−β

∫

B+
r (y)

xβ
m+1|∇v|2dx .

Hence the lemma is proved with the above choice of ε0 and θ0 = 3θ1
4 . ��
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4.11 ε-Regularity as far as Hölder continuity

The culmination of the results in this section so far lead to the following ε-regularity theorem
for minimisers of Eβ relative to O which establishes the first part of Theorem 4.1.

Theorem 4.21 If m ≥ 3, let β ∈ (−1, 1) and if m = 2 let β ∈ (−3−1, 1). Let v ∈
Ẇ 1,2

β (Rm+1+ ; N ) be a minimiser of Eβ relative to O. Suppose B+
R (x0) satisfies R ≤ 1 and

∂0B+
R (x0) ⊂ O. There exists an ε = ε(m, N , β) > 0 and a θ = θ(m, N , β) ∈ (0, 1) such

that if

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε,

then v ∈ C0,γ (B+
θR(x0); N ) for some γ = γ (m, N , β) ∈ (0, 1). In particular,

|v(x1) − v(x2)| ≤ C

(
R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx

) 1
2 ( |x1 − x2|

R

)γ

(4.60)

for every x1, x2 ∈ B+
θR(x0) and a constant C = C(m, N , β).

Proof Throughout the proof we adopt the convention that all constants depend only on m, N
and β unless stated otherwise. We reinforce this dependence where appropriate.

Let v be a minimiser of Eβ relative to O with R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε and

set ε = min{ε0, ε1}, where ε0 is the number from Lemma 4.20 and ε1 is the number from
Lemma 4.9.

Observe that the function r̃ �→ r̃1−m−β
∫
B+
r̃ (z) x

β
m+1|∇v|2dx is non-decreasing on (0, R

2 ]
by the monotonicity formula, Lemma 4.5. Furthermore, the choice of ε allows us to apply
Lemma 4.20. We apply this lemma, together with Lemma 8.23 of [15] to deduce that on
every B+

r̃ (z) ∈ B+(x0, R, R
2 ) we have

r̃1−m−β

∫

B+
r̃ (z)

xβ
m+1|∇v|2dx ≤ C

(
2
r̃

R

)γ0
(
R

2

)1−m−β ∫

B+
R
2

(z)
xβ
m+1|∇v|2dx

≤ C

(
r̃

R

)γ0

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx (4.61)

for a constant C and a γ0 ∈ (0, 1) which depend only on m, N , β.
Our choice of ε also permits the application of Lemma 4.9; this lemma implies that for

any Br (y) ∈ Bθ1(x0, R, R
3 ), with θ1 ≥ 2 given by the lemma, and any 0 < ρ ≤ r we have

ρ1−m
∫

Bρ(y)
|∇v|2 dx ≤ C

(ρ

r

)γ1
r1−m

∫

Br (y)
|∇v|2 dx (4.62)

for some γ1 ∈ (0, 1). Since θ1 ≥ 2, for any Br (y) ∈ Bθ1(x0, R, R
3 ) we have the inclusions

Br (y) ⊂ B ym+1
θ1

(y) ⊂ B+(
θ1+1
θ1

)
ym+1

(y+) ⊂ B+
3ym+1

2

(y+) ∈ B+
(
x0, R,

R

2

)
, (4.63)

where y+ = y − (0, ym+1). It follows, applying (4.6), that
(
ym+1

θ1

)1−m ∫

B ym+1
θ1

(y)
|∇v|2 dx
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≤ C

(
(θ1 + 1)ym+1

θ1

)1−m−β ∫

B+(
θ1+1
θ1

)
ym+1

(y+)

xβ
m+1|∇v|2dx, (4.64)

where C depends on m, N , β and θ1 and thus only on m, N , β. We combine (4.62), applied

with r = ym+1
θ1

, with (4.63), (4.64) and (4.61), applied on B+
r̃ (z) with r̃ =

(
θ1+1
θ1

)
ym+1 and

z = y+. It follows, after defining γ̂ = min{γ0, γ1}, that

ρ1−m
∫

Bρ(y)
|∇v|2 dx ≤ C

( ρ

R

)γ̂

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx . (4.65)

This holds for any Bρ(y) ∈ Bθ1(x0, R, R
3 ). Since (4.61) holds on every B+

r̃ (z) ∈
B+(x0, R, R

2 ) for γ0, it holds on every B+
r̃ (z) ∈ B+(x0, R, R

3 ) for γ̂ . We deduce from (4.61)
and (4.65) that the hypothesis of Lemma 4.8 are satisfied; applying this lemma concludes the
proof. ��

Remark 4.22 Once we know that a minimiser of Eβ relative to O is Hölder continuous in
some B+

R (x0) with ∂0B+
R (x0) ⊂ O, known theory for harmonic maps, see Lemma 4.13 which

is from [38], implies that v is smooth in B+
R (x0). However, this theory does not imply v is

smooth up to ∂0B+
R (x0); henceforth our goal is essentially to prove this fact.

4.12 An L∞ bound for the gradient

The first step in our proof of higher partial regularity of locally minimising fractional harmonic
maps consists of establishing an L∞ bound for the gradients to solutions of systems of semi-
linear equations with growth conditions satisfied by minimisers v of Eβ relative to O and
their derivatives Dα′

v where α′ ∈ N
m+1
0 is a multi-index with α′

m+1 = 0. The method of
proof is that of harmonic replacement; compare the growth of the average Dirichlet energy
of solutions of the semi-linear equations with that of solutions to the linearised system. We
follow [38] for example. The monotonicity formulas established in Lemmas 2.8 and 2.17 are
a key ingredient of the proof.

We will use the notation |Ω|β = ∫
Ω

|xm+1|βdx and |Ω| = ∫
Ω

dx for Ω ⊂ R
m+1.

Lemma 4.23 Suppose v ∈ W 1,2
β (B+

R (x0);Rn)∩C0,γ (B+
R (x0);Rn)where B+

R (x0) is a half-

ball with x0 ∈ ∂Rm+1+ , R ≤ 1 and γ ∈ (0, 1). Suppose v satisfies
∫

B+
R (x0)

xβ
m+1 〈∇v,∇ψ〉 dx =

∫

B+
R (x0)

xβ
m+1 〈ψ,G(x,∇v)〉 dx

for every ψ ∈ C∞
0 (BR(x0);Rn), where G:Rm × R

(m+1)n is measurable and |G(x, q)| ≤
C1|q|2 + C2 for a positive C1 ≤ C∗ and non-negative C2 ≤ C∗ for some C∗ > 0. Then
∇v ∈ L∞(B+

R
3
(x0);R(m+1)n) and, in particular, we have

||∇v||2
L∞(B+

R
3

(x0);R(m+1)n)
≤ C3

1

|B+
R (x0)|β

∫

B+
R (x0)

xβ
m+1|∇v|2dx + C4C̃2

where C3 = C3(m, N , β,C∗), C4 = C4(m, N , β,C∗) and C̃2 = C
1
2
2 + C2. In particular, if

C2 = 0 then C̃2 = 0.
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Proof Without relabelling, we reflect v evenly across the hyperplane ∂Rm+1+ . We observe

that v ∈ C0,γ (BR(x0);Rn) ∩ W 1,2
β (BR(x0);Rn) is a weak solution of div(|xm+1|β∇v) +

|xm+1|β G̃ = 0 in BR(x0), where G̃ is measurable and |G̃(x, q)| ≤ C1|q|2 + C2. We will
derive estimates on classes of Bρ(y) with y ∈ B R

2
(x0) and ρ ≤ R

2 . We focus initially on an

estimate for the average energy on B ρ
2
(y) in terms of that on Bρ(y). Since v is even with

respect to ∂Rm+1+ we only need to consider Bρ(y) with ym+1 ≥ 0. We consider two cases,
ym+1 = 0 and ym+1 > 0.

Suppose Bρ(y) is such that B+
ρ (y) ∈ B+(x0, R, R

2 ). An application of Minkowski’s

inequality, for maps in L2
β(B ρ

2
(y);Rn(m+1)), yields

⎛
⎝ 1

|B ρ
2
(y)|β

∫

B ρ
2

(y)
|xm+1|β |∇v|2dx

⎞
⎠

1
2

≤
⎛
⎝ 1

|B ρ
2
(y)|β

∫

B ρ
2

(y)
|xm+1|β |∇w|2 dx

⎞
⎠

1
2

+
(

C

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇(v − w)|2dx

) 1
2

(4.66)

for any w ∈ W 1,2
β (Bρ(y);Rn). Let w ∈ W 1,2

β (Bρ(y);Rn) be the weak solution of

div(|xm+1|β∇w) = 0 in Bρ(y) with w = v on ∂Bρ(y), given by Lemma 2.18. Then w

is smooth in Bρ(y)\∂Rm+1+ and continuous in Bρ(y). Furthermore, since v is symmetric
with respect to ∂Rm+1+ , it follows from Lemma 2.19 that w is symmetric with respect to
∂Rm+1+ and, crucially, we are now free to apply Lemma 2.8 to w for every β ∈ (−1, 1).

As w − v ∈ C(Bρ(y);Rn) ∩ W 1,2
β,0(Bρ(y);Rn) and v satisfies div(|xm+1|β∇v) +

|xm+1|β G̃ = 0 and w satisfies div(|xm+1|β∇w) = 0 weakly in Bρ(y), we calculate
∫

Bρ(y)
|xm+1|β |∇(v − w)|2dx =

∫

Bρ(y)
|xm+1|β

〈
v − w, G̃

〉
dx

≤ C1 sup
Bρ(y)

|v − w|
∫

Bρ(y)
|xm+1|β |∇v|2dx

+ C2 sup
Bρ(y)

|v − w|
∫

Bρ(y)
|xm+1|βdx . (4.67)

The Hölder continuity of v, together with the weak maximum and minimum principles given
by Lemma 2.18 imply

sup
Bρ(y)

|v − w| ≤ Cργ . (4.68)

Next we use the monotonicity and minimising properties of w to scale its averaged energy.
An application of Lemma 2.8, followed by an application of Lemma 2.18 yields

1

|B ρ
2
(y)|β

∫

B ρ
2

(y)
|xm+1|β |∇w|2dx ≤ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇w|2dx

≤ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx . (4.69)
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Combining (4.66)–(4.69) we see that

⎛
⎝ 1

|B ρ
2
(y)|β

∫

B ρ
2

(y)
|xm+1|β |∇v|2dx

⎞
⎠

1
2

≤
(

1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx

) 1
2

+ C

(
C1ρ

γ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx + C2ρ

γ

) 1
2

.

Define C̃1 = (C1 + C2)
1
2 + C1 and C̃2 = C

1
2
2 + C2. We square both sides of the preceding

inequality, using Young’s inequality (ab ≤ a2

2 + b2

2 for a, b ≥ 0) and the fact that γ ∈ (0, 1)

and ρ ≤ R ≤ 1 to see that

1

|B ρ
2
(y)|β

∫

B ρ
2

(y)
|xm+1|β |∇v|2dx ≤ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx

+ C

⎛
⎝C1ρ

γ

(
1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx

)2

+C2ρ
γ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx

) 1
2

+ C

(
C1ρ

γ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx + C2ρ

γ

)

≤ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx

+ C

⎛
⎝(C1 + C2)ρ

γ

(
1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx

)2

+ C2ρ
γ

⎞
⎠

1
2

+ CC1ρ
γ 1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx + CC2ρ

γ

≤ (1 + CC̃1ρ
γ
2 )

1

|Bρ(y)|β
∫

Bρ(y)
|xm+1|β |∇v|2dx + CC̃2ρ

γ
2 . (4.70)

This holds on every Bρ(y) with B+
ρ (y) ∈ B+(x0, R, R

2 ).
Now we iterate this estimate on concentric balls. Consider B R

2
(y) with B+

R
2
(y) ∈

B+(x0, R, R
2 ). Let ρk = 2−k R

2 for k ∈ N0. First notice that ρ
γ
2
k ≤ 2− kγ

2 . Hence

∞∏
j=0

(
1 + CC̃1ρ

γ
2
j

)
≤

∞∏
j=0

(
1 + C((C∗)

1
2 + C∗)2− jγ

2

)
≤ C̃ < ∞

where C̃ depends on m, N , β and C∗. It follows from (4.70) that, for every k ≥ 1, we have

1

|Bρk (y)|β
∫

Bρk (y)
|xm+1|β |∇v|2dx
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≤
k∏
j=1

(
1 + CC̃1ρ

γ
2
k− j

)
1

|B R
2
(y)|β

∫

B R
2

(y)
|xm+1|β |∇v|2dx

+ CC̃2

k∑
j=1

ρ
γ
2
k− j

j−1∏
l=1

(
1 + CC̃1ρ

γ
2
k−l

)

≤ CC̃
1

|BR(x0)|β
∫

BR(x0)

|xm+1|β |∇v|2dx + CC̃2C̃
k∑
j=1

2
γ
2 ( j−k)

≤ CC̃
1

|B+
R (x0)|β

∫

B+
R (x0)

xβ
m+1|∇v|2dx + CC̃2C̃ . (4.71)

Now we consider estimates on Bρ(y) with B ym+1
2

(y) ∈ B(x0, R, R
3 ); on this class of ball

we have

Bρ(y) ⊂ B ym+1
2

(y) ⊂ B+
3
2 ym+1

(y+) ⊂ B+
R
2
(y+) ∈ B+

(
x0, R,

R

2

)
, (4.72)

where y+ = y − (0, ym+1). Let w ∈ W 1,2
β (Bρ(y);Rn) be the weak solution of

div(|xm+1|β∇w) = 0 in Bρ(y) with w = v on ∂Bρ(y), given by Lemma 2.18 and sup-
pose θ ≥ 2 is such that ym+1 ≥ θρ. Then Lemma 2.17 yields

1

|B ρ
2
(y)|

∫

B ρ
2

(y)
xβ
m+1|∇w|2dx ≤

(
1 + C

θ − 1

)
1

|Bρ(y)|
∫

Bρ(y)
xβ
m+1|∇w|2dx .

Hence, repeating (4.66)–(4.69) but with |B ρ
2
(y)|β replaced by |B ρ

2
(y)|, we find

⎛
⎝ 1

|B ρ
2
(y)|

∫

B ρ
2

(y)
xβ
m+1|∇v|2dx

⎞
⎠

1
2

≤
(

(1 + C

θ − 1
)

1

|Bρ(y)|
∫

Bρ(y)
xβ
m+1|∇v|2dx

) 1
2

+ C

(
C1ρ

γ 1

|Bρ(y)|
∫

Bρ(y)
xβ
m+1|∇v|2dx + C2ρ

γ yβ
m+1

) 1
2

.

We square both sides of this inequality analogously to (4.70), noting that θ ≥ 2 so 1
θ−1 ≤ 1,

γ ∈ (0, 1) and ρ ≤ R ≤ 1, to see that

1

|B ρ
2
(y)|

∫

B ρ
2

(y)
xβ
m+1|∇v|2dx

≤
(

1 + CC̃1ρ
γ
2 + C

θ − 1

)
1

|Bρ(y)|
∫

Bρ(y)
xβ
m+1|∇v|2dx + CC̃2ρ

γ
2 yβ

m+1. (4.73)

This holds on every Bρ(y) with B ym+1
2

(y) ∈ B(x0, R, R
3 ) and ym+1 ≥ θρ.

We iterate this estimate on concentric balls. Consider B ym+1
2

(y) ∈ B(x0, R, R
3 ). Let ρk =

2−k ym+1
2 for k ∈ N0 and observe that ym+1 ≥ 2k+1ρk and ρ

γ
2
k ≤ 2− kγ

2 . Observe
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∞∏
j=0

(
1 + CC̃1ρ

γ
2
j + C

2 j+1 − 1

)
≤

∞∏
j=0

(
1 + C

(
(C∗)

1
2 + C∗) 2− jγ

2 + C

2 j+1 − 1

)

≤ Ĉ < ∞
where Ĉ depends on m, N , β and C∗. It follows from (4.73) that, for every k ≥ 1, we have

1

|Bρk (y)|
∫

Bρk (y)
xβ
m+1|∇v|2dx

≤
k∏
j=1

(
1 + CC̃1ρ

γ
2
k− j + C

2k− j+1 − 1

)
1

|B ym+1
2

(y)|
∫

B ym+1
2

(y)
xβ
m+1|∇v|2dx

+ CC̃2y
β
m+1

k∑
j=1

ρ
γ
2
k− j

j−1∏
l=1

(
1 + CC̃1ρ

γ
2
k−l + C

2k−l+1 − 1

)

≤ Ĉ
1

|B ym+1
2

(y)|
∫

B ym+1
2

(y)
xβ
m+1|∇v|2dx + CC̃2Ĉ yβ

m+1. (4.74)

Now fix y ∈ B+
R
3
(x0) which implies B ym+1

2
(y) ∈ B(x0, R, R

3 ). We divide (4.74) by yβ
m+1,

let y+ = y − (0, ym+1) and combine (4.71), (4.72) and (4.74) to see that

y−β
m+1

|Bρk (y)|
∫

Bρk (y)
xβ
m+1|∇v|2dx

≤ CĈ
y−β
m+1

|B ym+1
2

(y)|
∫

B ym+1
2

(y)
xβ
m+1|∇v|2dx + CC̃2Ĉ

≤ CĈ
1

|B 3ym+1
2

(y+)|β
∫

B 3ym+1
2

(y+)

|xm+1|β |∇v|2dx + CC̃2Ĉ

≤ CC̃Ĉ
1

|B+
R (x0)|β

∫

B+
R (x0)

xβ
m+1|∇v|2dx + C(Ĉ + ĈC̃)C̃2.

An application of Lebesgue’s differentiation theorem concludes the proof. ��
Remark 4.24 A consequence of the preceding lemma is that Hölder continuous weak solu-
tions of div(xβ

m+1∇v) + xβ
m+1G = 0 in B+

R (x0) and xβ
m+1∂m+1v = 0 in ∂0B+

R (x0), with G
satisfying the assumptions of the lemma on B+

R (x0), are actually Lipschitz continuous on
B+

R
3
(x0).

4.13 Existence of higher order derivatives

The existence of higher order derivatives of minimisers of Eβ relative to O in directions
tangential to ∂Rm+1+ follows using the usual method of difference quotients.

Lemma 4.25 Fix l ∈ N0. Suppose v is a minimiser of Eβ relative to O and let B+
R (x0)

be a half-ball with ∂0B+
R (x0) ⊂ O. Suppose further that for every multi-index α′ ∈ N

m+1
0

with α′
m+1 = 0 and |α′| ≤ l we have Dα′

v ∈ C0,γ (B+
R (x0);Rn) ∩ W 1,2

β (B+
R (x0);Rn)

for some γ ∈ (0, 1) and ∇Dα′
v ∈ L∞(B+

R (x0);R(m+1)n). Then for α′ ∈ N
m+1
0 with
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α′
m+1 = 0 and |α′| = l and i = 1, . . . ,m, theweak derivative∇∂i Dα′

v exists and∇∂i Dα′
v ∈

L2
β(B+

R
2
(x0);R(m+1)n).

Proof Without relabelling, we extend A to a smooth section of T ∗
R
n ⊗ T ∗

R
n ⊗ TRn . Fix

α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| = l. Since v is a minimiser of Eβ relative to O, the

regularity assumptions on v and Dα′
v imply we may integrate by parts l times in (4.1); for

any φ ∈ C∞
0 (BR(x0);Rn) we have

∫

B+
R (x0)

xβ
m+1〈∇Dα′

v,∇φ〉dx =
∫

B+
R (x0)

xβ
m+1〈φ, Dα′

(A(v)(∇v,∇v))〉dx . (4.75)

Let η ∈ C∞
0 (B 3R

4
(x0)) be a smooth cutoff function such that η ≡ 1 in B R

2
(x0), 1 ≥ η ≥ 0 in

B 3R
4

(x0)\B R
2
(x0) and |∇η| ≤ C

R . Furthermore, let Δh
i D

α′
v = h−1(Dα′

v(x+hei )−Dα′
v(x))

be the difference quotient of Dα′
v and assume |h| < R

4 . Note that, by approximation,

w = −Δ−h
i (η2Δh

i D
α′

v) is an admissible test function for (4.75). We substitute w into (4.75)
and apply ‘integration by parts’ for difference quotients to see that
∫

B+
R (x0)

η2xβ
m+1|Δh

i ∇Dα′
v|2dx =

∫

B+
3R
4

(x0)

η2xβ
m+1〈Δh

i D
α′

v,Δh
i D

α′
(A(v)(∇v,∇v))〉dx

−
∫

B+
3R
4

(x0)

2ηxβ
m+1〈Δh

i ∇Dα′
v · ∇η,Δh

i D
α′

v〉dx .

(4.76)

We now use Young’s inequality, ab ≤ a2

δ2 + δ b2

2 for a, b ≥ 0 and δ > 0, to move all of the

terms involving Δh
i ∇Dα′

v on the right hand side of (4.76) to the left hand side. We calculate

−
∫

B+
3R
4

(x0)

2ηxβ
m+1〈Δh

i ∇Dα′
v · ∇η,Δh

i D
α′

v〉dx ≤ Cδ

∫

B+
R (x0)

η2xβ
m+1|Δh

i ∇Dα′
v|2dx

+ C

δ

∫

B+
R (x0)

xβ
m+1|∇η|2|Δh

i D
α′

v|2dx .

(4.77)

We need to estimate the term involving Δh
i D

α′
(A(v)(∇v,∇v)) in a similar fashion. An

application of the Mean Value Theorem, noting we are working on B+
3R
4

(x0) and |h| < R
4 ,

implies

|Δh
i D

α′
(A(v)(∇v,∇v))| ≤ C1|Δh

i ∇Dα′
v| + C2

where C1,C2 depend on m, N , β and ||∇Dα̃′
v||L∞(B+

R (x0);R(m+1)n) where α̃′ ∈ N
m+1
0 with

|α̃′| ≤ |α′| and α̃′
m+1 = 0. Hence, using Young’s inequality again, we deduce

∫

B+
3R
4

(x0)

η2xβ
m+1〈Δh

i D
α′

v,Δh
i D

α′
(A(v)(∇v,∇v))〉dx

≤ δ

∫

B+
3R
4

(x0)

η2xβ
m+1|Δh

i ∇Dα′
v|2dx + C

C3

δ

∫

B+
3R
4

(x0)

xβ
m+1dx, (4.78)

123



109 Page 54 of 68 J. Roberts

whereC3 depends onm, N , β and ||∇Dα̃′
v||L∞(B+

R (x0);R(m+1)n) where α̃′ ∈ N
m+1
0 with |α̃′| ≤

|α′| and α̃′
m+1 = 0. Choosing δ sufficiently small in (4.77) and (4.78) we combine these

inequalities with (4.76). Since |∇η| ≤ C
R and η ≡ 1 in B+

R
2
(x0), we see that

∫

B+
R
2

(x0)

xβ
m+1|Δh

i ∇Dα′
v|2dx ≤ C4(R

−2 + 1)

∫

B+
R (x0)

xβ
m+1dx,

whereC4 depends onm, N , β and ||∇Dα̃′
v||L∞(B+

R (x0);R(m+1)n) where α̃′ ∈ N
m+1
0 with |α̃′| ≤

|α′| and α̃′
m+1 = 0. This bound is independent of h with |h| < R

4 . Hence by Lemma 2.11

we conclude that the weak derivative ∇∂i Dα′
v exists and satisfies the above inequality with

∇∂i Dα′
v in place of Δh

i ∇Dα′
v. This concludes the proof. ��

4.14 Caccioppoli-type inequality

Here we show that the derivatives of minimisers of Eβ relative to O in directions tangential
to ∂Rm+1+ all satisfy essentially the same Caccioppoli-type inequality.

Lemma 4.26 Fix l ∈ N0, let v ∈ Ẇ 1,2
β (Rm+1+ ; N ) be a minimiser of Eβ relative to O and

let B+
R (x0) be a half-ball with R ≤ 1 and ∂0B+

R (x0) ⊂ O. Suppose that for every multi-

index α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| ≤ l we have Dα′
v ∈ C0,γ (B+

R (x0);Rn) ∩
W 1,2

β (B+
R (x0);Rn) for some γ ∈ (0, 1) and ∇Dα′

v ∈ L∞(B+
R (x0);R(m+1)n). Suppose

further that for α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| = l and some i ∈ {1, . . . ,m}, we
have ∇∂i Dα′

v ∈ L2
β(B+

R (x0);R(m+1)n). Let Bρ(y) ⊂ BR(x0) with ym+1 ≥ 0. For each
α′ with α′

m+1 = 0 and |α′| = l there are constants C = C(m, N , β) and C1,C2 which
depend on m, N , β and are comprised of polynomial functions, with no constant terms, of
||∇Dα̃′

v||L∞(Bρ(y)∩Rm+1+ ;R(m+1)n)
, where α̃′ ∈ N

m+1
0 with |α̃′| ≤ |α′| = l and α̃′

m+1 = 0,

such that

∫

B ρ
2

(y)∩Rm+1+
xβ
m+1|∇∂i D

α′
v|2dx ≤ C

(
C1 + 1

ρ2

)∫

Bρ(y)∩Rm+1+
xβ
m+1|∂i Dα′

v − λ|2dx

+ C2

∫

Bρ(y)∩Rm+1+
xβ
m+1dx (4.79)

for any λ ∈ R
n.

Proof Fix α′ with α′
m+1 = 0 and |α′| = l. Integrating by parts l + 1 times in (4.1) shows

that for every ψ ∈ C∞
0 (BR(x0);Rn), we have

∫

B+
R (x0)

xβ
m+1〈∇∂i D

α′
v,∇ψ〉dx =

∫

B+
R (x0)

xβ
m+1〈ψ, ∂i D

α′
(A(v)(∇v,∇v))〉dx .

Now, by approximation, we may choose ψ = η2(∂i Dα′
v − λ) where λ ∈ R

n is a constant
vector and η ∈ C∞

0 (Bρ(y)) is a cutoff function with η ≡ 1 in B ρ
2
(y), 0 ≤ η ≤ 1, and

|∇η| ≤ C
ρ

. We calculate
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∫

Bρ (y)∩Rm+1+
xβ
m+1η

2|∇∂i D
α′

v|2dx ≤ C̃1

∫

Bρ (y)∩Rm+1+
xβ
m+1η

2|∂i Dα′
v − λ||∇∂i D

α′
v|dx

+ C̃2

∫

Bρ (y)∩Rm+1+
xβ
m+1η

2|∂i Dα′
v − λ|dx

+ C
∫

Bρ (y)∩Rm+1+
xβ
m+1η|∇η||∂i Dα′

v − λ||∇∂i D
α′

v|dx,
(4.80)

where C = C(m, N , β) and C̃1, C̃2 depend on m, N , β and are comprised of polynomial
functions, with no constant terms, of ||∇Dα̃′

v||L∞(Bρ(y)∩Rm+1+ ;R(m+1)n)
where α̃′ ∈ N

m+1
0

with |α̃′| ≤ l and α̃′
m+1 = 0. We apply Young’s inequality, ab ≤ δa2

2 + b2

δ2 for a, b ≥ 0 and
δ > 0, to each term on the right hand side of (4.80). We first apply this inequality to the
term corresponding to C , choosing δ sufficiently small depending on C and hence only on
m, N , β and recalling |∇η| ≤ C

ρ
to see that

∫

Bρ(y)∩Rm+1+
xβ
m+1η

2|∇∂i D
α′

v|2dx ≤ C̃1

∫

Bρ(y)∩Rm+1+
xβ
m+1η

2|∂i Dα′
v − λ||∇∂i D

α′
v|dx

+ C̃2

∫

Bρ(y)∩Rm+1+
xβ
m+1η

2|∂i Dα′
v − λ|dx

+ C

ρ2

∫

Bρ(y)∩Rm+1+
xβ
m+1|∂i Dα′

v − λ|2dx (4.81)

where C̃1, C̃2 are possibly different from before but have the same structure and dependence
as the constants in (4.80). Applying Young’s inequality again, now to the terms in (4.81)
corresponding to C̃1, C̃2 concludes the proof. ��
4.15 Control of the mean squared oscillation of the derivatives on the boundary

We prove an analogue of Lemma 4.18 for the derivatives of minimisers of Eβ relative to O.

Lemma 4.27 Fix l ∈ N0. For every δ > 0 there exist numbers ε > 0, τ ∈ (0, 1) and
θ ∈ (0, 1

4 ] such that the following holds. Suppose v ∈ Ẇ 1,2
β (Rm+1+ ; N ) is a minimiser of

Eβ relative to O with Dα′
v ∈ C0,γ (B+

R (x0);Rn) ∩ W 1,2
β (B+

R (x0);Rn) for a γ ∈ (0, 1)

and ∇Dα′
v ∈ L∞(B+

R (x0);R(m+1)n) for every multi-index α′ ∈ N
m+1
0 with α′

m+1 = 0 and

|α′| ≤ l, where B+
R (x0) ⊂ R

m+1+ satisfies R ≤ 1 and ∂0B+
R (x0) ⊂ O. Suppose further

that for α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| = l and some i ∈ {1, . . . ,m}, we have

∇∂i Dα′
v ∈ L2

β(B+
R (x0);R(m+1)n). If |α′| = l and α′

m+1 = 0 and

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε2,

then, for every B+
r (y) ∈ B+(x0, R, τ R), either

r1−m−β

∫

B+
r (y)

xβ
m+1|∇∂i D

α′
v|2dx ≤ δ

( r

R|α′|+2

)2
(4.82)

or

(θr)−(1+m+β)

∫

B+
θr (y)

xβ
m+1|∂i Dα′

v − ∂i Dα′
vB+

θr (y),β
|2dx
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≤ δr1−m−β

∫

B+
r (y)

xβ
m+1|∇∂i D

α′
v|2dx . (4.83)

Proof We use a blow-up argument, analogous in spirit to the argument we used in the proof
of Lemma 4.18. First we note that the statement of the lemma is invariant under rescaling and
translation by any point in ∂Rm+1+ . In particular, suppose the lemma holds for minimisers of

Eβ relative to Õ ⊂ ∂Rm+1+ whenever ∂0B+
1 (0) ⊂ Õ. If the hypotheses of the lemma hold

for minimisers of Eβ relative to O and B+
R (x0) satisfies R ≤ 1 and ∂0B+

R (x0) ⊂ O, then
applying the lemma to vR := v(R · +x0) yields the conclusion of the lemma on B+

R (x0).
We now prove the lemma when R = 1, x0 = 0 and v is a minimiser of Eβ relative to O

and ∂0B+
1 (0) ⊂ O. Suppose the statement is false. Then there exists δ > 0 such that, for any

fixed θ ∈ (0, 1
4 ], we may find a sequence (vk)k∈N of minimisers of Eβ relative to O such

that the following holds. Each vk satisfies Dα′
vk ∈ C0,γ (B+

1 (0);Rn) ∩ W 1,2
β (B+

1 (0);Rn)

for a γ ∈ (0, 1) and ∇Dα′
vk ∈ L∞(B+

1 (0);R(m+1)n) for every multi-index α′ ∈ N
m+1
0 with

α′
m+1 = 0 and |α′| ≤ l. For α′ ∈ N

m+1
0 with α′

m+1 = 0 and |α′| = l and a fixed i = 1, . . . ,m,

each vk further satisfies ∇∂i Dα′
vk ∈ L2

β(B+
1 (0);R(m+1)n). Moreover, the vk satisfy

∫

B+
1 (0)

xβ
m+1 |∇vk |2 dx := ε2

k → 0,

and, furthermore, there exists a sequence of numbers 0 < τk → 0+, half-balls B+
rk (yk) ∈

B+(0, 1, τk), and numbers 0 < rk ≤ τk → 0+ such that

r1−m−β
k

∫

B+
rk (yk )

xβ
m+1|∇∂i D

α′
vk |2dx > δr2

k (4.84)

and

(θrk)
−(1+m+β)

∫

B+
θrk

(yk )
xβ
m+1|∂i Dα′

vk − (∂i Dα′
vk)B+

θrk
(yk ),β

|2dx

> δr1−m−β
k

∫

B+
rk (yk )

xβ
m+1|∇∂i D

α′
vk |2dx (4.85)

for α′ with |α′| = l and α′
m+1 = 0.

Since each vk is a minimiser of Eβ relative to O and vk ∈ W 1,2
β (B+

1 (0);Rn) ∩
C0,γ (B+

1 (0);Rn) we deduce from Lemma 4.23 that each vk satisfies

||∇vk ||2L∞(B+
1
3
(0);R(m+1)n)

≤ C
∫

B+
1 (0)

xβ
m+1|∇vk |2dx ≤ Cε2

k → 0. (4.86)

The assumptions of the lemma guarantee that we may apply Lemma 4.26 on B+
1
6
(0) with

λ = 0. We do so and conclude that there are constants C = C(m, N , β) and C1,C2, which
depend on m, N , β and are comprised of a polynomial function, with no constant terms, of
||∇vk ||L∞(B+

1
3
(0);R(m+1)n) and consequently satisfy C1,C2 → 0 as k → ∞, such that for α′

with |α′| = 1 and α′
m+1 = 0

∫

B+
1
6
(0)

xβ
m+1|∇Dα′

vk |2dx ≤ C (C1 + 1)

∫

B+
1
3
(0)

xβ
m+1|Dα′

vk |2dx + C2
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≤ C (C1 + 1) ||∇vk ||2
L∞
(
B+

1
3
(0);R(m+1)n

) + C2 → 0 (4.87)

as k → ∞. If l ≥ 1, integrating by parts in (4.1), we see that when |α′| = 1 and α′
m+1 = 0,

Dα′
vk satisfies

∫

B+
1
6
(0)

xβ
m+1〈∇Dα′

vk,∇ψ〉dx =
∫

B+
1
6
(0)

xβ
m+1〈ψ,G〉dx

for every ψ ∈ C∞
0 (B 1

6
(0);Rn) where, by Young’s inequality, |G(x, q)| ≤ C3|q|2 + C4 for

constantsC3 = C3(m, N , β) andC4 which depends onm, N , β and is comprised of a polyno-
mial function, with no constant term, of ||∇vk ||L∞(B+

1
3
(0);R(m+1)n) and hence C4 → 0 as k →

∞. Now recall that by assumption Dα′
vk ∈ C0,γ (B+

1
6
(0);R(m+1)n)∩W 1,2

β (B+
1
6
(0);R(m+1)n)

for each α′ ∈ N
m+1 with |α′| = 1 and α′

m+1 = 0. Hence applying Lemma 4.23
again in conjunction with (4.86) and (4.87), we deduce that there exist positive constants
C̃3 = C̃3(m, N , β) and C̃4 which depends on m, N , β and k with C̃4 → 0 as k → ∞ such
that

||∇Dα′
vk ||2

L∞
(
B+

1
3

1
6
(0);R(m+1)n

) ≤ C̃3
1

|B+
1
6
(0)|β

∫

B+
1
6
(0)

xβ
m+1|∇Dα′

vk |2dx + C̃4 → 0

as k → ∞. Repeating the preceding process for Dα′
vk with |α′| = 2, then |α′| =

3, . . . , |α′| = l, we see that

||∇Dα′
vk ||2L∞(B+

1
3 6−|α′ | (0);R(m+1)n)

→ 0 (4.88)

as k → ∞ for every α′ with |α′| ≤ l and α′
m+1 = 0.

Now fix α′ with |α′| = l and α′
m+1 = 0. Discarding as may vk as necessary and re-indexing

the resulting sequence we may assume that 2τk ≤ 6−(l+1) so that B+
rk (yk) ⊂ B+

2rk
(yk) ⊂

B+
2τk

(yk) ∈ B+(0, 1
3 6−l , 6−(l+1)) and, in particular, B+

2τk
(yk) ⊂ B+

1
3 6−l (0). Define

r1−m−β
k

∫

B+
rk (yk )

xβ
m+1|∇∂i D

α′
vk |2dx := ε̃2

k .

Note that it is possible to show, combining Lemma 4.26 with λ = 0 and (4.88), that ε̃2
k → 0,

but this is not required in what follows.
We see from (4.84) and (4.85) that

ε̃2
k > δr2

k (4.89)

and

(θrk)
−(1+m+β)

∫

B+
θrk

(yk )
xβ
m+1|∂i Dα′

vk − (∂i Dα′
vk)B+

θrk
(yk ),β

|2dx > δε̃2
k . (4.90)

Define

wk(x) =
∂i Dα′

vk(rk x + yk) − (∂i Dα′
vk)B+

θrk
(yk ),β

ε̃k
.
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Then

∇wk(x) = rk
ε̃k

∇∂i D
α′

vk(rk x + yk). (4.91)

Hence, using the change of variables x �→ rk x + yk , we find
∫

B+
1 (0)

xβ
m+1 |∇wk |2 dx = 1 and (wk)B+

θ (0),β = 0. (4.92)

Furthermore, after changing variables again, we deduce from (4.90) that

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1 |wk |2 dx > δ. (4.93)

The combination of (4.92) and the Poincaré inequality for A2 weights implies (wk)k∈N is
bounded in W 1,2

β (B+
1 (0);Rn). The the Rellich Compactness lemma, Lemma 2.5, therefore

yields a subsequence (wk j ) j∈N which converges weakly in W 1,2
β (B+

1 (0);Rn) and strongly

in L2
β(B+

1 (0);Rn) to a w ∈ W 1,2
β (B+

1 (0);Rn).

Now we show that w is a weak solution of the Neumann-type problem (2.11) in B+
1 (0).

Let φ ∈ C∞
0 (B1(0);Rn) and define φ̃ ∈ C∞

0 (Brk (yk);Rn) by φ̃(z) = φ
(
z−yk
rk

)
. We observe

that rk∇φ̃(z) = ∇φ(x) where x ∈ B1(0) and z ∈ Brk (yk) satisfy z = rk x + yk . Hence, using
the change of variables x �→ rk x + yk and (4.91), we find

∫

B+
1 (0)

xβ
m+1 〈∇wk,∇φ〉 dx = rk

ε̃k

∫

B+
1 (0)

xβ
m+1〈∇∂i D

α′
vk(rk x + yk),∇φ(x)〉dx

= r−m−β
k

ε̃k

∫

B+
rk (yk )

zβm+1〈∇∂i D
α′

vk,∇φ

(
z − yk
rk

)
〉dz

= r1−m−β
k

ε̃k

∫

B+
rk (yk )

zβm+1〈∇∂i D
α′

vk,∇φ̃〉dz. (4.94)

As φ̃ ∈ C∞
0 (Brk (yk);Rn), vk is a minimiser of Eβ relative to O and, in view of (4.89), we

have
r2
k

ε̃2
k

< 1
δ
, it follows that

∣∣∣∣∣
∫

B+
rk (yk )

zβm+1〈∇∂i D
α′

vk,∇φ̃〉dz
∣∣∣∣∣ ≤ C

∫

B+
rk (yk )

zβm+1(|∇∂i D
α′

vk | + 1)dz

= Cr1+m+β
k

∫

B+
1 (0)

xβ
m+1(|∇∂i D

α′
vk(rk x + yk)| + 1)dx

= C ε̃kr
m+β
k

∫

B+
1 (0)

xβ
m+1(|∇wk | + rk

ε̃k
)dx

≤ C ε̃kr
m+β
k

∫

B+
1 (0)

xβ
m+1(|∇wk | + δ− 1

2 )dx, (4.95)

where C depends on m, N , β, ||φ̃||L∞(B+
rk (yk );Rn) = ||φ||L∞(B+

1 (0);Rn) and is comprised of a

polynomial, with no constant terms, of ||∇Dα̃′
vk ||L∞(B+

1
3 6−l (0);Rn) where |α̃′| ≤ l = |α′| and

α̃′
m+1 = 0 and is therefore independent of k in view of (4.88).
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We combine (4.92) and (4.95) to see that, for any φ ∈ C∞
0 (B1(0);Rn), the weak conver-

gence of wk j to w in W 1,2
β (B+

1 (0);Rn) yields
∣∣∣∣∣
∫

B+
1 (0)

xβ
m+1〈∇w,∇φ〉dx

∣∣∣∣∣ = lim
j→∞

∣∣∣∣∣
∫

B+
1 (0)

xβ
m+1〈∇wk j ,∇φ〉dx

∣∣∣∣∣

≤ C lim
j→∞ rk j

∫

B+
1 (0)

xβ
m+1(|∇wk j | + δ− 1

2 )dx

= 0

since rk j → 0. Hence w is a weak solution of (2.11) in B+
1 (0).

Using the Rellich Compactness Lemma, Lemma 2.5, we take limits in (4.92) and (4.93)
to see that

∫

B+
1 (0)

xβ
m+1 |∇w|2 dx ≤ 1 and wB+

θ (0),β = 0 (4.96)

and

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1 |w|2 dx ≥ δ (4.97)

respectively. Now, in view of (4.96), the Poincaré inequality for A2 weights yields

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1|w|2dx ≤ Cθ1−m−β

∫

B+
θ (0)

xβ
m+1|∇w|2dx . (4.98)

Lastly, since w is a weak solution of (2.11) we may apply Corollary 2.7 to w with θ ≤ 1
4 (so

that 2θ ≤ 1
2 ). This gives a positive constant C (independent of θ ) and a γ ∈ (0, 1) such that

θ1−m−β

∫

B+
θ (0)

xβ
m+1|∇w|2dx ≤ C(2θ)2γ . (4.99)

Combining (4.98) and (4.99) we see that

θ−(1+m+β)

∫

B+
θ (0)

xβ
m+1|w|2dx ≤ C(2θ)2γ . (4.100)

This holds for all fixed θ ∈ (0, 1
4 ] and we choose θ < 2−1

(
δ
C

) 1
2γ so that (4.100) contradicts

(4.97). Hence the lemma is proved. ��
4.16 Control of the mean squared oscillation of the derivatives in the interior

We need a counterpart to Lemma 4.27 which holds on a class of balls with closure contained
in the interior of Rm+1+ .

Lemma 4.28 Fix l ∈ N0. For every δ > 0 there exist numbers ε > 0, τ ∈ (0, 1) and
θ ∈ (0, 1

4 ] such that the following holds. Suppose v ∈ Ẇ 1,2
β (Rm+1+ ; N ) is a minimiser of

Eβ relative to O with Dα′
v ∈ C0,γ (B+

R (x0);Rn) ∩ W 1,2
β (B+

R (x0);Rn) for a γ ∈ (0, 1)

and ∇Dα′
v ∈ L∞(B+

R (x0);R(m+1)n) for every multi-index α′ ∈ N
m+1
0 with α′

m+1 = 0 and

|α′| ≤ l, where B+
R (x0) ⊂ R

m+1+ satisfies R ≤ 1 and ∂0B+
R (x0) ⊂ O. Suppose further
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that for α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| = l and some i ∈ {1, . . . ,m}, we have

∇∂i Dα′
v ∈ L2

β(B+
R (x0);R(m+1)n). If |α′| = l and α′

m+1 = 0 and

R1−m−β

∫

B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε2,

then, for every Br (y) ∈ B4(x0, R, τ R), either

r1−m
∫

Br (y)
|∇∂i D

α′
v|2dx ≤ δ

( r

R|α′|+2

)2
(4.101)

or

(θr)−(1+m)

∫

Bθr (y)
|∂i Dα′

v − ∂i Dα′
vBθr (y)|2dx ≤ δr1−m

∫

Br (y)
|∇∂i D

α′
v|2dx . (4.102)

Proof The method of proof is similar to the proof of Lemma 4.27. We observe that the lemma
is invariant under scaling and translation with respect to x0 in ∂Rm+1+ in the same way as
Lemma 4.27. Hence we assume R = 1, x0 = 0, v is a minimiser of Eβ relative to O and
∂0B+

1 (0) ⊂ O.
Suppose the statement is false. Then there exists δ > 0 such that, for any fixed θ ∈ (0, 1

4 ],
we may find a sequence (vk)k∈N of minimisers of Eβ relative to O such that the following

holds. Each vk satisfies Dα′
vk ∈ C0,γ (B+

1 (0);Rn) ∩ W 1,2
β (B+

1 (0);Rn) for a γ ∈ (0, 1)

and ∇Dα′
vk ∈ L∞(B+

1 (0);R(m+1)n) for every multi-index α′ ∈ N
m+1
0 with α′

m+1 = 0 and

|α′| ≤ l. For α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| = l and a fixed i = 1, . . . ,m, each vk

further satisfies ∇∂i Dα′
vk ∈ L2

β(B+
1 (0);R(m+1)n). The vk also satisfy

∫

B+
1 (0)

xβ
m+1 |∇vk |2 dx := ε2

k → 0.

There furthermore exists a sequence of numbers 0 < τk → 0, balls Brk (yk) ∈ B4(0, 1, τk),
and numbers 0 < rk ≤ τk → 0 such that

r1−m
k

∫

Brk (yk )
|∇∂i D

α′
vk |2dx > δr2

k (4.103)

and

(θrk)
−(1+m)

∫

Bθrk (yk )
|∂i Dα′

vk − (∂i Dα′
vk)Bθrk (yk )|2dx

> δr1−m
k

∫

Brk (yk )
|∇∂i D

α′
vk |2dx (4.104)

for α′ with |α′| = l and α′
m+1 = 0.

Since the assumptions of the lemma are the same as the assumptions of Lemma 4.27 we
still have (4.88), namely, for every α′ with |α′| ≤ l and α′

m+1 = 0

||∇Dα′
vk ||2

L∞
(
B+

1
3 6−|α′ | (0);R(m+1)n

) → 0. (4.105)

Define

r1−m
k

∫

Brk (yk )
|∇∂i D

α′
vk |2dx := ε̃2

k .

123



A regularity theory for intrinsic minimising fractional… Page 61 of 68 109

Fix α′ with |α′| = l and α′
m+1 = 0. Discarding as many k as necessary, and re-indexing

the resulting sequence to k ∈ N, we may assume 2τk ≤ 6−(l+1) so that Brk (yk) ∈
B4(0, 1

3 6−l , 6−(l+1)) and, in particular, Brk (yk) ⊂ B+
1
3 6−l (0). Note that similarly to in the

proof of Lemma 4.27, using Lemma 4.26 with λ = 0 and (4.105) we can show ε̃2
k → 0, but

this is not used in what follows. Now consider the normalised sequence

wk(x) =
∂i Dα′

vk(rk x + yk) − (∂i Dα′
vk)Bθrk (yk )

ε̃k
.

We have

∇wk(x) = rk
ε̃k

∇∂i D
α′

vk (rk x + yk) . (4.106)

Hence, using the change of variables x �→ rk x + yk , we find
∫

B1(0)

|∇wk |2 dx = 1 and (wk)Bθ (0) = 0 (4.107)

and, also using (4.104),

θ−(1+m)

∫

Bθ (0)

|wk |2 dx > δ. (4.108)

As a result of (4.107) and the Poincaré inequality, we observe (wk)k∈N is bounded in
W 1,2(B1(0);Rn). The Rellich Compactness lemma [39, Section 1.3, Lemma 1], thus yields
a subsequence (wk j ) j∈N which converges weakly in W 1,2(B1(0);Rn) and strongly in
L2(B1(0);Rn) to some w ∈ W 1,2(B1(0);Rn).

Define fk(x) =
(

1 + (yk)
−1
m+1rk xm+1

)β

for each k ∈ N. Observe that ak j =
(yk j )

−1
m+1rk j ∈ [0, 4−1] for every j , since each Brk (yk) ∈ B4(0, 1, τk). Thus there is

a subsequence, which we also index with k j , which converges to a ∈ [0, 4−1]. Fur-
thermore, ( fk j ) j∈N is uniformly bounded and equicontinuous so, by the Arzelà–Ascoli
theorem, there is a uniformly convergent subsequence which we again index by k j . Since
fk j (x) → f (x) = (1 + axm+1)

β pointwise, we must also have fk j → f uniformly.
Now, for φ ∈ C∞

0 (B1(0);Rn), similar calculations to those in the proof of Lemma 4.27
yield
∣∣∣∣
∫

B1(0)

fk 〈∇wk,∇φ〉 dx

∣∣∣∣ ≤ C ||φ||L∞(B1(0);Rn)rk

∫

B1(0)

|∇wk | + δ− 1
2 dx → 0 (4.109)

as k → ∞. Furthermore, as wk j converges weakly to w in W 1,2(B1(0);Rn) and fk j → f
uniformly, we conclude that

∫

B1(0)

f 〈∇w,∇φ〉dx = lim
j→∞

∫

B1(0)

fk j 〈∇wk j ,∇φ〉dx = 0. (4.110)

Hence w is a weak solution of div((1 + axm+1)
β ∇w) = 0 in B1(0). By linear elliptic

regularity theory, w is smooth in B1(0). We also conclude by taking limits in (4.107) and
(4.108) that

∫

B1(0)

|∇w|2 dx ≤ 1 and wBθ (0) = 0 and θ−(1+m)

∫

Bθ (0)

|w|2 dx ≥ δ (4.111)

123



109 Page 62 of 68 J. Roberts

respectively using the Rellich Compactness Lemma. Since |∇w|2 satisfies a mean value
inequality, namely supBθ (0) |∇w|2 ≤ C(m, β)

∫
B1(0)

|∇w|2dx as shown in Theorem 2.1 in
section III of [14], we apply the Poincaré inequality and (4.111) to see that

θ−(1+m)

∫

Bθ (0)

|w|2dx ≤ Cθ1−m
∫

Bθ (0)

|∇w|2dx ≤ Cθ2
∫

B1(0)

|∇w|2dx ≤ Cθ2. (4.112)

This holds for all fixed θ ∈ (0, 1
2 ] and we choose θ <

(
δ
C

) 1
2 so that (4.112) contradicts the

last statement of (4.111). ��
4.17 Higher order ε-regularity

With the preceding theory in hand, we are now in a position to prove our main ε-regularity
theorem.

Proof of Theorem 4.1 Observe that the hypothesis of the theorem are invariant with respect

to the rescaling x �→ Rx + x0. Thus we will assume R = 1, x0 = 0 and ∂0B+
1 (0) ⊂ O.

We use proof by strong induction. We choose ε to be the number from Theorem 4.21. Then
the combination of Theorem 4.21, Lemmata 4.23 and 4.25 yield a θ̂ = θ̂ (m, N , β) ≤ 1

2 and a

γ̂ ∈ (0, 1) such that v ∈ C0,γ̂ (B+
θ̂

(0);Rn)∩W 1,2
β (B+

θ̂
(0);Rn), ∇v ∈ L∞(B+

θ̂
(0);R(m+1)n)

and ∂iv ∈ W 1,2
β (B+

θ̂
(0);Rn) for i = 1, . . . ,m. Now fix l ∈ N0. The induction hypoth-

esis is that there exists θ̃ = θ̃ (m, N , β, l) ≤ 1
2 and a γ̃ = γ̃ (m, N , β, l) ∈ (0, 1)

such that the following holds. For α′ ∈ N
m+1
0 with α′

m+1 = 0 and |α′| ≤ l, we have

Dα′
v ∈ C0,γ̃ (B+

θ̃
(0);Rn) ∩ W 1,2

β (B+
θ̃

(0);Rn) and ∇Dα′
v ∈ L∞(B+

θ̃
(0);R(m+1)n). Fur-

thermore, when |α′| = l and α′
m+1 = 0 we suppose ∇∂i Dα′

v ∈ L2
β(B+

θ̃
(0);Rn(m+1)) for

i = 1, . . . ,m. We have already observed that this is true when l = 0. The inductive step will
be to show the preceding statement holds, possibly for a different θ̃ and γ̃ , for Dα′

v with
|α′| ≤ l + 1 and α′

m+1 = 0. We fix α′ with |α′| = l ≥ 0 and α′
m+1 = 0 henceforth.

Applying Lemma 4.26, we see that
∫

B ρ
2

(y)∩Rm+1+
xβ
m+1|∇∂i D

α′
v|2dx ≤ C0

(
C1 + 1

ρ2

)∫

Bρ(y)∩Rm+1+
xβ
m+1|∂i Dα′

v − λ|2dx

+ C2

∫

Bρ(y)∩Rm+1+
xβ
m+1dx (4.113)

for any Bρ(y) ⊂ Bθ̃ (0) with ym+1 ≥ 0 and i = 1, . . . ,m, where C0 = C0(m, N , β)

and C1,C2 depend on m, N , β and are polynomial functions, with no constant terms, of
||∇Dα̃′

v||L∞(Bρ(y)∩Rm+1+ ;R(m+1)n)
where α̃′ ∈ N

m+1
0 with |α̃′| ≤ l and α̃′

m+1 = 0. We apply

Lemmata 4.27 and 4.28, with δ = 1
2

1
2m+2C0

, to respectively obtain numbers ε1 > 0, τ1 ∈
(0, 1) and θ1 ∈ (0, 1

4 ] and ε2 > 0, τ2 ∈ (0, 1) and θ2 ∈ (0, 1
4 ], depending only on δ and

hence only on m, N , β, such that if R̃ ≤ θ̃ and

R̃1−m−β

∫

B+
R̃

(0)

xβ
m+1|∇v|2dx ≤ min{ε2

1, ε2
2} (4.114)

then either (4.82) or (4.83) holds for every B+
r1

(y) ∈ B+(0, R̃, τ1 R̃) and either (4.101) or

(4.102) holds for every Br2(y) ∈ B4(0, R̃, τ2 R̃). It follows from the proof of Theorem 4.21,
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bearing in mind R = 1 and x0 = 0, that for every B+
r (y) ∈ B+(0, 1, 1

2 ) we have

r1−m−β

∫

B+
r (y)

xβ
m+1|∇v|2dx ≤ Cr γ̃

for some γ̃ ∈ (0, 1) and some constant C = C(m, N , β). In particular, this holds for y = 0

and r ≤ 1
2 . Hence if R̃ = R̃(m, N , β, l) = (min{ ε2

1
C ,

ε2
2
C ,
(

θ̃
2

)γ̃ }) 1
γ̃ then (4.114) holds on

B+
R̃
(0). We have assumed R̃ ≤ θ̃

2 so that we may later apply (4.113) with impunity on any

ball or half-ball in B+
R̃
(0).

First we show that (4.7) essentially holds for ∇∂i Dα′
v on every B+

r1
(y) ∈ B+(0, R̃, τ1 R̃).

We know that (4.82) or (4.83) holds on B+
r1

(y). We apply (4.113) with λ = ∂i Dα′
vB+

θ1r1
(y),β ,

noting that |λ| ≤ ||∇Dα′
v||L∞(B+

θ1r1
(y);R(m+1)n), to see that

(
θ1r1

2

)1−m−β ∫

B+
θ1r1

2

(y)
xβ
m+1|∇∂i D

α′
v|2dx

≤ C02m+β−1(θ1r1)
−(1+m+β)

∫

B+
θ1r1

(y)
xβ
m+1|∂i Dα′

v − ∂i Dα′
vB+

θ1r1
(y),β |2dx + Cr2

1 .

(4.115)

Hence, regardless of which of (4.82) or (4.83) holds (bearing in mind our choice of δ above),
we have

(σ1r1)
1−m−β

∫

B+
σ1r1 (y)

xβ
m+1|∇∂i D

α′
v|2dx ≤ 1

2
r1

1−m−β

∫

B+
r1 (y)

xβ
m+1|∇∂i D

α′
v|2dx + Cr2

1 ,

(4.116)

where σ1 = θ1
2 and C depends on ||∇Dα̃′

v||L∞(B+
θ̃

(0);R(m+1)n) where |α̃′| ≤ l with α̃′
m+1 = 0

and, moreover, may depend on R̃, θ1,m, N and β and hence only on m, N , β, l as R̃ =
R̃(m, N , β, l) and θ1 = θ1(m, N , β). This holds for any B+

r1
(y) ∈ B+(0, R̃, τ1 R̃). We may

apply (4.116) with r1 replaced by σ k
1 r1 for every k ∈ N and iterate to see that

(
σ k

1 r1

)1−m−β
∫

B+
σk1 r1

(y)
xβ
m+1|∇∂i D

α′
v|2dx

≤ 1

2k
r1

1−m−β

∫

B+
r1 (y)

xβ
m+1|∇∂i D

α′
v|2dx + C

k−1∑
j=0

2− j (σ
k−1− j
1 r1)

2

≤ 1

2k

(
r1

1−m−β

∫

B+
r1 (y)

xβ
m+1|∇∂i D

α′
v|2dx + Cr2

1

)
. (4.117)

Setting γ1 = − ln 2
ln σ1

∈ (0, 1) we conclude that

r1−m−β

∫

B+
r (y)

xβ
m+1|∇∂i D

α′
v|2dx

≤ σ
1−m−β−γ1
1

(
r

r1

)γ1
(
r1

1−m−β

∫

B+
r1 (y)

xβ
m+1|∇∂i D

α′
v|2dx + Cr2

1

)
(4.118)
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for any r ≤ r1, where C depends on the same factors as the constant in (4.116). This holds
for any B+

r1
(y) ∈ B+(0, R̃, τ1 R̃).

We want a similar estimate for r2
1−m

∫
Br2 (y) |∇∂i Dα′

v|2dx on balls Br2(y) ∈ B4(0, R̃,

τ2 R̃). We calculate the constants in (4.6) from Sect. 4.3 explicitly. Then our choice of δ and
a similar argument which lead to (4.118) yields the existence of a γ2 = γ2(m, N , β) ∈ (0, 1)

such that for any Br2(y) ∈ B4(0, R̃, τ2 R̃) and any r ≤ r2 we have

r1−m
∫

Br (y)
|∇∂i D

α′
v|2dx ≤ σ

1−m−γ2
2

(
r

r2

)γ2
(
r2

1−m
∫

Br2 (y)
|∇∂i D

α′
v|2dx + Cr2

2

)
,

(4.119)

where σ2 = θ2
2 and C depends on the same factors as in (4.118). We now use (4.118) and

(4.119) to show the hypothesis (4.7) from Lemma 4.8 is satisfied.
Define τ = min{ τ1

2 , τ2} < 1
2 , γ = min{γ1, γ2}. We apply (4.118) with r1 = τ R̃. It

follows that for every B+
r (y) ∈ B+(0, R̃, τ R̃) we have B+

τ R̃
(y) ∈ B+(0, R̃, τ1 R̃) and hence

r1−m−β

∫

B+
r (y)

xβ
m+1|∇∂i D

α′
v|2dx

≤ C

(
r

τ R̃

)γ
(

(τ R̃)1−m−β

∫

B+
τ R̃

(y)
xβ
m+1|∇∂i D

α′
v|2dx + C(τ R̃)2

)
. (4.120)

Furthermore, applying (4.113) with λ = 0 and ρ = 2τ R̃ implies that

(τ R̃)1−m−β

∫

B+
τ R̃

(y)
xβ
m+1|∇∂i D

α′
v|2dx ≤ C(1 + (τ R̃)2) ≤ C, (4.121)

whereC depends onm, N , β, l and ||∇Dα̃′
v||L∞(B+

θ̃
(0);R(m+1)n) where |α̃′| ≤ l and α̃′

m+1 = 0.

We combine (4.120) and (4.121) to see that for every B+
r (y) ∈ B+(0, R̃, τ R̃) we have

r1−m−β

∫

B+
r (y)

xβ
m+1|∇∂i D

α′
v|2dx ≤ C

(
r

τ R̃

)γ

≤ C3r
γ , (4.122)

where C3 depends on m, N , β, l and ||∇Dα̃′
v||L∞(B+

θ̃
(0);R(m+1)n) where |α̃′| ≤ l and α̃′

m+1 =
0.

Now let Br (y) ∈ B4(0, R̃, 2τ
3 R̃). Then Br (y) ⊂ B ym+1

4
(y) ⊂ B+

3ym+1
2

(y+) ⊂ B+
τ R̃

(y+) ∈
B+(0, R̃, τ R̃), where y+ = y− (0, ym+1). Recalling again (4.6) from Sect. 4.3, we note that

( ym+1

4

)1−m
∫

B ym+1
4

(y)
|∇∂i D

α′
v|2dx

≤ C

(
3ym+1

2

)1−m−β ∫

B+
3ym+1

2

(y+)

xβ
m+1|∇∂i D

α′
v|2dx . (4.123)

Since ym+1 ≤ τ R̃ ≤ 1, applying (4.119) on B ym+1
4

(y) ∈ B4(0, R̃, τ2 R̃), using (4.123), and

then applying (4.122) gives

r1−m
∫

Br (y)
|∇∂i D

α′
v|2dx
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≤ C

(
4r

ym+1

)γ
⎛
⎝( ym+1

4

)1−m
∫

B ym+1
4

(y)
|∇∂i D

α′
v|2dx + Cy2

m+1

⎞
⎠

≤ C

(
r

ym+1

)γ

⎛
⎜⎝C

(
3ym+1

2

)1−m−β ∫

B+
3ym+1

2

(y+)

xβ
m+1|∇∂i D

α′
v|2dx + Cy2

m+1

⎞
⎟⎠

≤ C

(
r

ym+1

)γ (
C3

(
3ym+1

2

)γ

+ Cy2
m+1

)

≤ C4r
γ (4.124)

where C4 depends on m, N , β, l and ||∇Dα̃′
v||L∞(B+

θ̃
(0);R(m+1)n) where |α̃′| ≤ l and

α̃′
m+1 = 0. Together, (4.122) and (4.124) imply (4.7) from Lemma 4.8 holds for

B+
r (y) ∈ B+(0, R̃, 2τ

3 R̃) and Br (y) ∈ B4(0, R̃, 2τ
3 R̃). Applying this lemma shows that

∂i Dα′
v ∈ C0,γ̂ (B+

θ̂
(0);Rn) for some θ̂ , γ̂ ∈ (0, 1) depending on m, N , β, l. Hence,

recalling that the inductive hypothesis implies that ∂i Dα′
v ∈ W 1,2

β (B+
θ̃

(0);Rn), we may

apply Lemmata 4.23 and 4.25 to respectively imply ∇∂i Dα′
v ∈ L∞(B+̂

θ
3

(0);R(m+1)n) and

∇∂ j∂i Dα′
v ∈ L2

β(B+̂
θ
6

(0);Rn(m+1)) for i, j = 1, . . . ,m. This completes the inductive step

and therefore the proof. ��
Remark 4.29 A consequence of the proof is that the number ε in Theorem 4.1 can be taken
to be the number from Theorem 4.21.

Theorem 4.1 yields an improvement to Theorem 4.21 for minimisers of Eβ relative to O.
We are now in a position to prove our partial regularity theorem.

Proof of Theorem 4.3 Aspects of the proof closely follow the proof of Theorem 3.2 in [29].
First, it follows from the theory of Schoen and Uhlenbeck [37] that there exists a set Σint ⊂
R
m+1+ , with Hausdorff dimension at most m − 2, such that v is smooth in a neighbourhood

of any point in Σint.
Define

Σbdry = {y ∈ O: Θβ
v (y) ≥ ε}

where ε is the number given by the Theorem 4.21 and Θ
β
v (y) is the density function defined

in Remark 4.6. The upper semi-continuity of Θ
β
v was established in Remark 4.6 which, when

combined with the definition of Σbdry, shows that Σbdry is relatively closed in O.
We write Σbdry as a countable union of compact sets of the form K ∩ Σbdry, where

K ⊂ O is compact, and let Σ ′ ⊂ Σbdry be such a set. Fix δ > 0 and cover Σ ′ by a
collection of balls Bm

ri (xi ) ⊂ O with Bm
ri (xi ) ⊂ O with xi ∈ Σ ′ and 0 < ri ≤ δ. The

compactness of Σ ′, combined with Vitali’s covering theorem yields a finite subcollection
of balls, Bm

r1
(x1), . . . , Bm

rI (xI ) for some I ∈ N, of any such cover of Σ ′, which satisfies

Bri (xi ) ∩ Br j (x j ) = ∅ for i �= j, 1 ≤ i, j ≤ I and Σ ′ ⊂ ⋃I
i=1 B5ri (xi ). Using the

boundary energy monotonicity formula, Lemma 4.5, we see that

I∑
i=1

(10ri )
m+β−1 ≤ 10m+β−1

ε

I∑
i=1

∫

B+
ri (xi )

xβ
m+1|∇v|2dx

123



109 Page 66 of 68 J. Roberts

≤ 10m+β−1

ε

∫

O×[0,δ]
xβ
m+1|∇v|2dx .

We send δ → 0+ and use Lebesgue’s Dominated Convergence Theorem to see that
Hm−1+β(Σ ′) = 0 and hence Hm−1+β(Σbdry) = 0.

Let x0 ∈ (Rm+1+ ∪ O)\Σ . If x0 ∈ R
m+1+ then x0 ∈ R

m+1+ \Σint and v is smooth in
an open ball centred at x0 and contained in R

m+1+ \Σint ⊂ (Rm+1+ ∪ O)\Σ . If x0 ∈ O
then x0 ∈ O\Σbdry and Θ

β
v (x0) < ε which, combined with the fact that O\Σbdry is open

in O, implies there exists an R > 0 such that R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε, R ≤

1 and ∂0B+
R (x0) ⊂ O\Σbdry. Consequently, Theorem 4.21 implies that there are θ, γ ∈

(0, 1) such that v ∈ C0,γ (B+
θR(x0); N ). Furthermore, we deduce from (4.61) in the proof of

Theorem 4.21 that

r1−m−β

∫

B+
r (z)

xβ
m+1|∇v|2dx ≤ C

( r
R

)γ

ε

on every B+
r (z) ∈ B+(x0, R, R

2 ) which shows that Θ
β
v (z) = 0 for every z ∈ ∂0B+

R
2
(x0).

Now setting σ = min{θ, 1
2 } we see that Θ

β
v (z) = 0 for z ∈ ∂0B+

σ R(x0) which implies
∂0B+

σ R(x0) ⊂ O\Σbdry. Furthermore, v is a Hölder continuous weakly harmonic map in any
Br (y) with Br (y) ⊂ B+

σ R(x0). We apply Lemma 4.13 to see that v is smooth in B+
σ R(x0)

and conclude that B+
σ R(x0) ⊂ R

m+1+ \Σint. Consequently, we have B+
σ R(x0) ∪ ∂0B+

σ R(x0) ⊂
(Rm+1+ ∪O)\Σ . Note that B+

σ R(x0)∪∂0B+
σ R(x0) is an open ball centred at x0 in the (Euclidean)

topology ofRm+1+ ∪O. Hence Σ is relatively closed inRm+1+ ∪O. As the Hausdorff dimension
of Σint is at mostm−2 < m−1+β andHm−1+β(Σbdry) = 0, we deduce thatHm+β−1(Σ) =
0. We also conclude v ∈ C0,γ

loc ((Rm+1+ ∪ O)\Σ; N ).
Consider x0 ∈ (Rm+1+ ∪O)\Σ with x0 ∈ O. Then, as above, we observe there is an R > 0

such that R1−m−β
∫
B+
R (x0)

xβ
m+1|∇v|2dx ≤ ε, R ≤ 1 and ∂0B+

R (x0) ⊂ O\Σbdry. In view

of Remark 4.29, Theorem 4.1 implies that for every l ∈ N0 there exist θ, γ ∈ (0, 1) such

that for every α′ ∈ N
m+1
0 with |α′| ≤ l and α′

m+1 = 0 we have Dα′
v ∈ C0,γ (B+

θR(x0);Rn).

However, we also know that (Rm+1+ ∪O)\Σ is open in R
m+1+ ∪O. Hence there exists R̃ > 0

such that B+
R̃
(x0) ∪ ∂0B+

R̃
(x0) ⊂ (Rm+1+ ∪ O)\Σ . Setting r = min{θR, R̃} we conclude

Dα′
v ∈ C0,γ (B+

r (x0);Rn) and B+
r (x0)∪∂0B+

r (x0) ⊂ (Rm+1+ ∪O)\Σ . We iteratively apply
Lemmata 4.23 and 4.25 to see that for every α′ ∈ N

m+1
0 with |α′| ≤ l and α′

m+1 = 0 we have

∇Dα′
v ∈ L∞(B+

r̃ (x0);R(m+1)n) and Dα′
v ∈ W 1,2

β (B+
r̃ (x0);Rn) for some r̃ ≤ r . It follows

that B+
r̃ (x0) ∪ ∂0B+

r̃ (x0) ⊂ (Rm+1+ ∪ O)\Σ . Hence v ∈ C0,1
loc ((R

m+1+ ∪ O)\Σ; N ) and for

every multi-index α′ ∈ N
m+1 with α′

m+1 = 0 we have Dα′
v ∈ C0,1

loc ((R
m+1+ ∪ O)\Σ;Rn)

and ∇Dα′
v ∈ L∞

loc((R
m+1+ ∪ O)\Σ;R(m+1)n).

Lastly, for x0 as in the preceding paragraph, fix α′ ∈ N
m+1
0 with α′

m+1 = 0 and r̃ ≤ 1 such

that B+
r̃ (x0) ∪ ∂0B+

r̃ (x0) ⊂ (Rm+1+ ∪O)\Σ . Making r̃ smaller if necessary, we may assume

that ∇Dα̃′
v ∈ L∞(B+

r̃ (x0);R(m+1)n) and Dα̃′
v ∈ C0,1(B+

r̃ (x0);Rn) for every α̃′ ∈ N
m+1
0

with α̃′
m+1 = 0 and |α̃′| ≤ |α′| + 2. We also observe that since v ∈ C0,1(B+

r̃ (x0); N )

is a Hölder continuous harmonic map, it is smooth in B+
r̃ (x0) by Lemma 4.13 and

so we have x−β
m+1∂m+1(x

β
m+1∂m+1Dα′

v) = −(Δ′Dα′
v + Dα′

(A(v)(∇v,∇v))) classi-
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cally in B+
r̃ (x0), where Δ′ is the Laplacian with respect to xi , i = 1, . . . ,m. Hence,

x−β
m+1∂m+1(x

β
m+1∂m+1Dα′

v) is bounded in B+
r̃ (x0). Hence, for every B+

ρ (y) ∈ B+(x0,
r̃
3 , r̃

6 )

we calculate

ρ1−m+β

∫

B+
ρ (y)

x−β
m+1|∇

(
xβ
m+1∂m+1D

α′
v
)

|2dx ≤ Cρ2+2β.

Moreover, for every Bρ(y) ∈ B(x0,
r̃
3 , r̃

6 ) we calculate

ρ1−m
∫

Bρ(y)
|∇
(
xβ
m+1∂m+1D

α′
v
)

|2dx ≤ Cρ2−2|β|.

An application of Lemma 4.8 concludes the proof. ��
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