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Abstract We define and develop an interior partial regularity theory for intrinsic energy min-
imising fractional harmonic maps from Euclidean space into smooth compact Riemannian
manifolds for fractional powers strictly between zero and one. Intrinsic fractional harmonic
maps are critical points of an energy whose first variation is a Dirichlet to Neumann map
for the harmonic map problem on a half-space with a Riemannian metric which can degen-
erate/become singular along the boundary, depending on the fractional power. Similarly to
the approach used to prove regularity for stationary intrinsic semi-harmonic maps, we take
advantage of the connection between fractional harmonic maps and free boundary problems
for harmonic maps in order to develop a partial regularity theory for the fractional harmonic
maps we consider. In particular, we prove partial regularity for locally minimising harmonic
maps with (partially) free boundary data on half-spaces with the aforementioned metrics up
to the boundary; fractional harmonic maps then inherit this regularity. As a by-product of
our methods we shed some new light on the monotonicity of the average energy of solutions
of the degenerate linear elliptic equation related to fractional harmonic functions.
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1 Introduction

Harmonic maps are critical points of the Dirichlet energy for mappings of Riemannian mani-
folds and are non-linear analogues of solutions to Laplace’s equation. They play an important
role in geometry and one of the most fundamental aspects of the theory of harmonic maps,
which is intimately connected to the geometry and topology of the codomain manifold N,
is their regularity. For maps with domains of dimension 2, the Dirichlet energy is invari-
ant under conformal transformations of the domain; Hélein proved that harmonic maps are
smooth in this case [21]. The fact that harmonic maps are smooth on domains of dimension
two is also now a consequence of a result of Riviere [34] asserting the continuity of critical
points of functionals with conformally invariant Lagrangian on two dimensional domains.
Motivated by Riviere’s regularity result, at least partially, Da Lio and Riviere [8] introduced
the notion of fractional harmonic mappings of manifolds; on a domain of dimension one
these maps are critical points of functionals which satisfy a type of conformal invariance.
Such maps generalise the notion of both harmonic mappings of manifolds and fractional
harmonic functions (maps u with (—A)*u = 0) and Da Lio and Riviere showed the maps
they considered are smooth on domains of one dimension.

Since the results of Da Lio and Riviere, fractional harmonic mappings of manifolds have
been increasingly studied in recent years, particularly pertaining to their regularity. The
purpose of this article is to extend the notion of a type of fractional harmonic map introduced
by Moser [30]. In particular, we generalise the notion of intrinsic %-harmonic maps to all
powers in (0, 1) and consider the regularity of a class of such maps. In contrast to other
types of fractional harmonic maps, the maps we consider are intrinsic meaning that they are
derived from an energy which only depends on the geometry of the target N and not on the
embedding of N into Euclidean space. As we will discuss in more detail subsequently, we take
advantage of the connection between free boundary harmonic maps and fractional harmonic
maps to establish regularity for the latter. The results we obtain and methods we use lay
the foundation for future studies into the connection between the regularity and singularities
of intrinsic fractional harmonic maps, free boundary harmonic maps and the geometric and
topological properties of N.

In order to motivate our definition of fractional harmonic mappings of manifolds, we first
outline the pertinent aspects of the theory of fractional harmonic functions from Euclidean
space into R. Let m € N and RTFI = R"™ x (0, 00). Caffarelli and Silvestre [2] established
that, for given boundary data u: 9R” "' — R, solutions v: R+ — R of the Dirichlet
problem:

div(x, Vo) = 0in RY*! and vlygni =u (1.1)

1—
satisfy (—4) 7 u = 9%, v

Laplace operator of order s € (0, 1). One way to prove this result is to establish that

= —(xﬁ+]8m+1v)|3M+1, where (—A)* is the fractional

C”(_A)iu”iz(aﬂ&i’;“) = inf {Eﬁ(v): v|3R'I“ = u} , (1.2)
where Ef (v) := %fRTl xZHIVvIzdx, s = #, C = C(m,s) and the infimum is taken
over a suitable Sobolev space. We conclude that the first variation of the preceding functionals,

respectively u > (—A) 2 u and u — 85; 41U, must therefore coincide. Furthermore, if we
wish to study u with (—A)*u = 0, then we may equivalently consider minimisers (or even
critical points) of E# which satisfy v| g = U and a,ﬁ +1v = 0. It further follows from
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(1.2) that fractional harmonic functions u: O — R, where O C BRQ"_“ is a domain, may

reasonably be defined as critical points of either ||(—A)%u||i2(o) or inf{Ef (v):v|p = u}
(which are no longer equivalent). In order to define intrinsic fractional harmonic maps, we
will work with a modification of the latter energy. For u: O — R, the first variation of
inf{Eﬂ (v):vlo = u} is the Dirichlet to Neumann map u +—> —(x5,+13m+1 v)| o but we may
no longer identify this with a fractional Laplace operator. Moreover, v satisfies (1.1) but with
vlo = u.

We generalise the notion of fractional harmonic function to mappings u: O — N in the
following way, where O C B]RT“l is an open domain but not necessarily all of Rfﬁ“ and N
is a smooth compact Riemannian manifold. For technical reasons, we assume henceforth that
N is isometrically embedded in R” for some n, which can always be achieved for smooth
compact N by the theorem of Nash [31]. The forthcoming definition will be made rigorous

at the beginning of Sect. 3. Define
I8 () = inf [Eﬂ(v): vjp=u,v e W;’Z(R?ﬁﬂ; N)]

where 8 € (—1, 1), Wg’Z(RfﬁH; N):={ve Wé’z(R’ﬁH; R™):v(x) € Nforaex € R'f“}
and W/;’Z(RTFI; R") is the homogeneous Sobolev space with the square root of E# as the

norm. [f weset O = B]R'f“l and N is replaced by R then I# reduces to the energies considered
by Caffarelli and Silvestre. Moreover, I? is independent of the choice of embedding of N
into Euclidean space since E? is invariant under isometries of N. Hence we define critical
points of I# as intrinsic %—harmonic maps.

Our main result regarding fractional harmonic maps, see Theorem 3.8 in Sect. 3, asserts:

Theorem 1.1 Fix O C BRﬂﬂ. Whenm > 3 let B € (—1,1) and whenm = 2 let B €
(=371, 1). Supposeu: © — Nisa 1;’3 -harmonic map that locally minimises I? in O. Then
u is smooth with the possible exception of a set of points with vanishing m+ 8 — 1-dimensional

Hausdorff measure.

We observe that the domain of 17 plays arole in the regularity theory. We will take the domain
of 17, again see Sect. 3 for details, to be the image of Wl’z(Rﬂﬂ; N) under some trace
operator. The domain we choose does not necessarily coincide with the fractional Sobolev

space H # (O; N); there are circumstances in which it is possible to construct H % (O; N)
maps which do not have extensions to ]R:”_H. This can happen for topological reasons, for
example, such as when N is not simply connected [1]. We further note that the bound on the
Hausdorff dimension of the singular set stated in the theorem may not be optimal; the given
dimension is that which one would conjecture for u which are critical points of I with respect
to inner and outer variations and is consistent with the scale-invariance of the problem. We
expect that the dimension bound on the singular set can be improved using our constructions
in Sect. 4 and similar arguments to Chapter 3 of [39] for example. It is also possible that our
choice to minimise over v € Wé’z(RTFI; N) may preclude some singularities, for example
the map v = |(x", Xn41)| ' (X', Xpn1) is not an admissible extension of u = |x’|~'x’ as it
does not have finite E# energy. However, the arguments we use are local and we expect our
methods to apply to modifications of 7# which allow extensions v with only locally finite E#
energy. The restriction 8 > —3~! whenm = 2 is of a technical nature and results from the use
of a Sobolev embedding theorem to identify elements of Wé’z(RT’l; R™) with functions,
so that we may require they take values in N almost everywhere. It is possible that this
restriction can be lifted with the use of an appropriate embedding theorem, we are not aware
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of such aresult. An alternative would be to replace W12 with a Sobolev space of measurable
functions from the outset (as opposed to representatives of Cauchy sequences). We further
note that we do not consider the case m = 1 and will indicate our reasons subsequently.

To prove Theorem 1.1 we will take advantage of the connection between the extensions
v: RT’I — N of fractional harmonic u: O — N and free boundary harmonic maps from
R’f“l to N, similarly to Moser [30]. Moser observed that whenever / 0 is differentiable at u,
its first variation is the Dirichlet to Neumann map A: u +— (—0,,41v)|o Where v: Rﬁ“ — N
is a harmonic map with 7°(u) = E°(v). Hence, intrinsic 4-harmonic maps satisfy Au =
(=0m+1v)|o = 0, which may be interpreted as a zero Neumann condition on O for any v
which minimises £° among maps with u as boundary values on ©. Using this observation
Moser established (partial) regularity for stationary %-harmonic u: © — N, which are critical
points of 19 with respect to inner and outer variations, using regularity theory for stationary
free boundary harmonic maps v: ]R'J'F’H — N up to the free boundary O. He showed the
maps he considered are smooth when m = 1 and smooth with the possible exception of a set
of vanishing Hausdorff dimension m — 1 when m > 2. The following theorem is an abridged
version of Theorem 4.3 in Sect. 4 which is our main theorem regarding the extensions v of
fractional harmonic u.

Theorem 1.2 Suppose u:© — N locally minimises I? and suppose v satisfies 1P (1) =
EP(v). There exists sets Zip C R’f’l and Xpgry C O such that the following holds. The
set Xy is relatively closed in Rﬂ“ and has Hausdorff dimension at most m — 2. The
set Xpary is relatively closed in O and has vanishing m + B — 1-dimensional Hausdorff
measure. The set X := Xy U Xpgpy is relatively closed in Rﬁ“ U O and has vanishing
m+ B — 1-dimensional Hausdorff measure. Furthermore, we have v € COO(RTH\Z‘I-,,,; N),
vE Cg): ((RﬂJrl UO\X; N) and for every multi-index o' € N1 with ay, . = 0we have
D¥v e CRL (@R U0\ Z; RY).

Synonymously with our discussion following Theorem 1.1, we observe that the dimension
bound on the singular set of v in O may not be optimal. The main purpose of this article
is to give a proof of Theorem 1.2 which, to our knowledge, is new for all 8 # 0. When
B = 0, existing theories actually improve the bound we have given on the dimension of
the singular set in O; this improvement comes from a dimension reduction argument as
mentioned previously. This translates to a lower bound on the dimension of the singular set
of u. In particular, as a consequence of the results of Hardt and Lin [18] and Duzaar and
Steffen [10,11], any UIRT__H — N with I9u) = E°%(v) are smooth up to O away from a
set in O of Hausdorff dimension at most dim© — 3. They also give examples of minimisers
with singular sets in © which have precisely the stated Hausdorff dimensions, thus showing
that the dimension bounds for the singular set are optimal.

We would like to take advantage of Moser’s observation regarding the connection between
fractional harmonic u and harmonic v with free boundary data in order to develop a theory
for intrinsic fractional harmonic maps for powers in (0, 1). In R'f“ we are free to utilise the
theory of harmonic mappings of manifolds to obtain the stated regularity in Theorem 1.2,
provided the energies E# correspond to the energy for harmonic mappings from (RTFI, g)
to N for some metric g. To see that this is the case and facilitate our subsequent analysis, we
first recall the definition of harmonic maps for a class of conformally Euclidean metrics on
RZ’F’H. Let (RT_H, g) be a smooth Riemannian manifold and suppose g = f (x;,+1)8, where
§ is the Euclidean metric, f: Rﬁ“ — (0, 00) is smooth and x,,+1 is the m + 1th Euclidean
coordinate. Let W12(£2; N) := (v € Wh2(£2; R"):v(x) € N for almost every x € £2},
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where 2 C Rﬁ“ is open. If x1, ..., x;;4+1 are Euclidean coordinates on £2, the energy
density of v € W'2(2; N) is given by e(v) = f~! Z(é’?” 37"> = Vo, Vo) =

£~ Vu|?, where (-, -) is the Euclidean inner product in R”. The energy of v, see [22], is
defined as

1 —1 2 1 1 m=1 2
Eq(v) = 5/Qf [Vu|*(det(£8))2dx = 5/Qf T |Vu|dx. (1.3)

Observe that when m = 1, for this class of metric g we have E, = Es. The Euler-Lagrange
equations for E, have the form

(m

S iV T V) + THAW) (T, Vo) = 0in 2 .

where A is the second fundamental form of N, A(v) (Vv, Vv) := > ; A(v) (9;v, 9;v)
and div, V are the Euclidean divergence and gradient operators. Critical points of E, in
W12(£2; N) with respect to the dependent variable (weakly) satisfy (1.4) and are called
(weakly) harmonic maps with respect to g.

When m > 2 the Dirichlet energy E? is the energy for maps ]R’frl — N where ]RTrl

is equipped with a Riemannian metric x;, , | 3; it follows from (1.3) that 8 = @ When
o

10 gives rise to the energy EY in view of (1.3). It is
therefore not possible that E# corresponds to the energy of mappings from (Rﬂ+1 s Xy 18)
for B # 0 when m = 1 and, in this case, we would need a different approach. We do not
consider this further in this article and hence assume m > 2.

Near the boundary O we would like to apply the theory for free boundary harmonic
mappings of Riemannian manifolds in order to obtain regularity for fractional harmonic
maps defined on O. However, for fractional powers % € (0, 1) with B # 0 (i.e fractional

m = 1, any metric of the form x

powers in (0, 1) other than %) the metrics x¢ , ,6 may degenerate or become singular along

o
m+1
the boundary depending on 8 = “(mT_l) Known theory for free boundary harmonic maps is
not applicable in this case and the main focus of this article will be to develop a regularity
theory in this context.

Without geometric constraints on the target manifold N (such as requiring N has non-
positive sectional curvature), harmonic maps and harmonic maps with free boundary data
may exhibit discontinuities. For harmonic maps defined on a domain of dimension at least 3,
free boundary data can have discontinuities on the boundary [11,17,18] and there are even
harmonic maps into spheres which are discontinuous everywhere [33]. However, it is possible
to establish (partial) regularity for harmonic maps which are minimising (or stationary) with
respect to free boundary conditions. This is the primary reason that we consider minimisers.

The methodology we use to prove our theorem is based on existing theories for minimising
(free boundary) harmonic maps. Similarly to these theories, our task is divided into two parts.
First we prove Holder continuity, and then that this continuity implies higher regularity. To
establish Holder continuity our main construction will be comparison maps. Such maps were
first used in the theory of harmonic maps by Morrey in order to prove interior regularity of
energy minimising harmonic maps on two dimensional domains [27]. Schoen and Uhlenbeck
later showed that on domains of dimension at least three, minimising harmonic maps are
regular away from a set of Hausdorff dimension at most the dimension of the domain minus
three [37]; they also used manifold valued comparison maps, which are more difficult to
construct on domains of dimension greater than two. The aforementioned results of Hardt
and Lin and Duzaar and Steffen for minimising free boundary harmonic maps are established
using methods based the constructions of Schoen and Uhlenbeck. We develop a (partial)
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generalisation of a construction of Luckhaus [23] as presented by Simon [39]; the advantage
of this construction, at least in existing theories of harmonic maps, is that it can be used to
show blow-up limits of sequences of minimisers are again locally minimising. We do not
establish this fact here but expect similar results to follow from our constructions. In Sect. 4
we construct comparison maps on a half-cylinder and use these to construct comparison maps
on half-balls in Rﬁ“ centred on B]RﬁH. We also establish monotonicity of a local, re-scaled
version of E# and estimates on the mean squared oscillation of the maps we consider via a
blow-up argument. The combination of these results is enough to prove continuity. In order
to prove Holder continuity implies higher regularity (away from the singular set), we use
a version of harmonic replacement to show Vv € L° similarly to [38]. We then establish
energy decay for the derivatives of v via another blow-up argument which yields control of
the mean squared oscillation of the derivatives of v tangential to O.

To conclude our discussion, we compare the notions of intrinsic and extrinsic fractional
harmonic maps and remark on known results regarding their regularity. The first to con-
sider such maps were Da Lio and Riviere [8]. They analysed critical points u of the energy

1 Lol . . .
||(—A)1u||iz(aR2) in H?2 under the constraint that u takes values in the unit n — 1 sphere
+

S"~! almost everywhere. In other words, they considered critical points of the functional
L@ =inf {E°W):vlyes = u,v € WH2ARL R, u(x) € 8" forae x € 9RY ]

The maps Da Lio and Riviere considered fall into a larger class of maps known as extrinsic
(fractional) harmonic maps. In contrast to intrinsic fractional harmonic maps, the energies
for which extrinsic fractional harmonic maps are critical points depend upon the choice of
embedding of the target manifold N into some Euclidean space. Moser [30] proposed to
remove this dependence in the energy L so that only the geometry of N plays a role in the
theory. In particular, to define / O(u) he minimised E°(v) over extensions U:R:”_H — N
with v|p = u as opposed to minimising over extensions v: RT’I — R" withv|p = u asis
done to define L(u) (for O = BRi). This choice results in another fundamental difference
between intrinsic and extrinsic fractional harmonic maps which we illustrate for the power
% (when g = 0). Observe that any v: ]R?F — R” for which L(x) = E°(v) satisfies Av = 0
in Ri and is hence smooth on Ri_ (A is the usual Laplace operator on Euclidean space). In
contrast, any v: errl — N for which I°w) = E%0) is a (weakly) harmonic map from
R{,”_H to N and satisfies

Av + A(v)(Vv, Vo) = 0in R, (1.5)

Unlike solutions of Av = 0, solutions of (1.5) may have singularities in RTLI in general. We
conclude extrinsic %-harmonic maps always have a smooth extension to R'_’;H but intrinsic
%—harmonic maps need not. The same is true for all powers in (0, 1).

The regularity theory for extrinsic %—harmonic maps has been extended to a range of
fractional powers for maps into general target manifolds N by Da Lio et al. [6,7,9,35,36]
etc, as well as Millot and Sire [25] for the power % . Millot-Sire and Yu have also considered the
regularity of extrinsic minimising fractional harmonic maps defined on the real line for powers
in (0, %) [26]. The methods Da Lio, Riviere and Schikorra used to obtain regularity take
advantage of compensation phenomena, namely higher than expected regularity which can
be derived from the Euler-Lagrange equations for the energies they considered. The higher
regularity is revealed using a well chosen gauge transformation, in analogy to techniques
used in the theory of harmonic maps. One of the earliest applications of this technique
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was used by Hélein to prove regularity for harmonic maps from Riemannian surfaces into
spheres [20]. Millot, Sire and Yu instead consider the extensions of fractional harmonic maps
and exploit their connection with free boundary problems for harmonic maps, a method first
applied by Moser in the intrinsic case for %-harmonic maps to obtain (partial) regularity. To
our knowledge, aside from the results we establish in this article, the only results regarding
intrinsic fractional harmonic maps are those of Moser [30].

2 Preliminaries

The Euler-Lagrange equations for E? at critical points v: RTFI — N are semi-linear with

leading order term div(xZ Tl

solutions of such equations, as well as the associated linear equation div(x

Vv). We will require Sobolev spaces suited to the analysis of
mHVu) = 0. For
B # 0 the coefficient xrﬁ 41 degenerates or becomes singular on 8Rﬂ+l depending on the
sign of B and the theory of uniformly elliptic second order partial differential equations does
not apply on sets overlapping B]Rﬂ“. Viewing the coefficient xfl 41 as a weighting (density)
of the Lebesgue measure dx, we may instead appeal to the theory of weighted second order
degenerate elliptic equations. We recall and define the function spaces, and some of their
analytical properties, necessary for our analysis and then record properties of solutions to
div(xﬁ 4+1Yv) = 0 which we will require for the study of solutions of the Euler-Lagrange
equations of Ef.

Forevery B € (—1, 1), there exists C > 0 such that ﬁ I 1Xms1 |ﬂdxﬁ [ xXmet 1P
dx < C for every ball B ¢ R"t!, where dx is the Lebesgue measure on R”*!. Hence
|xmi1]? is a weight of Muckenhoupt class A, see [19] for an overview of these weights.

Every such weight is canonically associated to corresponding Sobolev and Lebesgue spaces.
Let 2 ¢ R™*!, Define

L%([Z; R™") = {f: 2 — R": f is measurable, /;2 Lf1? 1o |Pdx < oo}

whichis a Hilbert space, see [5, Theorem 3.4.1], where the inner productof f, g € L% (£2; R")
is given by ( f, g>L§((2;Rﬂ) = fQ (f, &) |Xme11Pdx where (£, g) is the inner product of f and
g in R”. Define

Wit@i R = [v:2 > Rv, g0 € L@ R fori = 1,...,m + 1]

where 0; v denotes the weak partial derivative of v with respect to x;. Proposition 2.1.2 of [40]
guarantees that Wl 2(9 R"™) is a Hilbert space with the inner product (v, w)

1>2

2(2;Rm)
Jo (v, w) Xt |Pdx + Jo (Vu, Vv) |%ms1|Pdx for v, w € W1 2(Q2:RM), Where we write
(Vu, Vw) = ZmH (0;v, d;w). We also define the Hilbert space ﬁ.O(Q’ R") as the closure
of C5°(£2; R") in Wﬁ1 2(.Q, R”™) with respect to the norm induced by the inner product on

Wé’z(.Q; R™). When 8 = 0 we omit the subscript 8 from the preceding notation.

It is worth noting that, for every 8 € (—1, 1)\{0}, approximation by smooth functions
in L% (£2; R™) and Wé’z(Q; R™) works in the same way as for the spaces L2(£2; R") and
W12(§2; R™). The details of this process are given in Theorem 2.1.4 and Corollary 2.1.5 in
[40]. The spaces Wg W1 2 and L2 also have essentially the same analytical properties, such

as completeness, reﬂexwlty etc. as the unweighted spaces W2, WOl 2 and L2 respectively.
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Moreover, since |x;,+1 Iﬁ is an A, weight, many inequalities that hold for the spaces wlhp,
such as the Poincaré inequality, have counterparts for functions in Wg’z [19].

We will need to refer to the relationship between Wé’z and W1? and record it in the
following Lemma.

Lemma 2.1 Let B € (—1, 1) and suppose §2 C Rﬁ“ is open and bounded.

L If2 CRYT then Wy (2 R") = W2 (2; R").
2. If B < 0 then Wy (2: R") € W!2(2; R").
3. If B > 0 then Wy (2;R") C WP (2, R") for every 1 < p < 125.

Proof Part 1 follows as in this case the norms on Wé’z([z; R") and W12(£2; R") are equiva-

lent. Part 2 follows as in this case the W12(£2; R") norm is dominated by a constant multiple
(depending on £2) of the Wﬁl‘z(.Q; R”") norm. Part 3 follows from Holder’s inequality. O

2.1 Weighted homogeneous Sobolev spaces

Consider the Dirichlet energies

1
Ef (v) = E/RW <P Ivudx 2.1)
+

where 8 € (—1, 1), which are well defined on
Dy (R RY) = { 916 = flgpn forsome f € CG2(R"*; R”)} .
The energy E? is naturally associated to the following Sobolev space.

Definition 2.2 LetfS € (—1, 1). The Weighted Homogeneous Sobolev Space Wé,Z(erH; R™)

is the completion of D (IRT’1 ; R™) with respect to the metric induced by the square root of
EP.

The elements of Wg’z(Rﬁ';H; R") are, strictly speaking, equivalence classes of Cauchy
sequences and it will be necessary to have tangible representatives of these classes which
may take values in N.

Lemma 2.3 Let m € N with m > 2 and §2 be an open bounded subset of RTH. If
m = 2let B € (=371 1) and ifm > 3 let B € (—1,1). Then the restriction opera-
tor I:D+(RT_+]; R") — W;,’z(.Q; R™): f +— f|o extends to a bounded linear operator

I: Wé’z(RT'l; R") — Wé’z(.Q; R™). Moreover,

Iv 1.2, ~.on SC Vllyvir1.2 pm+1.mon 2.2
|| ||Wﬁ (2;R") || ||W}3 (R++1,R) ( )

for every v € W;’Z(RTFI; R™) where C is a positive constant depending on m and S2.

Proof 1t suffices to establish that (2.2) holds for all ¢ € D+(R:”_+1; R") as this space is

dense in Wé’z(RTH; R™) and W;’Z(.Q; R™) is a Banach Space. Let ¢ € D.;.(]RT“; R™). By
2

.. 2 < 2 .
definition we have ||V¢]|| y = [l@ll% 1, so we need to estimate ||¢||L;§(Q;]R")

L3 ($2;R Wy Ry R
2

in terms of ||¢| |Wg'2(R$+l ;R”).
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Suppose m > 3. We have ¢ (-, x;y+1) € WLZ(®R™; R") for every x,+1 € [0, 00). Let
V’ denote the derivative of ¢ with respect to x” for (x’, x,,4+1) € R™ x [0, 00), define
a = inf o (x;y4+1) and b = supgo (x,,41) and set [ (xy,41) = .Q N R™ x {Xm+1}) We apply
Fubini’s Theorem, together with Holder’s inequality, 2 and 2 5
and the Sobolev inequality in R” to see that

b
/xﬁ+l|¢|2dx:/ xZ_H/ |1 2dxdxp g1
2 a l(xm+l)
m—2

b m
< C (diam(£2))? / xXhoy ( / |¢|ff2dx’) Xyt
a Rm

b
< C (diam(£2))? / b / V' |2dxdxps g
a Rm

< € (diam(£2)) /R S Vg
+

2
We conclude that 19113, o ., = CIIOI2 it

In order to apply the precedmg method of proof when m = 2 we would need to use the
Sobolev Embedding Theorem on R. However, in this case the theorem yields W!-?(R) —
L>®(R) and our previous method of proof is no longer viable. However, provided 8 > —371,
Corollary 2 in Section 2.1.7 of [24] implies that for every ¢ € Cgo (R3; R™), and therefore

by approximation every ¢ € W;’Z(RS; R™), we have

1

3
(f |x3|3f’|¢|6dx) sc/ 3%V 2dx.
R3 R3

The even reflection with respect to 8Rm+1 denoted ¢, of a ¢ € Dy (RTFI; R") is in
W1 Z(JR3 R™) and hence, applying Holder’s inequality, we find

- 3 -
fx3ﬂ|¢|2dxs|9|%(f |x3|3ﬂ|¢|6dx) scmﬁf 13 # |V Pdx
2 R3 R3

2
—2C|2|3 /R3 f1vedx,

T

for every ¢ € Dy (R3; R"). We again conclude ||¢||2 12 < Cl|1pl12

(2:Rn) — 1 2 Rm+l R") o

Remark 2.4 We can further embedd W/;’Q(RT_“; R™) into WP (£2; R"), where p depends

on B, for open bounded 2 C ]R’frl using Lemma 2.1.

2.2 Compactness of the embedding W;’Z — L%

We will require an analogue of the compact embedding W2 <> L? in order to analyse re-
scaled limits of bounded sequences of Sobolev functions. Away from the boundary, that is, for
2 with 2 C RmH the compactness of the inclusion W!2 < L2 yields the compactness

of the inclusion Wﬂ — leg in view of Lemma 2.1. We have not been able to find a

proof of compactness near 8R’f+l in the literature so present one for completeness. Let
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B(y)={x e R" ! x—y| <rland O, (y) = {x e R" i xj—yi| <ri=1,...,m+1}
and define B, (y) = B,(y) NR} ! and 0 (y) = 0, (») NRYT ™ for y € R
Lemma 2.5 Letr > 0, y € 8Rm+1 and suppose (vj)jeN IS a sequence in W1 2(.Q R™)

which satisfies sup; [lv; < o0 where 2 is either Q;"(y) or Br‘" y). Then there

||W (2;R")
exists a subsequence (v )xen and a v € Wg'z(.Q; R") such that
Lovj, = vin Wy (2; R")
2. vj, > vin L%(.Q; R™)
3. [l IVUPRdx < liminfioo [o x5, Vv, [2dx.
Proof For B = 0, a proof can be found in [39, Section 1.3, Lemma 1]. Otherwise, statement
1 follows from the weak sequential compactness of the unit ball in a Hilbert space and
statement 3 follows from statement 2 and the lower semi-continuity of a Hilbert space norm.
Hence, the main task is to prove statement 2. We may assume r = 1 and y = 0 since
statement 2 is invariant under rescaling and translations with respect to x; fori =1, ..., m.
We further assume that 2 = QT(O) since if 2 = B]"' (0) and the result is true on QT 0)
then we may compose with the bi-Lipschitz, piecewise C! with piecewise C! inverse map
QT(O) — Bl*(O): X > max;|x;||x|~1x and deduce the statement on Bfr(O).

Suppose (v ) jenisasequence withv; € WI’Z(Q+(0); R™) forevery j and which satisfies

Sup ||U ||W] 2(Q+(0) Ry = <M (23)

jeN
for some positive constant M. Relabelling if necessary, suppose (v;) jen is also the subse-
quence which satisfies v; — v forv € W;’Z(QT(O); R™). Then

||v||W;’2(QT(O);R") =< M. (24)

Let Q' = (=1, )™, define Q; = {(x',xmp1) € Q7 (0): (i + 17" < xpug < 1} for
i € Nand let 0; = QF(0\Q; = Q' x [0, + 1)7']. In view of (2.3), we have
SUP jepy ”vf”Wg'z(Q,-;lR") < M for each i € N. Hence, using the compactness of the embed-
ding W/;’z(Ql; R") — L/ZS(Ql; R™"),wefindav e Wé'z(Qu R") and a subsequence, which
we denote (v;);jecq, for an infinite set A; C N, which satisfies v; — v in Wé’z(Qu R™),
v; = Din L%(Qu R") and almost everywhere as j — oo with j € Aj.Notice that (v;)jeq,
converges weakly to v in Wg’z( 01; R") because (v;) jen does and so, by the uniqueness of

weak limits, we deduce v = v in Q. Hence v; — v in L%(Ql; R™) and almost everywhere
as j — oo as well. Repeating this process inductively for every i € N, we obtain sequences
(vj)jea; With Aj11 C A; such that (vj);ea; converges to v in L%(Ql-; R™) and almost
everywhere in Q;. Hence we can choose an increasing sequence of numbers (k;);en With
ki € A; such that

B
f’l xm+ld.xm+] 1

B 2 i
/Q_xm+1|vk—v| dx < > T (2.5)

for k > k;. Then the sequence (vi, );en converges to v almost everywhere in QT(O) and in
L%(Qk; R") for all k € N as i — o0. Observe that

/;Ir(o)xﬁ_,’_llvk[ —vlzdx:/Q b —v|2dx+/Q b —vPdx. 26)
1 i i
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By (2.5) we have fQ[ x£+1|vki —v]2dx < ﬁ — 0 asi — oo so we consider the
remaining term in (2.6). Using Chebychev’s inequality combined with Fubini’s Theorem, we
may choose ¢; € ((i + D, i_l) such that

1 i

1 /L/ X1
<fixfz+1dxm+l) T 0

i+1

/|vki<x/,c,-)—v(x/,c,-)|2dx/s o, — v2dr. (27)
Q/

Now for each i € N, we calculate

/A b o — vfPdx <4/A P — o c,-)lzdx—|—4/A P v — o, e)Pdx
0 0 0

i i i

+ 4fA P (8 e) — v, ) Pdx. 2.8)
i

We apply Holder’s inequality and (2.4) to see that

¢ B B 2
/ sT2520,v(x’, s)ds| dx
X,

m+1

i 1+B
1_/321 /f <) Bsro dx

<

=1z ﬂz
The bound for the integral on the left hand side of (2.9) but with v replaced by vy, is identical.
We apply (2.7) followed by (2.5) to see that

/Q.xiﬂlv(x/,xmﬂ) — (', ¢)Pdx :/Q xl/fl+l

i

(2.9)

1

B o ’ 2 fOi+1 m+1dx7"+1 B 2
X v () — o ep)fdy < e/ 1 /meIvk,- —v|7dx
Qi f dxpyr 7 HT

. m+1

1
< —.
(1 +B)iltr2

Finally we combine (2.5), (2.6), (2.8), (2.9) and (2.10) and let i — o0 to conclude the proof.
O

i

¥

(2.10)

Remark 2.6 The method of proof of Lemma 2.5 is also valid for £2 of the form £2 = O x [0, r]
forr >0and O C 8R'ﬁ+l.

2.3 Energy decay for a linear Neumann-type problem

When examining the limit of re-scaled sequences of Sobolev functions, as in the proof of
Lemma 4.18, we will obtain a weak solution of the Neumann-type problem

div(x?, Vo) = 0in Bf (xo) and x”

1 dme1v = 0in 3B (xo) N ARG (2.11)

for some R > 0 and xg € GRTH . The rate of decay of the re-scaled energy of such solutions

on concentric half-balls centred at xo will play a role in the proof of the aforementioned
lemma and we estimate this decay here.
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Lemma 2.7 Let 8 € (—1,1), xg € BRT'] and suppose v € Wé’z(B;(xo); R") satisfies

[+ P (Yo, Vg dx =0 (2.12)
BR(XO)

foreveryyr € CSO(BR (x0); R™). There existsay = y(m, B) € (0, 1) and a positive constant
C such that

r\l-m-pB
(E) /+ 2 IVuPdx < Cr 2.13)
B%(Xo)

R
Joreveryr < 5.

Proof The even reflection of v in 8R$+1 , which we do not relabel, belongs to Wé’z (Bgr(x0);
R™) and satisfies

| bt ve vinar =0 (2.14)
Bg(x0)

for every ¥ € Cgo(BR (x0); R™). A result of Fabes et al., see [13, Theorem 2.3.12], implies
the local Holder continuity of v in Bg(x¢). In particular, there exists a constant C such that

() — v = Clx —yI” (2.15)

for some y € (0, 1) and every x, y € B§ (x0)-

By approximation, (2.14) holds for every ¥ € Wy (Br(xo): R"). Let n € C{°(B,
(x0); [0, 1]) be a cutoff function with n = 1 in B% (xp) and |Vn| < % for a fixed positive
C > 2. We observe that ¢ = n%(v — 1) is an admissible test function for every A € R".

Testing (2.14) against ¢ and using Young’s inequality, ab < § % + % fora,b > 0andé > 0,
we see that

/ |xm+1|ﬂn2|W|2dx55/ o1 P2V P
B, (x0) By (x0)

C
+ = Ixmt1 121V 20 — A%dx.
8 J B, (x0)

We choose § = % set A = v(xp), recall |Vn| < % and apply (2.15) to see that
/ [tm1Pn? | VoPdx < Crm P12 (2.16)
By (x0)

for another positive C > 0, independent of r < £. Multiplying (2.16) by (2~ 1r)!="~#
concludes the proof. O

2.4 Boundary monotonicity formula for the average energy of solutions to the
degenerate linear equation

In order to utilise a version of the method of harmonic replacement, see Lemma 4.23 in

Sect. 4.12, we need to know how the average energy of solutions to div(|x,4(|#Vv) = 0
behaves on concentric balls. When these balls are centred on BRﬂH, we have the following.
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Lemma 2.8 Let Br(xg) < R™ with xy € BRTH and R < 1. Suppose v €
Wy ?(Br(x0): R") is a weak solution of div(|x,411#Vv) = 0 in Br(xo). If B € (—1,0], or
if B € (0, 1) and v is symmetric with respect to 8Rﬁ+] in Bg(xg), then

s_(1+m+ﬁ)/ X1 1P| VoPdx < r_(l+’”+’3)/ 4117 VoPdx
B, (x0) B (x0)

forevery) <s <r <R.

Remark 2.9 Itappears that Lemma 2.8 is a particular case of Theorem 2.6 of [3]. The function

1 1-B

X
B ) = | TEmt ]
" _#(_-xrrH-l)l B lf-xm+l <0

if X1 >0 _ _
" = (1= B Xt rmsr ] P

fulfils the hypothesis of Lemma 2.8, with the exception that it is not symmetric with respect to
8Rf’ﬁ+l when 8 € (0, 1). Furthermore, s~(+7m+A) fBS(O) [Xme1 |BIVD2dx = C(m, B)s 2P,
It follows that ¥ does not satisfy the conclusion of the lemma (e.g on B{(0)) when 8 € (0, 1).
Hence Lemma 2.8 does not hold in general when 8 € (0, 1). This also potentially affects the
aforementioned theorem.

The remainder of this section is predominantly devoted to a proof of Lemma 2.8. We also
establish a similar monotonicity formula for balls Bg (xg) with (x0);+1 > 6 R for 8 > 2 and
give explicit dependence on 6. Our method is essentially that used to show the well known
monotonicity results for the average energy of sub-harmonic functions, which is based on
the observation A|Vv|? > 0 if Av = 0. When 8 = 0 our result reduces to the usual growth
formula for the average energy of sub-harmonic functions.

Define v* := |xj+1 | Om+1v. This function will be integral to our proof of Lemma 2.8
because, as we will see in more detail later, it satisfies div(|xp,41|"#Vv*) = 0 when
div(|xm+1/# Vo) = 0. The fact that if div(x? ,, Vo) = 0 in R?*! then div(x,”, Vo*) = 0
was first observed by Caffarelli and Silvestre [2].

First, we consider the regularity of solutions of div(lxm+1|’3 Vv) = 0; the following
regularity results are known and have essentially been obtained in, for example [4]. We give
a proof regardless, as an illustration that the method of difference quotients works essentially
unchanged in the directions x1, ..., x;;, which we will take advantage of when considering
the regularity of manifold valued minimisers of Ef.

Leti = 1,...,m, 2 Cc R*"™ ! and let h € R\{0}. Define the difference quotient of
v: 2 - R" by Af’v(x) = h~Y(v(x + he;) — v(x)) where ¢; denotes the ith basis vector in
R™+1 and dist(x, 382) < |A|.

Lemma 2.10 Let 2 C R™t! pe open and v € Wé’2(9; R™). Then foranyi = 1,...,m

we have Al}.’v € L%(K; R™) for any compact K C $2, provided |h| < dist(K, 382). In
particular,

/|xm+1|ﬁ|A?v|2dx§f |Xma11? 18;v]? dx.
K 2

Proof This proof follows the proof of Lemma 7.23 in [15]. We assume that 7 > 0, the
argument for negative / is analogous. Let v € C1(£2; R")N Wé’z (£2; R™). Using the notation

K, = {x € R"*tl.dist(x, K) < h} and noting K, C £2, by Fubini’s Theorem and the
compactness of K, for 4 with |h| < dist(K, 0§2) andany i = 1, ..., m, we calculate

1 h
[ bonalPatorar < [ty [ it e aras
K K h Jo
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1 h
sf/ / o117 13;0[2 dxds
h 0 Ky

< / o112 13;0[2 dx.
2

We deduce the result for v € Wé’z(.Q; R"™) by approximation. O

Next we prove a criterion for the existence of weak derivatives in the directions x; for
i=1,...,m.
Lemma 2.11 Suppose 2 C R™*! is open and bounded and let v € L% (£2; R™). For any

i =1,...,m, suppose there exist constants M > 0 and h > 0 such that
f ma1 [Pl AT v Pdx < M
K

for every h # 0 with |h| < h and compact K C 2 with dist(K, 082) > |h|. Then the weak
derivative 0;v exists in §2 and satisfies

/ ltm11? ;0% dx < M.
2

Proof First choose a sequence (hy)ren With hy — 0. We discard kg with |hg| > f and re-
index to k € N. Define v/ (x) = A™v(x) when x € 2 and dist(x, 382) > 2|h|and v}* = 0
otherwise. It follows that {vf ¥lren is a bounded sequence in leg (£2; R™). Hence there is a

subsequence, which we index again by k € N, such that iy — 0 and vf”‘ — v; weakly in
L,zS (£2; R™). Furthermore, this convergence, together with the weak lower semi-continuity of

a Hilbert space norm, guarantees that | o xrﬁ 4110 |?dx < M. Note that Holder’s inequality
implies L% (£2;R") C LP(£2;R") for some p € (1, 2] depending on S. Thus each linear

functional on L?(£2; R") restricts to a linear functional on L2 (£2; R") and vf”‘ converges
to v; weakly in L?(£2; R™). As in the proof of Lemma 7.24 in [15], it follows that v; is the
weak derivative 0;v. ]

We now establish the regularity properties of solutions of div(|x,+1|# Vv) = 0 needed
for the proof of Lemma 2.8.

Lemma 2.12 Letv € Wé’Z(BR (x0); R™) and suppose v is a weak solution of div(| X +1 |3Vv)
= 0in Br(xg). Foreveryr < Randi = 1,...,m it follows that ;v € Wfljl(Br(xo); R™),

d;v is a weak solution of div(lxm+1|5Vv) = 0 in By(xo) and 0;v is locally Holder con-
tinuous in Bg(xg). In addition, v* € Wlﬂ (Br(x0); R™) and v* is a weak solution of

div(|xm4117PVv*) = 0 in B, (xo) and v* is locally Holder continuous in Bg(xo).

Proof Elliptic regularity theory shows that v is smooth in Bg ()C())\E)JR:”_Jrl [15]. Observe that
v satisfies

/ |Xma1? (Vv, Vo) dx =0 (2.17)
Bg(x0)

forevery ¢ € Wé:S(BR (x0); R™) by approximation. Let » < R and choose n € CSO(BR (x0))
with 77 = 1in B, (x0). n = 0in Br(x0)\B, , x+ (x0). 0 < 11 < 1 and | V| < = Let Aly
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be the difference quotient of v for some i = 1,...,m and suppose |h| < RZ’. Then
¢ = —Ai’h (772Af’v) € W;:g(BR (x0); R™) is an admissible test function for (2.17) and an
application of Young’s inequality, ab < 8% +5! % fora,b > 0 and § > 0, together with
an integration by parts and Lemma 2.10 implies

|l ivatoar == [ 2ninlf (valu - vo, alv)ar
Br(x0) Br(x0)

<

“ R-—r
C
R—r

8 / 1 w1 1PV AT v[2dx
BR(x0)

+

5! / o1 Pl Pdx.
Bg(x0)

RZE’ we deduce that

Since n = 1 in B, (xq), choosing § =

[ et vl < o1 P18 v2dx.
By (x0)

(R —1)? JBg(xo)
The right hand side above is independent of 4 and thus Lemma 2.11 implies the weak deriva-
tive V0, v exists and is in L/z5 (B, (x0); Ry Hence 9;v € Wé’z(B, (x0); R™) for every

r < R.Weintegrate by partsin (2.17) to see that 9; v is a weak solution of div (| x,,+1 BVv) =0
in B, (xo) forevery r < R.Itfollows from [13, Theorem 2.3.12] that each 9; v is locally Holder
continuous in Bg(xo). We inductively deduce that for any multi-index o’ with oz,’n = 0,

D*'v € Wy (B, (x0); R") is a weak solution of div(|x,,411#V D% v) = 01in B, (xo) for every

r < Rand D% v is locally Holder continuous in Bg(xo).
Since J;v € Wg’Z(B,(xO); R") foreveryr < Randi =1, ..., m, we have

[ P Par= [ alfaenie <. @1s)
By (x0) By (x0)
We also have A'v € W;’Z(Br (x0); R™), where A’ is the Laplace operator with respect

to the variables xi, ..., x,,. Furthermore, as v solves div(|xm+1|ﬁ Vv) = 0 classically in
Br(xo)\OR!, we have [x,11| P 810" = —A'v € Wé’2(Br(xo); R™) for every r < R.
Hence

/ o1 | 010" 2 = f st P14 Pdx <00, (2.19)
B (x0) By (x0)

Together, (2.18) and (2.19) imply [ .\ [Xm+1]7F|Vv*|*dx < oo for every r < R. More-
over, we have

/ X1 | P 0¥ 2dx = / X118 19mp1v])2dx < oo, (2.20)
By (x0) By (x0)

since v € Wy (Br(xo); R"). We can directly verify that d;v*, i = 1,....m, are the
weak derivatives of v* and omit the details. Now consider 9,,+jv*. Let V' denote the
gradient operator with respect to the variables xi, ..., x,, and let ¥ € C§°(Br(xo); R").

Since |xm+1|_ﬂ8m+1v* = —Av € Wé’z(Br(xO);R”) and v is a weak solution of
div(|xu411#Vv) = 0, we see that

/ (Omg1v*, ) dx = — / w11 (A", ) dx
Bg(x0) Bp(xo)
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= / IXmt11? (V'v, V'yr) dx
Br(x0)

= _/ (v*, Omy1)dx.
B (x0)

It follows that v* € Wl’;(Br (x0); R") for every r < R. In a similar manner we calculate

f 1|7 (Vo*, Vi) dx =/ P17 (B 0%, dg1 ) dx
Bg(x0) Bgr(xo0)
[ Y
Bg(x0)
= _/ (A’v,3m+1w)dx+/ (A, dpr1v)dx
Bg(x0) Bg(xo0)

=0.

Hence v* is a weak solution of div(|x,,41|/#Vv*) = 0 in B, (xo) for every r < R. It follows
from [13, Theorem 2.3.12] that v* is locally Holder continuous in Bg (xo). ]

Corollary 2.13 Suppose v € W/;’Z(BR(xo);R") and assume v weakly satisfies

div(|xXm+1 |ﬁVv) = 0 in Br(xq). Then the derivatives D“/v, where o' is a multi-index with
(@)m+1 = 0, are elements of Wﬁl’z(Br (x0); R™) and weak solutions of div(|x,41 1BVv) =0
in B, (xg) for every r < R and are locally Héolder continuous in Br(xo). Furthermore, the
functions (D”‘/v)* = X1 |’33m+1 DY v are elements of Wl’ﬂZ(B, (x0); R") and weak solu-

tions of div(|x,;+1 |’ﬂV(Dalv)*) = 0in B,(xq) for every r < R and are locally Holder
continuous in Bg(xp).

Proof This follows from a direct application of Lemma 2.12. O

Next we record a condition on the integral of the normal derivative of Sobolev functions
which implies the type of monotonicity we want to establish in Lemma 2.8.

Lemma 2.14 Suppose that v € Wé’z(BR (x0)), where xo € BRTH, and that
[ v b Vaasw = 0
9B, (x0)
for almost every p € (0, R), where v is the outward pointing unit normal on d B, (xo), then
s—<1+m+ﬁ>/ [Xmp1 [Podx < r—<1+m+ﬂ>/ X1 |Podx (2.21)
By (x0) By (x0)

forevery) <s <r <R.

Proof This proof follows the proof of Theorem 2.1 in Section 2 of [15] and the proof of
Proposition 2.2 in Section III of [14]. For almost every 0 < s < r < R, using Fubini’s
Theorem, we see that

= (m+B) / |Xps1PodS(x) — s~ +P) / 1P odS (x)
9B, (x0) 9B (x0)

p
d

:/ |wm+1|ﬁ/ —v(tw + xp)drdw
3B1(0) s 0t
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,
:/ z—<m+ﬁ>/ [Xma11Pv - VodS(x)ds
s 3B (x0)
0.

v

(2.22)

Define the absolutely continuous function f(r) = f B, (x0) [Xm+1 |Bvdx for0 < r < R. Using
(2.22) we calculate

fr) 2/0 f/(p)dpzfo P =B £ (p)dp

< " m+6 . —m+6) £/0q 0 — r ’
_/Op PO 0 = e )

for 0 < r < R. It follows that (r—0+"+A) £(r)) > 0 and integrating between s < r < R
completes the proof. O

Proof of Lemma 2.8 Note that v is smooth in Bg (x0)\0R” ™. Hence div(|x+1/# Vd;v) = 0
and div(|x,,4 1| 7P Vv*) = 0 classically in this set. Furthermore, we have

0 = 4 1div(xmr1 1P V) = div(xmr1 1P VOui1v) + sgn(xms1) | |div(|xm+1|ﬂw>

Xm+1
= Blxm+1 |ﬂ723m+lv

= div(| X411 Vi10) — Blxm1 1P 2 dm1v,

50 that div(|x411#Vdu410) = Blxms11P 28,410 in Br(x)\ORT ™. Hence on Bg(xo)\
8]1%1“ we have

div (|6 +117V18;01%) = 206411V 0]* + 2030, div(|xm411° VI0)) = 0,
div (|xms1 1P VU* ) = 201 1P VU2 + 200%, div (g1 TP VV5) > 0,
and, when 8 € (0, 1),
div (1Xms1 1P V10m101%) = 20011 1P V101 + 28111 1P 2 0mg10]* = 0,

classically where i = 1, ..., m.
Fix R > r > ¢ > 0and let B (x9) = Br(xp) N {x € R™* 1 |x,41] > &}. Using the
divergence theorem, we calculate

0= [ tggplonlfy- ViaPdsw
9By (x0)

- / epir - (VI (', &) = VIgv (v, —e)) dx, (223)
B

:}ﬂj(xo)
0= [ bl - it Pdseo)
3B (x0) "

—/ e Pemyr - (VU P &) — VoA (x/, —e)) d’ (2.24)
Bf/rzj(xo)
and, when 8 € (0, 1),

0= [ Lt Vo vPdsco
9By (x0)
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-/ Pensr - (VIma1v (&) = Vidns 2, —e) &' (225)
B i)

where ]lm is the indicator function of Bf (x¢), v is the outward unit normal on 9 B, (xo),

dS is the Lebesgue measure on 9 B, (xg) and B}" (xo) = {x € R™:|x — xo| < s}.
We consider the terms on the right hand side of (2.23)—(2.25) separately with a view
to taking the limit as ¢ — 0T. Lemma 2.12 and Corollary 2.13 imply that d;v, 9;0;v €

Wy'? (B, (x0): R") and are locally Holder continuous in Bg (xo) for i, j = 1,...,m. The
lemma and corollary further imply that v*, (3;v)* € Wl’ﬂz(Br (x0); R"), wherei =1,...,m,

are locally Holder continuous in Bg(xp) and hence uniformly continuous in B (xg). We can
therefore check that |9;v|? € Wﬁ}’z(Br (x0)), integrating over B (xo) and letting & — 0T for
the m + 1th derivative. It follows that

m
Bemr1lPv - V10,017] < 2 (v @i0)*, 30)] 42 Y |Pemral? (vj0, 0,0, div)|
j=1

< CU + |xmi11P), (2.26)

where C is a positive constant that may depend on r but is independent of ¢. Furthermore,
since d;v and (9;v)* are uniformly continuous in B, (xp), we see that

]lsz/H(xO)emHaﬁ -(V|oiv]>(x', &) — V|9;v]*(x’, —&)) — O uniformly as ¢ — 07
2.27)
for (x/,0) € B, (xp).

Since each 9;d;v € Wﬁl’z(Br(xo);]R”) is locally Holder continuous in Bg(xg) for
i,j = 1,...,m and diV(lmeVSVU) = 0 classically in BR(xo)\aR'ﬂH, we have
[Xmit | POppiv* = —Av e W/_QI,’Z(BF (x0); R™) is uniformly continuous in B, (xo) for every
r < R. We can hence check |v*|2 € Wi’ﬂz(Br(xo)). We also have

m
mt ™20 V0] < 2|t | 7P (Vm 101 0™, 0%) 2D [l |77 (i, %)
i=1

< C+ [xnp11 ) (2.28)
and
— 2 2 .
Lgn(o)em+18 B (VIv' P, &) = VIv*|*(x’, —&)) — O uniformly as & — 0"
(2.29)

for (x’, 0) € B, (xp).

In order to derive similar conclusions to (2.26) and (2.27) for the constituent integrands
of (2.25), we assume that 8 € (0, 1) and that v is symmetric with respect to 8R'J'r’+1, namely
v(x, xma1) = v(x', —xpy1) for every (X', x,41) € Br(xg). The symmetry of v implies
v* must be odd with respect to 8R’1+1, that is v*(x/, xjp41) = —v*(x/, —x;41) for every
(x’, xm+1) € Br(xp) and hence, as it is also continuous in Bg (xo) we have v*(x’, 0) = 0 for
every (x’, 0) € Bg(xq).

Fix (x’,0) € Bgr(xo) and note that (x’, 0) € B, (xp) for some r < R and choose i with
|h| sufficiently small as to ensure (x’, h) € B, (xg). We see that

Ao, h) — v(x', 0)] = 8410 (X, Xpg1)]

@ Springer



A regularity theory for intrinsic minimising fractional... Page 19 of 68 109

= [t | P * (&, Xg1) = O

= Pnt | P10 v 0 ) x|
< Xt NP v (', 6))
<Clh| - Oash — 0,

where x,,, 41 with |x,,+1] € (0, |#]) and & with |€] € (O, |x,,+1]) are chosen such that the Mean
Value Theorem holds. Thus we see that 8,,11v(x’, 0) = 0 classically for (x’, 0) € Bg(xp).
Analogous calculations to those on the right hand side above show that d,,1 v is continuous
at (x/, 0) and hence continuous in Bg(xg). We also have

41170410 = Oprv* — B 0*
for (x', xpy1) € B,()C())\B]RTrl and hence

Xm11P82 L 0O Xt DI < 181 v*] + Blx,, 0¥
< C+ Blomr1v* (', )|
<C,

in B, (xo)\aRfﬁH, where & is chosen with |£| € (0, |x,;,+1|) such that the Mean Value
Theorem holds. It follows that |x,,+1 |’38r%l £V is essentially bounded in B, (xg) and 9 B, (x).

The preceding discussion implies |8m+1v|2 S WE’Z(B, (x0)) and
[l 117V - Vgm0 < € (2.30)
on B, (xo)\aRT'l. Furthermore, using the symmetry of v, we see that
]anlrz_gz(XO)e"1+l€ﬂ (V)1 0> (X', &) = V|dmi1v)>(x, —€)) — O uniformly as & — 0%
(2.31)

for (x’, 0) € B, (x0).
Using Lebesgue’s Dominated Convergence Theorem, we combine (2.23) with (2.26) and
(2.27), (2.24) with (2.28) and (2.29) and (2.25) with (2.30) and (2.31) to see that

05/ It Py V[v2dS(x), 0< / 1] v - VIv*PdS(x)
d B, (x0) 9B, (x0)

and, when 8 € (0, 1) and v is symmetric with respect to B]R’_’frl,
0< / 1170 V810248 (0)
9By (x0)

respectively. Noting that [x,, 41| 7?|v*|? = [Xmi11#18m11v]%, we apply Lemma 2.14, to see
that

IA

s [ P uPax G [ e, @)
B (x0) By (xo)

IA

g (Hm=p) / et 1Pl 10 < pm(Hm=p) / o1 Pl 10Pdx (2.33)
Bs (x0) B, (x0)

and, when 8 € (0, 1) and v is symmetric with respect to SRT’],

s f 1P 13y 101 < = H7ED) / 1P|y v1%dx (2.34)
By (x0) B

1 (x0)
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for every 0 < s < r < R. We apply Lebesgue’s Dominated Convergence Theorem,
sending ¥ — R~ and combine (2.32), (2.33) and (2.34) to see the Lemma holds for
0<s<r<R. O

Remark 2.15 We observe from (2.33) and (2.34) that without the symmetry condition on v,
the monotonicity of the average energy of |d,,+1v|? is better than required if 8 € (—1, 0] and
may be worse than required if 8 € (0, 1); the symmetry of v resolves this issue by implying
continuity of d,41v on BR'_’;H which, as the function given in Remark 2.9 illustrates, cannot
be expected in general.

2.5 Interior monotonicity formula

We need a counterpart to Lemma 2.8 for balls in the interior of RT’I . Since the weight xfl RRE
not scale invariant on a (Euclidean) ball B, (y) with y,, 11 > 2p, we only expect monotonicity

of the average energy (with respect to the Lebesgue measure) of solutions to div(xfl Vo) =
0 up to a correcting factor. As the radius tends to zero, the coefficients of uniform ellipticity
for the preceding equation tend to constants. Accordingly, the correcting factor becomes
smaller with the radius. General monotonicity-type formulas for linear uniformly elliptic
equations are available in [14] for example. We perform the following calculations in order
to determine how the correcting factor behaves explicitly as the radius decays geometrically.

We first establish monotonicity on the boundary of concentric balls.

Lemma 2.16 Let 8 € (—1,1), Br(y) C RT,H with Br(y) C R'frl and suppose v €

C%(Bg (y); R™) satisfies div(xZHVIvlz) > 0 classically in BRr(y). Then, letting dS denote

Lebesgue surface measure and sgn denote the sign function, for 0 < s <r < R we have

- 1
5 /BB ( )xn€+1|v|2d3(x)
s (Y

(Vm+1 — sgn(B)s)P

1

< pm ) 2dS |
<r Ym+1 — Sgn(IB)r)ﬂ /aBr(y) Xm+1|v| (x)

Proof Let p < R. We calculate 0 < faB,, o) x,fiH v-V|v[2dS(x), where v is the unit outward

normal on 9B, (y). Now using variables p = |[x — y| and o = % we have

9
0< p’”/S (pwm+1 +ym+1)ﬁ%(|v(pw+y)|2)dw
— i B ) d
=" o ((p@m+1 + ymsDP V(oo + y)°) do

_ /§ Bom1 (pomst + Y1)~ o(ow + y)[Pde

9 [ _ B p-1
= Pm% (,0 m/; ( )xﬁ+1|v|2dS(x)> —/8 ( );x5+1(‘xm+l — YD) v2dS(x).
IBy(y By(y

We define f(p) = p " faBp(y) fo_] |v|2dS(x) and divide by p™ to see that

0= r'(m-Lrip+ y’”,jjlﬂ B vPdS ()
P p 0(¥)
/ . E Ym+1B
ST =IOt G — s B P
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o 18]
R (ym+1 — Sgn(ﬂ)p> 7o)

Hence 0 < ((ymﬂ — sgn(ﬂ)p)’ﬁ f(p))/ and integrating between s < r concludes the proof.
O

With this lemma in hand we can establish the following counterpart to Lemma 2.8.

Lemma 2.17 Let Br(y) C R withy,,1 = ORfor® > 2. Supposev € C2(Br(y); R")N
W;’Z(BR (y); R™) satisfies div(xfl_,’_IVv) = 0 in Bg(y). Then there exists C = C(m) such

that
R —(m+1) C B
(5> / b IVuPde < (1 + ﬁ> R <'"+1>/ b IVuPdr.
Bg(y) Br(y)

Proof Letg(r) := f B.(y) xZ alf |>dx where f satisfies the assumptions of Lemma 2.16 and
r € (0, R). Then we have

)
g(r) = f / 8 1fPdS@)dp
0 6B,,(y)

= /0 mr1 — sgn(B)p)’ p™ (ymy1 — sen(B)p) P p™" / xh RS (dp

9B, (y)

< /0 mt1 — sgn(B)p)f p"dp(ymi1 — sgn(Byr) Pr—" / xh RS ()

9B, (y)

<y st = sen () / B PAS o). 235)
— m+lm+1 aB,(y) m—+1

Hence

0<g'()—gryt 20— - L it — sen(Byr)”

B
(1 — sgn(pB) )
Ym+1

(1 + B0 — sgn(ﬂ)if—1
m+1

=g - g™ 1
m+ 1

=g/(r) — g(r) - )
m+1

p-1
+ g(r )7|5|( — sgn(p) ) ;
Ym+1 Ym+1

=g -5

where s € (0, r) is such that the Mean Value Theorem holds for the function r — (1 —
sgn(ﬂ)—)ﬂ Now recall that y,,;, 11 > 6R > Or for 6 > 2. We hence find

Ym+1

0<g'() 5" +g( )7|5|7

—(m+1),, BYmD / R
It follows that 0 < (r r =1 g(r))" and consequently, if 3 <r <R,we have

R —(m+1) R \ﬁ\(erl) _
<5> 8 (5) <2 T e

_ (1 n |BI(m + l)g'ﬁlé'ﬁ”*l) o mt1)
60—1

g(r)
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- <1 n wzlﬁmﬂ)) =D o (1) (2.36)

where & € (1,2) is such that the Mean Value theorem holds for the function ¢
1Blm+1) B
t e

-T . Since div(xm+]Vv) = 0, as observed in the proof of Lemma 2.8, we have
divixl , VIgu?) = 0 fori = 1,...,m and div(x,,} VIxE  dus1v®) = 0. We apply
(2.36) with f = d;vfori = 1,...,m, and with f = xZHBmHv and — g in place of 8 and
combine the results, letting » — R~ to conclude the proof. O

2.6 Solutions of the linear degenerate Dirichlet problem

We require further results regarding the following Dirichlet problem: solve
div(|x,411#Vv) = 0 in Bg(xo) and v = ¢ on d Br(xp) (2.37)

for a given ¢, where xo € R™*!, in order to apply a version of the method of harmonic
replacement in the proof of Lemma4.23. A weak solution of (2.37)isav € Wé’z (Br(x); R™)
which weakly satisfies div(|x;;+1 |’3Vv) = 0in Bgr(xg) withv —¢ € Wé:(z)(BR (x0); R™). We
collect the results we require, which can be found in [19], in the form of a lemma.

Lemma 2.18 Suppose ¢ € Wg’z(BR(xo); R™). Then there exists a v € Wé’z(BR(xo); R™)
which is a weak solution of the Dirichlet problem (2.37). Any such solution is unique and
continuous in Bg(xg), if € C(Bgr(x0); R") then v(x) — ¢(z) as x — z for z € dBr(xp)
and the weak maximum principle

max v = max v = max ¢
Br(x0) dBR(x0) dBR(x0)

and weak minimum principle

min v = min v = min
Bg(x0) 9BR(x0) dBR(xo)

both hold, where we take the maximum and minimum component-wise. If w € W;,’z (Bgr(x0);
R") also satisfies w — ¢ € Wé:(z)(BR (x0); R™) then

/ b1 PIV0Pdx < / o1 IV 0[2dx.
Bpr(xp) Bgr(x0)

Proof Since |xm+1|5 is of Muckenhoupt class A» it follows from 1.6 of [19] that |xm+1|ﬂ
is a 2-admissible weight so we may apply the theory of [19]. Aside from the minimising
property of v, the assertions of the lemma are consequences of Theorem 3.70, Corollary
6.32, the strong maximum principle 6.5 and lastly 3.17 in [19]. If v is a weak solution of
(2.37) for a given ¢ and w € Wy (Bg(x): R") with w — ¢ € Wy'((Br(x0): R") then

w—veE Wﬁl:g(B r(x0); R™"). Hence, by approximation, we have

f IXma1]? (Yo, V(w — v))dx = 0,
Bg(x0)

so that
/ Pom1 1P|V Pdx = f xmg1 1P| Vo[ Pdx + / mt1 1PV (w — v)[Pdx
Bp(x0) Bg(x0) B (xo0)
which concludes the proof. O
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The uniqueness of solutions to the Dirichlet problem (2.37) implies that solutions with
boundary data which are symmetric with respect to 8R1+1 are themselves symmetric. More
precisely, we have the following.

Lemma 2.19 Let x¢ € BRTH and suppose v, ¢p € Wé’2(BR(xo); R™) and v is a weak
solution of the Dirichlet problem (2.37) with ¢ as boundary data. Let ¢ € C(Bg(x¢); R") and
suppose ¢ (x', xp11) = ¢ (X', —xpmy1) for every (x', xpm11) € Br(xo). Then v(x', xpy1) =
V(X', —Xm1) for every (X, xm+1) € Br(xo).

Proof The continuity of ¢ in Bg(xp), combined with an application of Lemma 2.18, implies
that v and, consequently, U(x’, x;,+1) := v(x’, —x;,+1) are continuous in Bg (xo). We observe
thatv € Wé’z(BR(xo); R"™) weakly satisfies div(|x,,;+1 |#V5) = 0in Bg(xp) and V|3Br(xe) =

®laBr(xp) SOthat v —¢ € Wé:é (Br(x0); R™). Hence v and v solve the same Dirichlet problem;
solutions to this problem are unique by Lemma 2.18 and thus v = v. O

3 Intrinsic fractional harmonic maps

We assume, translating N if necessary, that 0 € N. For reasons discussed in the introduction
we always assume m > 2; when m > 3 we let B € (—1,1) and when m = 2 we let

B € (=371, 1). This allows us to apply Lemma 2.3 and we can define
Wﬁ}’z(R'j’_“; N) = {v € Wé'z(RTFI;R”): v(x) € N for almost every x € RT’I } .

Henceforth, in this section and Sect. 4, we fix an open O C BRT’I such that a continu-
ous linear trace operator with respect to O exists; we do not assume O is necessarily the
whole of 8Rrﬁ+l. We can, for example, obtain such a trace operator 7': W;’Z(Rfﬁﬂ; R") —
LP(O; R"), where p = p(B) € (1, 2], by combining Lemmata 2.1 and 2.3 with [12, Section
4.3, Theorem 1] whenever O is contained in the boundary of a Lipschitz £2 C RT’I . Define

18(u) = inf [Eﬂ(v): ve Wi2@®ITN), To = u]

forueT (Wé’2 (Rﬁ+1 : N)). Recall from the introduction that /# serves as an intrinsic energy

for u; it does not depend on the choice of embedding of N into Euclidean space. Moreover, 17
coincides with the square of the fractional Sobolev norm ||u|| . 1-p when N = R”
H

7 ORGP RY
and O = 9R7 .

For every u € T(Wg’z(]RﬁH; N)), an application of the direct method of the calculus of
variations shows that there exists v € W;’Z(RTFI; N) with Tv = u, where T is the trace

operator with respect to O, such that 7% (u) = EP(v). For a given u, such a v is referred to
henceforth as a minimal harmonic map. Any minimal harmonic map v is weakly harmonic

in R'ﬁ“ with respect to the metric represented in Euclidean coordinates by x| ;8;;, where
B = w; the Dirichlet energy on Rﬁ“ for this metric is precisely E#. Such a v therefore

satisfies

/ﬂw‘ B (W AW (Yo, Vo)) — (Yo, V) dx = 0 3.1)

+
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for every ¢ € C(° (RTFI; R™), where A is the second fundamental form of N and

m+1 m+1
(Vo, Vi) = > (v, i) and A() (Vv, Vo) = > A() B0, 9v).

i=1 i=1

Formally, if v is sufficiently regular in ]Rﬂ“ U O, we calculate

/R X (W AWV, Vo)) — (V0, V) dx = /O ((hs10m10) . 00, p @) dx',
T

for every ¢ € Cg°(O; R") and any ¢ € D+(R’_,’f+l; R™) with ¥ (x’, 0) = ¢(x’), where dx’

is the Lebsegue measure on R”. In general, the integral in (3.1) defines a distribution on O

given by

ob , v(@) == /RW xb o (W, AQ) (Yo, Vo)) — (Vo, Vi) dx
+

for ¢ € C3°(O; R"). This observation allows us, analogously to [30, Proposition 1.1], to
identify a superdifferential for 7. Recall that since N is compact, Theorem 1 in Section
2.12.3 of [39] gives a tubular neighbourhood of N, which has the form Us(N) = {x €
R":dist(x, N) < 8} forad = §(N) > 0, and a smooth map 7y : Us(N) — N such that
[Tty (y) — y| = dist(y, N) for every y € Us(N). Using the same method of proof as [30,
Proposition 1.1] we deduce the following.

Lemma 3.1 Letu € T(W};’Z(RTFI; N))andv € W,;’Q(RTFI; N) be a minimal harmonic
map with Tv = u. Then for ¢ € C3°(O; R"),

1Py (u + 1)) < 17 () — 18}y v(g) + (1)) (32)
ast — 0.
9

at |z=0
v(¢) where v is any minimal harmonic map with 7v = u; this indicates a candidate

It follows from this proposition that if I8 (tn (u + 1)) exists then it is equal to

_aP
m-+1

for the first variation of 1.

Definition 3.2 Let 8 € (—1, 1) and D be the collection of all u € T(W;’Z(R’ﬁ“; N))

such that there exists a distribution Ag € (Cgo (O; R”))* with Ag = —8,’2 4V for every

minimal harmonic map v € Wé’z(RﬂH; N) with Tv = u. Then we may define a map

Ap:Dg — (CE(O; R tu > Ag = Agu.

In [30, Theorem 1.1] Moser showed that Ay is the first variation of 1°. The method of proof
of Moser’s theorem, applied with the Lebesgue measure dx on R”*! replaced by xr’z 41dx,
yields the following.

Lemma 3.3 Ifu € Dg, then

a
= 1PN +19)) = Agu(d)

3 |—o
forall ¢ € Cg°(O; R"). Ifu ¢ Dpg, then there exists ¢ € C3°(O; R") such that the function
t = 1B (N (u + 1)) is not differentiable at 0.
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Consequently, we may define intrinsic fractional harmonic maps as follows.

Definition 3.4 Let 8 € (—1,1)andu € T(Wé’z(RT_H; N)). If Agu = 0 then we say that

u is an intrinsic 1;’5 -harmonic map.

As discussed in the introduction, intrinsic lzﬁ -harmonic maps are the boundary values of

free boundary harmonic maps from R'frl to N. Such maps may have singularities in O and
we may not expect regularity in general. We consider a smaller class of fractional harmonic
maps which locally minimise /7 in order to obtain partial regularity in O.

Definition 3.5 We say thatu € T(Wé’z(R’ﬁH; N)) is an intrinsic locally minimising 1;’3 -

harmonic map, or a local minimiser of / B, if for every compact K C O and every ii €
T(Wy* @R} N)) with uloyk = iiloykx we have 18 (u) < 17 ().

This definition allows us to consider interior regularity for a class of critical points of
I# without explicitly specifying boundary conditions. For example, minimisers of I# with
respect to Dirichlet or free boundary conditions satisfy the definition. In order to deduce
regularity results for u, we analyse their minimal harmonic extensions in more detail. To this
end, we make the following definition.

Definition 3.6 Letv € W;’Z(RTA; N). We say that v is E# minimising, or energy minimis-
ing, in R” ™! relative to © ¢ aR" !, if for every compact K  R"*! with K NoR7 ™ c O
and for every w € Wé’Z(RfH; N) with le’f"\K = w|R¢+1\K we have Ef (v) < EF (w).

Local minimisers of 7# and minimisers of E? relative to O are connected as follows.

Lemma 3.7 Suppose u € T(Wé’z(RT'l; N)) locally minimises IP in the sense of Defini-
tion 4.11 and fix a minimal harmonic map v € Wé’Q(RﬂH; N) with Tv = u. Then v is a

minimiser of EP relative to O.

Proof Let K C R”*+! be compact such that the compact set K, := K N 9R”™ < O and
suppose that w € Wg’z(RTFI; N) satisfies Uerererl\K = wIRTl\K. Define u = Tw and
let v be a minimal harmonic map with 70 = #. Since O is open in BR'_ﬁH and K,, C O
is compact we have dist” (K,,; 00) > 0, where dist™ is the distance in 8Ri+l. We can
therefore choose an open set OcOwithK, cOcC 5 C O. Since K,, is closed and O
is open we have dist” (K,,; 90) > 0 as well. It follows that dist(O\g; K) :=«k > 0, where
dist is the Euclidean distance in Rﬂ“. The continuity of the trace operator yields

— ilPdx = —w)IPdx < —wl|l? N =
/O~|u u|’dx /(9\(5|T(U w)|Pdx < Cllv w||lep((O\o)x(0’K);R”) 0,

\O

since v = w in O\O x (0, k), where p is the number from Lemma 2.1 depending on S.
Since v and v are minimal harmonic maps and u is a minimiser of 7 B we have

EF () =1P(w) < 1P@@) = EP (9) < EF (w)

as required. O
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As a consequence of the preceding lemma, we can consider the regularity of minimisers of E#
relative to O on relatively open balls (in the Euclidean topology) centred on ]R'frl UQO in order
to prove regularity of fractional harmonic maps. Our main results, stated and proved in Sect. 4,
constitute an e-regularity and a corresponding partial regularity theorem for minimisers of
EP# relative to © which translate into the following partial regularity result for fractional
harmonic maps.

Theorem 3.8 Fix O C 8Rm+1 When m > 3 let B € (—1,1) and when m = 2 let B €
(=371, 1). Suppose u € T(W (Rm+l N)) is a local minimiser of 1P. Then there exists a
relatively closed set X C O wzth HMHB=1(X) = 0 such that u € C®(O\X; N).

Proof Fix a minimal harmonic map v € Wé’z(Rfﬁ“; N) with Tv = u. As u is a minimiser
of I, Lemma 3.7 implies v is a minimiser of E” relative to O. An application of Theorem 4.3
implies the result. O

4 Partial regularity of minimisers of E# relative to O

The main result of this section is the following e-regularity theorem for minimisers of E#
relative to O. To state the theorem and subsequent results we will need the following notation.
For a set 2 C RT“l we will sometimes split the boundary 952 into the (possibly empty)
sets T2 =92 N Rﬁ“ and 3°2 = 92N 8R$+l. Let xg € 8]R$+l and recall the notation
B (x0) = {x e R |x —xo| < R}

Theoremd.d If m > 3, let B € (—=1,1) and if m = 2 let B € (=371, 1). Let
v E W;’Z(RTA; N) be a minimiser of E® relative to O, let xy € B]Rﬁ“ and B;g(xo) be a
half-ball with R < 1 and BOB; (x0) C O. There exists ¢ = e(m, N, B) > 0 such that the fol-
lowing holds. If R'~"—P fB+(x0) ,iHIVvIde < ¢ thenthereisa® = 0(m, N, B) € (0, 1)
anday = y(m,N, B) € (0,1) such that v € COV(B r(X0); N). Furthermore, for every
l e N there is a 6 —Q(m N,B,1) € (0,1)anday = y(m,N, B,I) € (0,1) such that
D% v e CY J”(B R (x0); R") for every o € Nm'H with |a| <1 and(me =0.

Remark 4.2 Henceforth, we assume the conditions on m and 8 from Theorem 4.1. We have
restricted to considering o’ with o/, 11 = Oas (partial) regularity of these derivatives up to the
boundary will yield the desired regularity for fractional harmonic maps stated in Theorem 3.8.
The main purpose of the theorem is to provide regularity estimates which are uniform up to
O; such estimates do not follow from known theory.

Theorem 4.1, combined with the partial regularity theory for harmonic maps yields the
following. We use the notation 7’ to denote the 7-dimensional Hausdorff measure, with
respect to the Euclidean metric on R™+1 fort > 0.

Theorem 4.3 Let v € W (]Rm+1 N) be a minimiser of EPB relative to O. There exists
sets Xiy C ]errl and Z’bd,y C O such that the following holds. The set Xy is relatively
closed in RTH and has Hausdorff dimension at most m — 2. The set Xpgyy is relatively
closed in O and H”’*lg’l(Ebd,y) = 0. The set X := Xy U Xpgyy is relatively closed in
Rm'H U O and H™TP~1(X2) = 0. Furthermore, we have v € COO(R’”H\Z‘W, N), v €
Cloc ((Rm+l U O)\X; N) and for every multi-index o' € N1 with a1 = 0 we have
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D¥v e CEL®RTTUONZ; RY) and VD v € L§?

loc

((RY T UONZ: RO, Finally, for
WL (RITIUO)\ 3 RO

. !
everya' € N?H witha,, | =0, wehavex}’zHBmHD“ veC,:

for somey = y(m, N, B,a’) € (0, 1).

Remark 4.4 The existence and properties of X, follows from the theory of Schoen and
Uhlenbeck [37].

4.1 Euler-Lagrange and stationary equations for minimisers

Minimisers of E relative to O are critical points of E# with respect to outer and inner
variations, including those which vary their boundary data in O. As a consequence, they
satisfy two systems of partial differential equations which we describe presently.

Lety € D#Rﬂ“; R"), as defined in Sect. 2.1, with (-, 0) € C5°(O; R"). For suffi-
ciently small ¢ we define an outer variation of v by v, = mx (v 4+ ) € N, where my is the
nearest point projection onto N. Critical points of E# with respect to variations of the form
vy satisfy

Agmﬂ xf;H Vv, Vi) — (¢, A(v) (Vv, Vv)))dx = 0. 4.1)
+

Note that there is a Neumann-type boundary condition implicit in (4.1). In particular, if v is
sufficiently smooth in ]R:'f“ U O we have

X v =0in 0. (4.2)

A (weakly) harmonic map satisfying (4.1) is said to be (weakly) harmonic with respect to
the Neumann type boundary condition (4.2).

Define @;(x) = x + t¢(x) for x € ]RT“I, where ¢ € D+(Rfﬁ+1; R”+1y is such that
¢(-,0) € C5°(0; BRﬁﬂ) and |¢| is small enough to make @; into a diffeomorphism of
R'f“ with @,(0) C O. We say v € W/;’Z(R’}:H; N) is a critical point of the Dirichlet
energy corresponding to inner variations v; := v o &;, or variations of the independent
variable, if v satisfies

m+1m+1
a a ]
/ § 2 xﬂH 2 7”771) —5ik|VU|2 ﬂdx
Rm+1 m 3Xi 8Xk 3x<
+

i=1 k=1 !

_ -1 2
-/ AT 43)

for every ¢ as above. A weakly harmonic map with respect to the Neumann type bound-
ary condition (4.2) which satisfies (4.3) for every ¢ € D+(R$+1; R™ 1) with ¢(-,0) €
C3o(0; 8]1%1"“) is called weakly stationary harmonic, or stationary harmonic, with respect
to the Neumann type boundary condition (4.2).

4.2 Energy monotonicity

Stationary harmonic maps satisfy a monotonicity formula for an appropriately scaled version
of the energy over balls with closure in Rfﬁ“. This property was proved by Schoen and
Uhlenbeck for energy minimisers, see [37, Proposition 2.4], and Price, see the remark after
Theorem 1 in [32], for stationary harmonic maps.
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As a consequence of (4.3), we show that stationary harmonic maps with respect to the
Neumann-type boundary condition (4.2) satisfy a similar monotonicity formula on half-balls

B;r (y) with centre y in O and which satisfy 8OB,}" (y) = B™(y) C O. Moreover, we state a

version of the formula for balls with closure contained in ]R’frl , giving an explicit expression
for the factors that the constants involved depend upon.

Lemma 4.5 Supposev € Wé’Z(R’J‘_H; N) is a weakly stationary harmonic map with respect
to the Neumann-type boundary condition (4.2). Suppose y in O and consider B;’{(y) with
9B} (y) C O. Then

rl_m_ﬁ/+ xﬁ_H |Vv|2dx —sl_m_’g/+ xﬁH |Vv|2dx
B (y) Bs (y)

_2/ NIRCERI RGN
BrONBE () T X =y

whenever 0 < s < r < R and therefore p +— p'="P fB,,*(y) fo_l |Vv|*>dx is a non-
decreasing function of p for 0 < p < R.

Proof The proof is analogous to that of the monotonicity formula for stationary harmonic
maps. We follow [39, Section 2.4] and [29, Lemma 3.3]; we test (4.3) with ¢ (x) = (x —
y)n(x), where n € Cgo(Bp(y)), which yields

(m—-1+ /3)/ » xZH |VU|2 ndx +/ " xZH(x —y)-Vp |Vv|2 dx
R R
_ B
= 2/1‘&“ X1 (& —y) - Vv, Vi - Vo) dx. 4.4)

Let x € C°(R; [0, 1]) with x(s) = L fors > 1 and x(s) = O for s < % The smooth
functions defined by n;(x) = x(j(p — |x — y|)) are admissible choices for 7 in (4.4) and
{n;}jen converges pointwise to the indicator function of B;r (). We substitute nj for nin (4.4)
and take the limit as j — oo, using Lebesgue’s Dominated Convergence and Differentiation
Theorems, to see that

(m—1 +,8)/ xf;HIVvlzdx—p/ b 1voPds(x)
BS () ot By (v)
2

B 2
= —— X [(x —y)-Vu|=dS(x)
o /a+B;(y) i

for almost every p > 0, where dS is the Lebesgue measure on 0B,(y). Multiplying

— . . . d B 2
the above by the factor —p~#+" and bearing in mind that i /, Bt () Xt VU7 dx =

(6
f3+B;r(y) xfl_H |Vv|2 dS(x) for almost all p > 0, we find

d 17m7/3/ B 2 g 1 —y)- Vo
—\|p X [Vo|cdx | =2 X ———dS(x)
dp < By " arBy Tk =yt

14

for almost every p > 0. Integrating between 0 < s < r concludes the proof. O
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Remark 4.6 A consequence of Lemma 4.5 is that we can define the density function
Of(y) = lim pl—m—ﬂ/ P vty
v p—>0F B (y) mtl

for every y € O, analogously to Definition 1 in Section 2.5 of [39]. Using Lemma 4.5 we
deduce @f is upper semi-continuous in O for any map v which is weakly stationary harmonic
with respect to the Neumann-type boundary condition (4.2).

The following version of the energy monotonicity formula is due to Grosse-Brauckm-
ann [16, Theorem 1]. We do not give a proof, but remark that the explicit form of the constant

in the forthcoming formula can be determined using the method of proof of Lemma 4.5.

Lemma 4.7 Suppose v € Wél(R'_ﬁH; N) is a minimiser of EP relative to ©. Fix a ball

B, (y) with By, (y) C ]errl Jfor some pg > 0 and suppose r and s satisfy 0 < s <r < po.
Then

erC|ﬁ\r17m/ xB L IVoldx - e‘vcwmsl—m/ B Vol dx
B, (y) Bs(y)
B xeyicip | =) - VoI

>0 f X (4.5)
BOoNBy x — y|m

and therefore, for 0 < p < po, p > ePC1Blpl—m pr(y) fo_l |Vv|? dx is a non-decreasing
-1

function of p where C = (Y1 — po)~' = (dist(Bp0 ), BR'_ﬁH)) .

4.3 A modified lemma of Morrey

In order to prove Theorem 4.21, in analogy with the regularity theory of harmonic maps,
we will show that the re-scaled, scale-invariant energies in the monotonicity formulas in
Sect. 4.2 decay slightly faster than implied by the Lemmata as the radius decreases. This
will permit the application of a well-known lemma of Morrey, see [29, Lemma 2.1] for
example, which is used to derive Holder continuity from sufficiently fast energy decay. We
will reduce the hypothesis of this lemma to similar hypothesis for the re-scaled energies from
the monotonicity formula. To this end, we introduce a class of ball with closure in RTH

on which the metrics x| §;;, discussed in Sect. 3 and corresponding weights xfl 41 are

uniformly equivalent to the Euclidean metric and 1 respectively. We also introduce classes
of balls and half-balls contained in the interior of a given larger half-ball B; (xp) for R > 0

and xg € 8R$+1.
Define

B={B,0) CRI iy 2 20)  and By = {By() C BRI v = 0]
for & > 2. Then By C B and B, = B. We further define

By (xo, R, 1) = {By(y) C BE(X0): ym+1 = 0p, y € B} (x0)},
omitting the subscript 6 in the case 6 = 2, and let

Bt (xo, R, r) = {B;(y) - B;(xo): Ym+1 =0,|x0 =yl <7, p <r}
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Observe that, on any B, (y) € B, we can choose constants ¢, C, co and Cp independently of
B such that for every x € B,(y) and 8 € (—1, 1) we have

B
SUPg (v X
cy,’flJrl < xr€+1 < Cy,’z+1 and co < ~ B 0) Tmtl < Co. (4.6)

: B
infp,(y) X, 41

Lemmad4.8 Lety > 0, xg € aRT“], a>060>2and0 < % Define 6 = 2%21. Then

there exists a constant Cy = Co(m, v, 01, B) such that if v € Wé’z(B;(xo); R™) with

pom / b1 | Pdx / Vol s [Pdx < ar? @.7)
B B

for every B = B;"(y) € BT (xg, R, 62R) and every B = B,(y) € By, (x0, R, 62 R), then for
almost every x1, x € B;'R (x0),

1 v
[v(x1) —v(x2)| < CoaZ|x; —x2|2.

Proof Let B,(y) C Bagr(xp) with y;,41 > 0,y € Bgr(xo) andr < OR,foray € (0, 1),
an a > 0 and 6 as specified. Such a B, (y) must satisfy either B, (y) € By, (x0, 20 R, OR) or
B, (y) ¢ By, (x0, 20R, 6 R). We consider these cases in turn and we work with the even reflec-
tion of v with respect to B]RT’I, which we do not relabel and which is in Wé’z(B R (x0); R™).

Suppose B, (y) € By, (x0,20R, O R) with r < OR. Then B, (y) € By, (xo, R, 62 R) and an
application of Holder’s inequality and the assumptions of the lemma yields

2 1
r—’"f [Voldx < <r—2m/ |xm+1|_ﬁdx/ |Vv|2|xm+1|ﬂdx> <airk.
Br(y) Br(y) Br(y)

(4.8)

Now suppose B.(y) ¢ B, (x0,20R,0R) and r < OR. In this case, since B,(y) C
Bygr(x0) and y € Byg(xo) by assumption, we must have y,,+; < 6;r. Hence y,,,+1—r < ¢r,
where ¢ > lissuchthatf; = ¢+1,and thus B, (y) C B@¢)r(yo) where yo = y—(0, yiu+1)-
We observe that B(Jgﬂ)r(yo) € BT (xo, R, 62 R). Therefore, defining s = (2 + ¢)r and using
the assumptions of the lemma, the symmetry of v and applying Holder’s inequality, we find

r_m/ |[Vuldx < r_m/ |Vu|dx
B (y) B (y0)

=2r " f |Vu|dx
B (y0)
1

2
<22+ (s—z’" [ [Xmt1] P dx / |Vv|2|xm+1|ﬁdx)
B (yo) Bt (v0)

1

< 2(2+§')m+%a7r%. 4.9)

Since v is even with respect to BRﬁﬂ, we deduce that either (4.8) or (4.9) holds on
any B,(y) C Bagr(xo) with y € Bgg(xp) and r < 6R. Hence we have established that
the hypothesis of the decay lemma of Morrey hold on Bagg(xp), see [29, Lemma 2.1]. An
application of this lemma concludes the proof. O
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4.4 Interior estimates for Holder continuity

Using the regularity theory of Schoen and Uhlenbeck [37] and Schoen [38], we show that
minimisers v € Wé’z(RTr]; N) of EP relative to O essentially satisfy (4.7) in Lemma 4.8,

provided the scale-invariant energy R!="# [ B (x0) xi 1 |Vv|2dx is sufficiently small. To

this end, we show that the preceding scale-invariant energy B;(xg) controls the scale-
invariant Euclidean energy on a class of ball with closure in B;{ (x0). We also recall the
relevant theory from [37,38, Sections 1, 2 and 3], stating the results in our context with
slightly different notation. Our goal is to prove the following.

Lemma 4.9 Suppose v € W;’Z(RTH; N) is a minimiser of EP relative to O. Let B; (x0)

be a half-ball with R < 1 and BOBI}L(xo) C O. There exists an g9 = go(m, N) > 0, a
0 =0(m, N) > 2 and a positive C = C(m, N) such that if

Rl—m—ﬁ/ +1 Vo2 dx < &,
B;(xo)

then

Y
pl"”/ VoPdr < (2) rl—m/ IVu[2dx 4.10)
B, (y) r B (y)

on every B, (y) € Bg(xp, R, g)forO <p<randay =y(m,N) e (0,1).

To establish the preceding lemma, we observe the following relationship between the
scale-invariant energy on B;{(xo) and the scale-invariant Euclidean energy on a class of ball
with closure in B,Jg (x0).

Lemma 4.10 Suppose v € Wé’z(Rﬂﬂ; N) is a minimiser of EP relative to O. Let B; (x0)

be a half-ball with BOB,‘g(xo) C O and suppose B,(y) € B(xo, R, @). Then there is a
constant C = C(m) such that

pl_mf |Voldx < CRl—’"—f’/ b IVuPdr. A.11)

By(y) B (x0)

Proof Notice that any ball B,(y) € B satisfies B,(y) C Byuy1 (y) so we can choose the
2

218lp 2081p
scaling factor e¢”»+1 in Lemma 4.7. Furthermore, e’n+1 < e since y,+1 > 2p and B €

(—1, 1). Hence, using (4.6) and applying Lemma 4.7, we find

1—m 2 5 P, B 2
P [Vu[7dx < Cy, . et p X V|7 dx
Bp(y) Bp(y)
1-m—pB
=c () / <P Vv dx. (4.12)
2 l+
Bypi1 (v)
2
Lety = (31, ..., Ym+1) and y* = (31, ..., ym, 0). Note that Bys () C B3‘n+1 (y*) and,

since B,(y) € B(xo, R, §), we have y € B+(x0) and B;‘erl (y*) C B+(y+) C B (x0).

Using these facts we apply Lemma 4.5 to see that

—m— l-m—p
ym+1)1 m ﬂ/ 3Ym+1
|Vv| dx<C|——— |Vv| dx
( 2 Byis ) m+1 2 Bt o) m+l

2mrl Sy Y
2 -7

@ Springer



109 Page 32 of 68 J. Roberts

R 1-m—p
<C (—) / xfl“ |Vv|2dx
2 B (")
2

< c1e1*”'*13/+ b IV dx (4.13)
B (x0)

where C = C(m). The combination of (4.12) and (4.13) yields (4.11). m]

The maps considered in [37,38] belong to
wl2(2;N) = {v € W'2(2; R"): v(x) € N for almost every x € Br(y)},

for open 2 C ]R'fH. Consider the compact Riemannian manifold B;(0) with metric g.

Recall from the introduction that the Dirichlet energy functional on B1(0) is given by
E;(v) = /B o |Vol% V/det(g)dx.
1

A minimiser of E; with fixed boundary data is defined in Section 1 of [37] as follows.

Definition 4.11 Any v € WL2(B1(0); N) is an Eg minimising map if it satisfies Eg(v) <
Ez(w) for any w € W'2(B(0); N) with v — w € W, *(B; (0); R").

The metric g is assumed to be of class C 2 on B1(0). For A > 0 denote by &4 the class of
functionals Ez on By (0) with metric g such that g;;(0) = §;; and

Z |0kgij| < A.

i,j.k

If v is Ez-minimising with E; € &4 then we say v € J7,.

Schoen and Uhlenbeck [37] proved their e-regularity theorem for minimisers of function-
als of the form E ¢ + F, where F gives rise to terms in the Euler-Lagrange equations which
are lower order than those coming from the energy. We state the result of their theorem with
F = 0. The following Lemma is Theorem 3.1 in [37].

Lemma 4.12 There exists ¢ = e(m,N) > 0 such that if v € ), A < & and
fBl(O) IVUI2 dx < g, then v is Holder continuous in B% (0) and

[v(x1) —v(x2)| < Clx; — x2]”

for constants C = C(m, N) and y = y(m, N) € (0, 1) and every x1, x2 € B% 0).

It is well known that continuous weakly harmonic maps are smooth, see [22] for example.
Itis more readily shown that Holder continuous harmonic maps are smooth; this is the content
of the following lemma, which is Lemma 3.1 of [38].

Lemma 4.13 Consider a ball B,(y) C R’f‘l and suppose v € WH2(B,(y); N) is a weakly
harmonic map which is Holder continuous on B, (y). Then v is smooth on B,(y).

The final lemma we will need is Theorem 2.2 from [38].

Lemma 4.14 Let v € C2(B,.(0); N) and § be a Riemannian metric on B,(0). Suppose v is
harmonic with respect to g in B, (0) and g satisfies \akgw,-,-\ <Ar-Yori, jk=1,...,m+1
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and A’I(S,-j) < (8ij) < A(8;j) inthe sense of tensors, where 8;; = 1 wheni = jandé;j =0
otherwise. Then there exists an ¢ = ¢(A, m, N) > 0 such that if

rlfm/ Vol (der(§)? dx < ¢
B, (0)
then

1
sup |Vo|? < Cr*“*'")f Vo] (det(2))? dx (4.14)
By (0) B, (0)

for a constant C = C(A, m, N).

Proof of Lemma 4.9 Suppose R!="—F fB;(xo) xnﬁl_H |[Vv|2dx < g for an g9 > 0 to be cho-
sen small and let € be the number from Lemma 4.12.

Recall the metric g given in Euclidean coordinates by g := x,; | 8;; and define gon B1(0)
by

o
80 =8 (14 rp b ) = vy + ). *.15)
The energy corresponding to g is

2d)c

R 1 _ B,
E;(d) = 5/ (1 + rymilxmﬂ) Vi
B1(0)
for maps 0 € W1'2(Bl(0); R"™). Since B,(y) € By(xo, R, %) for a & > 2 to be chosen,
we have B,(y) € B. Hence, using (4.6) and noting that 8 = « (’”T_l) € (—1,1), we find
constants ¢, C depending only on m such that

B
c < (1 +ry,;_1‘_1xm+1) <C and c<gjx) <C. (4.16)

We note that 9yg = 0 for k # m + 1 and, again using (4.6), we calculate

1 a—1 1
(1 + rym+1xm+1) =Cry,

~1 ¢ —1
Om+1 (1 + rym+1xm+1> ’ =TVt 47

where C is chosen independently of . Hence, if we setf = 6(m, N) > max {2, (m + I)Ces_1 }
then we conclude that

m+1
D 0| =Y lomn&il <e. (4.17)
i,j.k i=1

We assume the preceding choice of 6 henceforth so that (4.17) holds on any B,(y) €
By (xo, R, ).

Define v,y (x) = v(rx+y)forx € B;(0). Lemmata2.1and 2.3 imply Wé’z(RTH; N) —
WL2(B,(y); N) for every B, (y) with B,(y) C R, regardless of 8 € (—1, 1). A change
of variables then yields v, € WL2(B,(0); N). Furthermore, since v is a minimiser of Ef
relative to O we readily calculate that v, y is a minimiser of £ in the sense of Definition 4.11
on Bi(0), that is, v,y minimises £; among all maps in W12(B1(0); N) with the same
boundary values as v, y.

@ Springer



109 Page 34 of 68 J. Roberts

Our considerations so far imply that if B.(y) € Bg(xo, R, g), for our preceding choice
of 6, then v, € J7. Let C be the constant from Lemma 4.10 and suppose that gy < C —lg,
An application of this lemma, combined with a change of variables, yields

/ |Vv,,y’2dx = rlf’"/ IV)?dx < Cle’"fﬁ/ xf:lH [Vv|>dx < Ceg < &.
B (0) Br () B (x0)

(4.18)

This holds for every B (y) € By (xo. R, £). We may therefore apply Lemma 4.12 to v,
to deduce that it is Holder continuous in B ! (0). Re-scaling implies v is Holder continuous
in every B% (y) € By(xo, R, §), or equivalently v is Holder continuous in every B,.(y) €
Bag (x0, R, £).

Since v is weakly harmonic in Rﬂ“ with respect to the metric represented by x| ;3;;
(where = amT_l), it is weakly harmonic with respect to x,; +18i j on every B, (y) with
B,(y) ¢ R7*!. Thus it follows from Lemma 4.13 that v is smooth in each B,(y) €
Bog (x0, R, §), which holds if and only if each v,,, corresponding to such a B, (y) is smooth
in B1(0). We further deduce that v, , is harmonic in By (0) with respect to & using the chain
rule. Moreover, it follows from (4.16) and (4.17) that g satisfies the assumptions required of
the metric in Lemma 4.14. We combine (4.16) with (4.18) to see that

8
/ (1 +ry,;1+1xm+l) IV, %dx < c/ IV, y[2dx < Ceq. (4.19)
B1(0) B1(0)

In addition to our previous stipulation for &g, we further require that g < %‘ where ¢ is the

number from Lemma 4.14. We apply this lemma, recalling 8 = o:(’”T_l) and B, (y) € B, to
see that

2 “1)# 2 -1 B 2
r< sup (xmﬂymﬂ) [Vv|= = sup (1 +rym+1xm+1) [V, yl
B%()') B%(O)

—o
< C sup (1+ry,;j_1xm+1> |Vv,,y|2
B%(O)

_ B
< C/ (1 + rmelr]me) |any|2dx
B1(0)

_ _ B
=cCr! '"/ (xm+1me1rl) |Vv|2dx.
B (y)

As aresult, for any o € (0, %] we have

— 1 \#
o' [ (k) 19
Bor(y)

B
< Cazr]_m/ (xn1+1y”_1}rl> |Vv|?dx.
B (y)

@)
=
<)
o
w
@
Q
w2
=
o)
=
=
1)
—*
Q
(38
IA

and let p < r. Then

N
a

- B
eym+17" (Ur)l_m / (xm-klyn;_lH) |Vv|2dx
Bor(y)

1 _lsir B
=< 56’m+1’rrl_m/ (xm+1y,;41_1> |Vo|2dx
B, (y)
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1Blp B B
onevery B, (y) € Bag(xo, R, g).Themap,o > edmt1 " pl—m pr(y) (.Xm+1ymj’_1) |Vu|2dx

is non-decreasing in p for p < r as aresult of Lemma4.7. Lemma 8.23 of [15] hence implies

1Blo B
e.\'m+1_"p17m / (xm+1yr;lrl) |VU|2dx
Bp(y)

y _IBir B
<C (f) eym+1—fr]_’"/ (xm+1y,;}rl) |Vv|2dx
r B (y)

for every p < r onevery B,(y) € Bag(xp, R, E). It follows that

14
pl—’"/ IVol2dx < c(ﬁ) rl_’"/ IVoPdx
B, (y) r B (y)

on every B, (y) € Bag(xo, R, %) for 0 < p < r. This concludes the proof. O

4.5 A modified lemma of Luckhaus

Here we begin our construction of comparison maps. We prove a partial extension (to the
particular case of our degenerate/singular metrics x,; , ; §;;) of a lemma of Luckhaus, Lemma
3 in [23], as presented in Lemma 1 Section 2.6 of [39].

Let S ¢ R™*! denote the m dimensional unit sphere, centred at the origin and equipped
with the metric induced by the Euclidean metric on R”*!. Define ST =8"nN R’fr] with the
metric induced from S™. We let @ denote a point in S" C R"™*! or 7 C RT_“and write
dw for the volume element corresponding to the induced metric. Recall the notation 3+ 2 =
32 NRT for 2 c R and 0, (y) = (x e R™ i |y —yi| <ri=1,...,m+ 1} for
y € R™T1 We also write Q) (y) = O, (y) N Rﬂ“ fory e 8Rﬂ+1.

In order to state the modified Luckhaus lemma precisely we introduce the notion of a
Sobolev space for functions whose domain is either S or §'}.

Definition 4.15 Let ¢ > 0 and p > 0. Suppose S = pS™ and Vy = B,1:(0)\B,—:(0)
or § = pST and V, = Bf, (0\B_,(0). An element v € L%(S; R™) is said to be in
W2 (S: R") if the map v(pd) € W2 (Ve: R") for some & > 0. An element v € L}(S x
[a, b]; R"), with a < b real numbers, is said to be in W/;‘Z(S x [a, b]; R™) if the map
v(,oﬁ,s) € Wé‘z(Vg X [a, b]; R") for some ¢ > 0. If N C R” is compact, we say v
is in Wy2(S; N) or Wy (S x [a, bJ: N) if v is in Wy *(S: R") or Wy*(S x [a, b); R")
respectively and v(x) € N for almost every x € S.

We now state our version of the Luckhaus lemma.

Lemma 4.16 Letm > 2 and B € (—1,1). Let N be a compact subset of R" and suppose
u,v € W,;’Q(Sm; N). Then forall ¢ € (0, 1) thereisa w € W);’Z(Sﬂ x [0, €]; R™) such that
w agrees withu on S} x {0} and v on S} x {&} in the sense of traces and which satisfies the
following. Let D be the gradient on S x [0, e] and D the gradient on S!. Then w = w(w, s)
satisfies

/ w,i+]|5w|2da)ds
S x[0,¢e]
c (4.20)
1
< Cie /S'” a)ﬁH_l (IDu|2 + |Dv|2) do + . /S’" w’i+1|u — v|2dw
+

+
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where C1 = C1(m, ). Furthermore, w satisfies

dist*(w(w, s), N)

1

< 76‘2 D D '

i
2
u—v|"dow
em+1+4 +‘*" / @ |

for almost every (w, s) € S x [0, e] where Co = Ca2(m, B) and q satisfies the following.
If B € (—1,0] then (4.21) holds for g = 2. If B € (0, 1), for any p € (1, ﬁ), there exists
g € {2, p} such that (4.21) holds.

1

1—
2
Wyl — vl dw) @.21)

Our proof of Lemma 4.16 follows the proof, given in Section 2.12.2 of [39], of Lemma 1
in Section 2.6 of [39].

4.6 Absolute continuity properties of functions in W‘; 2

We recall the discussion in [39, Section 2.12.1] regarding the absolute continuity properties
of WI functions, which are inherited by W2 functions in view of Lemma 2.1. Let H!
denote the -dimensional Hausdorff measure with respect to the Euclidean metric. Consider
a rectangle QO C RTFI of the form Q = [a1, b1] X -+ X [@m+1, bm+1] wWhere a; < b;.
Suppose v € Wg‘z(Q; R") with B € (—1, 1). It follows from Lemma 2.1 that if a,,11 > 0
then Q C RTFI and v|g € Wb2(Q: R"). Lemma 2.1 also implies that if a,,4+1 = 0 then
vlp € wbhr(Q;R") for p = p(B). Hence, by Lemma 3.1.1 and Theorem 3.1.8 in [28],
if a1 > 0, we may infer the existence of a representative 0 of v such that, for each i =

1,...,m+1,0(x1,...,%—1, X, Xi+1, - - - » Xm+1) is an absolutely continuous function of x;
for almost all fixed values of x1, ..., xj—1, Xj41, ..., Xm+1 With respect to the m dimensional
Hausdorff measure H™ on [a;, bl] XX lai—1, bi—1] X [aj41, bix1] X -+ - X [@m+1, bnt1]-

The classical partial derlvatlves — agree almost everywhere with the weak derivatives 33
Furthermore, for any closed subset N of R",if v(x) € N for almost every x then itis p0551ble
to choose 1(x) € N for every x € Rm+ .

4.7 Proof of Lemma 4.16

Proof of Lemma 4.16 We follow the proof, given in Section 2.12.2 of [39], of Lemma 1 in
Section 2.6 of [39]. Throughout, C denotes a constant only depending on m and f.
Suppose u, v € Wg’z(S"’; N). We reflect u and v evenly in 8R$+1, without relabelling,

togetu,v € Wg’Z(S’"; N) and choose extensions of u and v to ]R”"H\{O} which are homo-
geneous of degree zero with respect to the origin. Then we choose representatives of these
extensions which satisfy the absolute continuity properties described in Sect. 4.6 on Q1(0).
We will denote the representatives of the extensions of u and v by # and 0 respectively. Then
iU(pw) = u(w), v(pw) = v(w) for almost every p > 0 and w € S™. Moreover, we have the
identity Vi = |x|™'Vii(w(x)) = Du(w(x)) for w(x) = |x|~'x, where D is the gradient on
S and V is the gradient on R'ﬁ“. We therefore calculate

/Q+<o> il (IVal* +|Vo[*) dx gc/m Wiy (IDul* + |Dv[*) dw (4.22)
1

+
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and

/Q+(0) xb i —oPdx < € /Sm b lu— v’do. (4.23)
1

+

Let ¢ € (0, %) and define the closed rectangles Q; . = [ije, (i1 + el x -+ X
[ims18, Gme1 + Del fori = (i, ..., imy1) € Z"*! Fix ¢ € (0, %) arbitrarily henceforth.
Let F! denote any /-dimensional face of a Q; .. We define

Q= {Qi,g:i ez 0. C Q%(O)} and]—'il = [Fl faces of Q,-,g}.

In addition, we write x + _7-'; to denote the collection of the translations of all faces in _7-'11 by
x € R"FL

Consider a non-negative, measurable function f: Q1(0) — R which is even with respect
to the hyperplane 8R’1+] . Invoking [39, Section 2.12.2] estimate (3), which is a consequence
of Chebychev’s inequality and Fubini’s theorem, we see that for every K > 1 there exists a
set P C Qo of measure |P| < CSI'ZH , with C = C(m), such that for all y € Q¢ .\ P and
1 €{0,...,m+ 1} we have

gt 3 Z/de1<K/

{i: Qi €Q} +]—'l 0

fdx =2K / fdx. (4.24)
1(0) )

Since we chose # and v with the absolute continuity properties described in Sect. 4.6 on
01(0) it follows that for almost every x € Qo ., with respect to the m + 1-dimensional
Lebesgue measure, all of the functions u, v, Vit, VU are H! almost everywhere defined on
each of the /-dimensional faces of x + Q; ¢ for Q; , € Qand/ =1, ..., m+ 1. Moreover, the
gradients of & and ¥ on any /-dimensional face of x + Q; . coincide H' almost everywhere
with the tangential parts of Vi and V0 respectively. Thus we may choose x = a € Qg ¢
such that these properties hold and, provided we choose K (depending on m) sufficiently
large in (4.24), such that a,, 1 > % and such that we may apply (4.24) simultaneously for
J00) = gt | 7o) with f(x) = |@(x) = 8(x)[* and f(x) = [Va(0)]* +|VD(x)|* (where
V is the gradient on R"*1). In particular, after discarding the integrals in (4.24) taken over
any cube faces which do not intersect RTFI , we have

m+1-—1 dHZ < C/ d
¢ { QZEQ } +Z]__l /FlﬂR’:’_H m+1f ) m+1f - (4.25)
i, <hE i

im+1=—1

Now we begin the construction of w by defining a map on the one dimensional faces of
every Q x [0, ¢] where Q := (a + Qi) HRTFI with Q; . € Qand i1 > —1. Let E;
denote a one dimensional face of Q parallel to the jth coordinate axis for j =1, ..., m+ 1.
Define w(x,0) = u(x) on Q x {0} and w(x, &) = v(x) on Q x {¢} and let w(x,s) =
(1= 2)i(x)+30(x) forx € Ej and s € [0, €]. Since ﬁ(R’ﬁH) C N by definition, it follows
that

..... 1 sup i — (4.26)

Ej

dist? (w(x, 5), N) < max;—
for x in the 1-dimensional edges of Q and s € [0, ¢].
We now estimate sup E; |ii — 9|* using the Sobolev embedding theorem for Wg’z along

the line segments E;, which one can deduce analogously to the case for W12 functions.
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Note that in our construction so far, we have discarded any edges E; C BRT”. If Ej,

j=1....m+1liesinaQ =(a+ Qi) N Rﬁ“ with i, 41 > —1, with the exception of
the case i;,+1 = —1, j =m + 1l and B € (0, 1), we calculate
1 1
¢ ’ B 2 ’
sup it — 0] < T / Xpq (19 al* +13;9%) dx; f Xy g it — 0] dux;
E; g2t E; E;
it +‘ﬂ‘ / erl|u—v| dx;. 4.27)
Ifg >0,in+1 =—1and j = m + 1 then we calculate
sup |i — |2
Em+1
1 1—1
N ~ r N ~ P
<cC (f b (O + |am+1v|2)dxm+1> <f Bl — v|2dxm+1)
Epnt1 Emt1
+ Cf(”ﬂ)/ Pl — 0P dx, (4.28)
Em+|

for any p € (1, %). The combination of (4.26), (4.27) and (4.28) with (4.25), applied with

[ =1, yields
1
q
[, et (VP £ 190) )

1

C
distz(w(x,s), N) < — &
gmtzt7s

-1
xPa - oPdx '
oro "M

* ?/QU Sl = 7, (4.29)

where g € {p, 2}, for p fixed as above, depends on S.

Next we bound the gradient of w on the product of the 1-dimensional edges of Q with
[0, &]. Let V denote the gradient on E ; % [0, e]. Recall that &, v are defined so that the
tangential parts of their gradients Viz, Vi on RTH coincide H! almost everywhere with
their gradients on the edges E;. It follows that

= 2 PN N N A7 VP ORI
sup [Vw(x, s)|* <8 (IVix)|” + [VO(x)|*) + 5 lu(x) —v(x)I7,
s€[0,¢] &
for x inany edge E;, j = 1,...,m + 1, of Q. Integrating over E; x [0, ] with respect to

dex ids yields

= . A 2 A
/ b VwlPdxjds < 85/ b (ViR + Vi P)dx; +f/ P la - bPdx;.
E;jx[0,e] E; € JE;
(4.30)

Consider again Q x [0,¢] for Q = (a + Qi) N RTH with Q; ¢, € Qand i,y > —1.
Recall that we are excluding cube faces in 8Rﬂ+1 from our construction. We use a slightly
different procedure to extend w to higher dimensions depending on whether i, 1 = —1 or
ims+1 > 0. Accordingly we introduce some temporary notation for two classes of F! that we

@ Springer



A regularity theory for intrinsic minimising fractional... Page 39 of 68 109

consider. Let F i denote any /-dimensional face of any Q with no edges in the m + 1 direction

and let Fm 1 denote any face of any such Q with edges in the m + 1 direction. Suppose that

l > 2 and w is already defined with L? gradient on every F! | and Fi_l x [0, €], square

dH'-integrable gradient on every F 41 and square X2 dHl1ds- -integrable gradient

m+1 m—+1
on FZ 11 x [0, &]. Furthermore, suppose that w(x, 0) = i1(x) and w(x, &) = 0(x) forx € Fl
m1- These assumptions imply that w is defined H! almost everywhere on all the
[-dimensional faces of Q for/ > 2. Since 8(FL [0, €]) and 8+(Fl ma1 X [0, £]) are the union
of such [-dimensional faces, w is defined H! almost everywhere on these sets. If Q is such that
im+1 > 0 then we do not distinguish between Fj_ and F,ln_i_1 and extend w to each Fj_ x [0, €]

and Fm+

y is the centre point of Fi or F,iH. If i;;+1 = —1 then we extend w into Fl x [0, €] using
the same method. We extend w homogeneously of degree 0 from 37 (F ! mal X [0, s]) into

Fm +1 % [0, &] with respect to the point (y , 2) where y is the centre point of F +1 and

¥y =y =0 yms0.

Now let F! denote any /-dimensional face of any Q again. Since the tangential parts of
the gradients Vi, Vd on R”*! coincide with the gradients of 2 and 9 on F! for H' almost
every x € F!, using the fact that & and 0 are homogeneous of degree zero, we calculate

orx € F!

1 x [0, e] by homogeneous extension of degree zero with respect to (y, %), where

f xb VwPdHlds < Ce/ b aval? 4+ vohaH!
FIx[0,¢]

+Ce Z/ b IVwPdHTls, @431
- -1 0,¢]
a+F! X

i

where V is the gradient on the set it is integrated over. From (4.31), we inductively deduce
that forany / € {2, ..., m + 1} we can extend w to each Fl x [0, e]in Q x [0, €] so that w
has an L? or xﬁ HdHZ ds-integrable gradient Vw on these faces. Moreover, Vw satisfies

/ x51+1 |Vw|2d7-tlds < Ccé! Z / xﬁH |§w|2d7-(1ds
FIx[0,¢] a+}'] F1x[0,¢]

+CZe’ i+l Z/ B (VAP + ViR dH

a+F!
(4.32)

So far, we have constructed a map w = w’* on each cube and rectangle Q0 = (a +
Qie) N R'ﬁ“ such that Q; , € Q with i, 11 > —1. It follows from the construction that

w8 = U8 1+ _almost everywhere on common faces F! x [0, e] of (a+Qie)N Rﬁ“
and (a+ Q)N RT’I. Furthermore, for 0 < ¢ < % it follows that

otomc Y a+0ie
! { Q,;EQ}

Tipp1>—1

We may therefore define w € Wé’z(Q;r(O) x [0, e]; R") by w|(a+ins)mR$+1(x,s) =

w@8 (x, 5) for s € [0, £]. Since w is homogeneous of degree 0 on any /-dimensional face
of any Q x [0, ¢] with [ > 3, our inductive procedure preserves (4.29) for all (x, s) in
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QT(O) x [0, €], with the possible exception of a set P of m-dimensional Hausdorff measure
I

0. It follows from (4.29) that for (x, s) € (QI(O) x [0, e])\ P we have
by

. c !
dis?(w(x, s), N) < ———— (/QWO) Xpg (|Vu|2 + |V ) )
1

8m+g+@
-1

q
B s a2
</Q+(0) xm+1|u — v dx)

1

2
ST —vl°d 433
* emt1+4 +\ﬂ| /Q+ m+1|u ["dx ( )

where g € {2, p} for some fixed p € (1, m). Moreover, we combine (4.30), (4.32) and
(4.25) to see that

/Q+<0) o ]xf;ﬂﬁwpdxds < CS/Q+(O) rr (IVA)> + |VO[?) dx
x[0,e

1

C
+ = xb i — o2dx. (4.34)
()

The definition of w as required now follows from combining (4.33) and (4.34) with
(4.22) and (4.23). The absolute continuity properties, described in Sect. 4.6, of w, viewed
as a function defined on a rectangle in polar coordinates, guarantee that for almost every
. HdH'”ds -integrable gradient on 3% B, (0) x [0, ] which
coincides 7" ds almost everywhere with the tangential part of Vw. Using Fubini’s theorem
and Chebychev’s inequality, applied to the map p +> |, 9% B (O)x[0.¢] xZ 41 [Vw|>dH"ds, we

may therefore choose p € [%, %] such that w has square xP

m+1
8*3; (0) x [0, e] and satisfies

p € [%, %], w has square x

dH™ds-integrable gradient on

[IVwPdH™ds < c/

B IVwPdH" s,
BT (0)x[0,¢]
I

+ +
/a+3;f(0)x[o,s] " m

We define w on S} x [0, e] by W (w, 5) = w(pw, s) and observe that this map has the required
properties. O

4.8 Comparison maps

With Lemma 4.16 in hand, we may now construct comparison maps for W/;’z functions which

have values in N and are defined on half-balls centred in BR:”,H , provided the re-scaled energy
[
is sufficiently small. We use the notation v+ () 5 = (pr £()) dex) jB;(y) x,’zﬂvdx.

Lemma 4.17 There exists a 8o = So(m, N, B) > 0 such that the following holds. Let S
0,1) andv € W1 2(B+(y) N) with p' ="~ ﬁf3+0) m+l|Vv| dx < 83 m1+ 5+ here
yE BRT_“. Then thereisao € ( 1+ P) such that we can find a map we € Wﬁ (B;)" (y); N)
which agrees with v in Bf (y)\BJ (y) and such that

gl—m=p /;;+( )xﬁ+l|Vw|2dx < Capl_m_ﬂ/ x5+1|Vv|2dx
o y

Bf (»)
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c _ _
+ 5 (1+m+/3)/ X lv = Tge ) plPd (435

for a constant C = C(m, B).

Proof We follow the proof of Corollary 1 in Section 2.7 of [39]. Throughout, C denotes
a constant which depends on m and possibly # and we only distinguish different C when
necessary. We also assume, without loss of generality, that ¢ < %

Let 6o > 0 to be chosen as required and suppose the assumptions of the lemma hold for

80. As a consequence of Poincaré Inequality for the A, weights |x,,41 |2 [19], we have
—(1+m+/3)/ B = 2
P X [V —Vp+ |“dx
B;(y) m+1 Bp ).B
B 1Bl
< Cplm=F /+ fo_1|Vv|2dx < C8eMTITIH T (4.36)
Bp )

As discussed in Sect. 4.6, we may work with a representative of v, which we do not relabel,
such that v(B;f (y)) C N. It follows that

dist® Wty g N) < 1000 = Vgt 617 (4.37)
By 1Bl
for every x € Bp*(y). Integrating (4.37) over B;(y) with respect to x, Hz dx and then
I S48
dividing by -[B;r(y) X,y dx we see that
st 5 —(l4+m+ B = 2
dist (vB;(y),ﬁ’ N)<Cp (1+m+p) /13+0,) X1V — UB;(VV)Yﬂ| dx. (4.38)
P

Combining (4.38) with (4.36) we find

- —(4m+ B - 2 2 mt1+5+ 18
dis® (U gty 5o N) < Cp~ 4P /B+(y) Xt [0 =gty glPdx < Cogem 12 H 2,
P
Hence, we may choose A € N such that
= 2 —(1+m+ B = 2
|)‘_UB;'(y),,B| <Cp (14-m ﬁ)/‘+ xm+1|v—v3;(y)’ﬂ| dx
B/) )
B 1Bl
< C6§sm+l+7+7. (4.39)

Using Chebychev’s inequality, we choose a C > 0 such that there exists o € (37’0, p) such
that € Wy *(S; N), where 9() = v(ow + ), and such that

/S @ |DOPde < Co> T F /B . )x,‘ZH IVo[?dS(x)
+ o Y
< Cplf'"*ﬁ/+ X xb L IVuPdx
BEONBS )
< c82emri+h+ (4.40)

where D is the gradient on '}, and

J

Bon 2 —m— B - 2
hy 110 =Ty gl Pde < 0" ﬂ/ X0 =T 5 PdSCO)

i 3t BE ()
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< Cp(Hm+h) /
Bf (y)\Bg )

£ 18l
< C83emHI+a+

B - 2
xm+l|v — UB;(y)’ﬁ| dx

(4.41)

We may therefore apply Lemma 4.16 to v € W1 2(S™: N) and A. This yields a wo: S x
[0, e] — R" with wg = ¥ on S x {0} and wo = A on S x {¢} in the sense of traces.
Furthermore, (4.20) yields

/Smx[o : ol [DwoPdads < Cs/m ol IDDdw
" (0,6
—/ m_HIv—AI dw, (4.42)

where D is the gradient on S x [0, £] and D is the gradient on S!. In addition, (4.21) implies
that

9 B 2 g B 2 !
—_— o |D0|"dw f @ |0 — Al"dw
m+g+7\ /;}1 m+1 sm m+1

B

&

c 8 .

JeTE ) /S 10— A dew (4.43)
+

dist? (wo(w, 5), N) <

for every (w, s) € S x [0, e], where ¢ € (1, 2] depends on 8. Henceforth we assume that
80 < 1. Using (4.39) and (4.41) we deduce that

B s 2 B s = 2 B = 2
Lm Wy [V = A"dew < 2/§’" Wy 110 = Vg (y) gl dw+2/Sm O 1|Vpf (), — A do

+ + +

< C82emHiHa+ (4.44)

The combination of (4.43) with (4.40) and (4.44) yields
dist(wo(x, 5), N) < Cép (4.45)

for every (w, s) € S x [0, ¢].

Choose &y, depending on N, m, B, such that C8y < & where C is the constant in (4.45)
and & > 0 is sufficiently small to guarantee that the nearest point projection 7y onto N exists
and has bounded derivatives in Ny = {x € R":dist(x, N) < &} It then follows from (4.45)
that we may apply 7y to wo. Let w € S satisfy w = w(x) = r = |x — y| and define

w e Wi2(B}(y): N) by

_IX y\’

v(y +ro(x)) r € (o, p)
w@) =w(y +rox) = ayvwolwx), 1 =72)) relld—e¢o, o]
A re 0, (1 —ego).

Note that w agrees with v in Bl‘]" (")\B (). We then readily calculate that w satisfies (4.35)
as required. O

4.9 Control of the mean squared oscillation

The Euler—Lagrange equations of E# satisfy the structural conditions |d1v(xm Vo)l <

cox,, +1 |Vv|2, together with the Neumann condition (4.2). For functions satisfying such
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conditions, if the re-scaled energy is sufficiently small it is possible to control their mean
squared oscillation using the energy as follows.

Lemma 4.18 For every § > 0 and every co > 0 there exist two constants ¢ =
em,n,8,co) > 0and 0 = O(m,n,8,cy) € (0, %] such that the following holds. Let
X0 € 3R'_’~f+1, R > 0and B;(xo) C Rﬂ“. Suppose v € W/;'z(BI}L(xo); R") satisfies

/ xb VU, Vo) dx
B (x0)
for every ¢ € C§°(Br(xo); R"). If

le’"fﬁ/ x2+1|Vv|2dx <e
B (x0)

sao [ xflelveRas
By (x0)

then

(OR)—(1+m+ﬂ) /

Byl (x0)

x5l+1|v — UBJR(XO),ﬂde < §R!"mp /B;(xo) fo_l [Vv|? dx.
Proof The proof of the lemma is based on a blow-up procedure analogous to that of the proof
of Lemma 3.5 in [29] for example.

Observe that the statement of the lemma is invariant under rescaling and translation by
any point in 8]R’_,"_+1; henceforth we assume R = 1 and xo = 0. Suppose, for a contradiction,
that there exist § > 0 and cp > 0 such that the claim is false. Then for any 6 € (0, 41] there
is a sequence of maps (vr)keN, With v € W/;’z(Bf“(O); R"™) for every k, such that

< / 5 161V o2 (4.46)
B (0)

1

B
X +1 <vvk7 v¢> dx
n/l:ii"(O) m
for every ¢ € Cg°(B1(0); R") and
/+ xfl+1|Vvk|2dx =g —> 0ask — o0
B

but

9*“*'”5)/ xP ok = W) et o) Pdx >3/ xF IVuPdx = Se. (4.47)
B;(O) m+1 By (0),8 B 0) m—+1

1

_1 _
Consider the normalised sequence (wy)en defined by wy = ¢, 2 (v — (vk)Bgr (0),ﬁ)' Then

_1
Vwy = g, > Vg and thus
B 29 T —
/Bﬁ(O) X1 [Vwg|“dx =1 and (wk)B:(O),ﬂ =0. (4.48)
Furthermore, we deduce from (4.47) that
9*“*’”“})/ b o dx > 8. (4.49)
By (0)

Using (4.48) and the Poincaré inequality for A, weights, we deduce that the sequence
(wg)ken is bounded in Wg’z(BlJr(O); R™). Hence, the Compactness Lemma, Lemma 2.5,
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yields a subsequence (W, ) jen which converges weakly in W/;’Z(Bfr (0); R™) and strongly
in L3 (B} (0): R") toaw € W, (B} (0): R").
In view of (4.46) and (4.48) we calculate

1
=< C0||¢||L°°(B?'(0);R")8k2

B
/Bﬁ(O) X1 (Vwg, Vo) dx

for every ¢ € C3°(B1(0); R"). Since wy; — w in Wy (B{ (0); R), it follows that

= lim
j—00

B
/;31*'(0) X1 (Vwg,, Vo)dx

B
X,41(Vw, Vg)dx
/Br<0>
1
: 7 _
=< CO||¢||L°°(BI+(0);]R") Jll)ngo Skj =0
for every ¢ € Cgo(Bl(O); R™). Hence w is a weak solution of the linear Neumann-type

problem (2.11) and, in particular, satisfies (2.12) from Lemma 2.7 in Bl+(0).
We also conclude, using the Compactness Lemma to take limits in (4.48) and (4.49), that

B 2 —
Xy [Vw|*dx <1 and Wpt ) p = 0
/Br(O) ’
and

9—“+m+ﬁ)/ b w8 (4.50)
By (0)
respectively. Now, since w BI (0. = 0, the Poincaré inequality yields

9—“+m+ﬂ>/+ xbwPdx < ceﬂ—’"—ﬂ/+ xbIVw|Pdx. 4.51)
B (0) B (0)

We apply Lemma 2.7 to w with § < % (so that 20 < %). This gives a positive constant C
(independent of 6) and a y € (0, 1) such that

gl—m=p /+<0> xﬁ+]|Vw|2dx < C(20)%. (4.52)
BG

Combining (4.51) and (4.52) we see that
9*“*'"*/3)/ b wtde < coy?. (4.53)
B, (0)

o
This holds for all fixed § € (0, 1] and we choose < 1 (%) % so that (4.53) contradicts

(4.50). 0

Remark 4.19 We could have used Lemma 2.8 in place of Lemma 2.7 to the same effect. In
using the latter lemma, we observe that Holder continuity of solutions to the linear Neumann-
type problem (2.11) is sufficient to obtain energy decay and consequently Holder continuity
of minimisers of E? relative to ©; we do not need higher regularity for the linear problem at
this point.
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4.10 Energy decay

We combine our construction of comparison maps in Sect. 4.8 with the improved control of
the mean squared oscillation obtained in Sect. 4.9 in order to show that the re-scaled energy
decays faster than implied by the boundary monotonicity formula, Lemma 4.5.

Lemma 4.20 Letv € I/i/'/;’z(IRTH : N) be a minimiser of EP relative to O. Suppose B;(xo)

is a half-ball with R < 1 and BOB;(xo) C O. There exist &g = eo(m, N, B) > 0 and
60 = 6o(m, N, B) € (0, }) such that if

lem*ﬂ/ xb L IVuPdy < e,
B (x0)

then

1
(eor)“m*f’/ b IVPPdx < frlf’”*ﬂ/ b IVuPds,
) 2 Bf ()

Oor y

for every B (y) € B (xo, R, Ry,

Proof Let B (y) C B (y) € BT (x0.R. %). Thenp < r < %,y € Oand |xo — y| < £.
Suppose v satisfies R!~""~# fBZ(xo) xZH |[Vv|2dx < &g for g9 > 0 to be chosen. Then for
any p € (0, r] the monotonicity formula, Lemma 4.5, yields

I—m— B 2 I—m— B 2
pl "/+ x| VoPdy < ﬁf+ X411Vl dx
B/)(}) By (y)

R l—-m—pB
< (5> / x£+1 |Vv|2dx
BL ()
7

< Cey. (4.54)

We apply Lemma 4.17 on B (y) C B, (y), with p < r to be chosen later. This gives a 8o
such that for any € € (0, 1), if

B 1B
pl—mP /B+( )x,ﬁHWvlzdx <83ttty (4.55)
oy

then thereisao € (%Tp, p) such that we can find a w, € W};’Q(Bp+ (y); N) which agrees with
vin B;(y)\B;'(y) and satisfies

ol—m—ﬁ/+ xnﬂl_i_]|Vw|2dx < Cg,ol_m_’s/Jr x£+1|VU|2dx
Bs (y) By (y)

1
L —(4m+p) B = 2
+ ng /B;(y) Xpaqlv vB;r(y)’ﬂl dx. (4.56)

Assuming (4.55) and consequently (4.56) hold, we make use of the comparison property of
w. Since v = w in B;(y)\B;'(y) we may extend w to an element of Wé’2(]Rf'ﬁ+l; N) by
requiring w = v on Rﬁ“ \B;r (y). As v is a minimiser of E” relative to O, we deduce that

fB:(y) fo_l |Vv|2dx < fB;(y) x5+1|Vw|2dx. Combining this fact with the monotonicity

@ Springer



109 Page 46 of 68 J. Roberts

formula, Lemma 4.5, and (4.56) gives

3p 1-m—p 5 —
— |[Vv|"dx < Cep' "~ / |Vo|?dx
<4> /l;;o() m+1 B () m+1
Zy

p ¥

1
Lop-amep) / B =T [Pdx
Tt 5 0) 1] BF (.l

4.57)
Fix ¢ = min{i, i}, where C is the constant in (4.57) and let &g < %8381""”"'%*'@
where C is the constant from (4.54). It follows from (4.54) that (4.55) is satisfied and hence,
substituting this ¢ into (4.57), we have

30\ F 1
(—p) / x,ﬁ+1|Vv|2dx < fpl_m_ﬂ/ x5;+1|Vv|2dx
4 B}, () 4 B0

T
A —(+m+ B = 2
+ Cp~Utm ﬂ)/+ xm+1|v—vB;(y)!ﬁ| dx
By (y)
(4.58)

for a constant C and any p <r < g. Observe that

/m X (V0. V91 x| = ‘/B( 51 (6. AWV, Vo)) dx
r Y r

B 2
< /Bm) 5 16lIVo Py,
for every ¢ € C3°(B,(y); R") on every B“'(y) C B+(x0) where ¢y = co(m, N). Hence,
we may apply Lemma 4.18 for § = min{L i } and cp as above to obtain a corresponding

g1 > 0and 0; € (0, Z] such that if r1=7— ﬂfB+ {IVv2dx < & then

) m+
(glr)—(l+m+ﬁ)/ B+1|v _EB;,(y),ﬁFdx
911(\)
< 4Ar1—'"—ﬁ/+( )fo_lelzdx. (4.59)
B (y

. B, Ifl .
Now choose gy = émln{8581+m+7+7, €1} where C is the constant from (4.54). It fol-

lows that (4.58) and (4.59) hold on any B;‘(y) C B (y) € BT (xo, R, g). Thus we may
apply (4.58) with p = 6;r. In turn, assuming this choice of p, we combine (4.58) with the
monotonicity formula and (4.59) to see that

36 1-m=p 1
< 1r> / xfl+1|Vv|2dx < frl_m_ﬂ/ x£+1|Vv|2dx.
4 By, 2 B ()

4

Hence the lemma is proved with the above choice of gy and 6y = ﬁ
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4.11 e-Regularity as far as Holder continuity

The culmination of the results in this section so far lead to the following e-regularity theorem
for minimisers of E? relative to © which establishes the first part of Theorem 4.1.

Iheorem4.21 Ifm >3 letp € (—1,)andifm = 21let B € (=371, 1). Let v €
Wé’z(Rer; N) be a minimiser of EP relative to O. Suppose B;g (x0) satisfies R < 1 and
308;(/(0) C O. There existsane = e(m, N, ) > 0anda 6 = 6(m, N, B) € (0, 1) such
that if

lemfﬁ/ x,iHIVvlzdx <eg,
B (x0)

then v € CO'V(B;R(xO); N) for some y = y(m, N, B) € (0, 1). In particular,
1

2 _ 14
xﬁ+l|Vv|2dx> (M) (4.60)

v(x) —vlx)| = C (leﬁfB =

& (x0)
for every x1,x2 € B;‘R (x0) and a constant C = C(m, N, B).

Proof Throughout the proof we adopt the convention that all constants depend only on m, N
and B unless stated otherwise. We reinforce this dependence where appropriate.

(o) X1 IVV[Pdx < & and
set ¢ = min{eg, €1}, where &g is the number from Lemma 4.20 and ¢; is the number from

Lemma 4.9.
Observe that the function 7 > 71=7—8 fB,i(z) x,fH_l [Vu|2dx is non-decreasing on (0, g]

Let v be a minimiser of Ef relative to O with R'="=F [,
R

by the monotonicity formula, Lemma 4.5. Furthermore, the choice of ¢ allows us to apply
Lemma 4.20. We apply this lemma, together with Lemma 8.23 of [15] to deduce that on
every Brf(z) € Bt(xo, R, &) we have

P T
71*’"*/3/ xleIVv|2dx§C(2—> (—) / P IVutdx
B () R 2 B ()
2

~\ Yo
<c(Z) gri-m-# I vulPde @460
R m—+1
B (x0)

for a constant C and a yp € (0, 1) which depend only on m, N, §.
Our choice of ¢ also permits the application of Lemma 4.9; this lemma implies that for
any B, (y) € By, (xo, R, §), with 61 > 2 given by the lemma, and any 0 < p < r we have

Y
pl—m/ Vo2 dx < c(ﬁ) lrl—"’f |Vl dx (4.62)
By(y) r By ()
for some y; € (0, 1). Since 61 > 2, for any B, (y) € By, (xo, R, g) we have the inclusions
R
B,(y) C By () C B,y ) CB3, , 0 eB (xR ). (4.63)
[ (lgil)ymﬂ %ﬂ 2

where y* = y — (0, y;+1). It follows, applying (4.6), that

Ym+1 1=m
( mt ) / |Vl dx
61 Bypit ()

01
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0 1 1-m—pB
<C (M) / m+l|vv| dx, (4.64)
9] Bt (y+
0141\ .
(T)\mﬂ

where C depends on m, N, B and 6; and thus only on m, N, 8. We combine (4.62), applied
with r = Y51 with (4.63), (4.64) and (4.61), applied on B;f (2) with 7 = (91+ )ym+1 and
7=yt It follows, after defining 7 = min{yy, y,}, that

7
plf'"/ Vo2 dx < c(ﬁ) lem*ﬁ/ o 1VuPdx., (4.65)
By(y) R B (x0)

This holds for any B,(y) € By, (xo, R, g). Since (4.61) holds on every B; (z) €
Bt (xo, R, &) for yy, it holds on every Bri" (z) € BT (xo, R, 5) for . We deduce from (4.61)
and (4.65) that the hypothesis of Lemma 4.8 are satisfied; applying this lemma concludes the
proof. O

Remark 4.22 Once we know that a minimiser of E? relative to © is Holder continuous in
some B;er (xp) with BOB; (x0) C O, known theory for harmonic maps, see Lemma 4.13 which
is from [38], implies that v is smooth in B; (x0). However, this theory does not imply v is
smooth up to 80B;g(x0); henceforth our goal is essentially to prove this fact.

4.12 An L* bound for the gradient

The first step in our proof of higher partial regularity of locally minimising fractional harmonic
maps consists of establishing an L* bound for the gradients to solutions of systems of semi-
linear equations with growth conditions satisfied by minimisers v of E# relative to @ and
their derivatives D% v where o/ € N0m+] is a multi-index with «;, | = 0. The method of
proof is that of harmonic replacement; compare the growth of the average Dirichlet energy
of solutions of the semi-linear equations with that of solutions to the linearised system. We
follow [38] for example. The monotonicity formulas established in Lemmas 2.8 and 2.17 are
a key ingredient of the proof.
We will use the notation |2|g = [, |xu+1/Pdx and [2] = [, dx for 2 C R™!.

Lemma 4.23 Suppose v € Wy* (B (x0): R")NCOY (B (x0): R") where B (xo) is a half-
ball with x¢ € BR'_’,ZH, R < 1landy € (0, 1). Suppose v satisfies

/+ xb L (V, V) dx =/ xb W Gx, Vv)) dx
B (x0)

B} (x0)

for every ¥ € C3°(Br(x0); R"), where G:R™ x RO+D1 s measurable and |G (x, q)| <
Cilq|* + Cs for a positive C; < C* and non-negative C» < C* for some C* > 0. Then
Vv e LOO(B;(xO); ROy and, in particular, we have

3

1

B 2 ~
IV0l17 o gt iy = Caif X [VV[7dx + CoCo
LOO(B (x0);ROn+Dny |B;€—(x0)|5 B,t(xo) m+1

~ 1
where C3 = Cz3(m, N, 8, C*), C4 = C4(m, N, B, C*) and C, = C22 + Cy. In particular, if
Cy = 0 then C; = 0.
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Proof Without relabelling, we reflect v evenly across the hyperplane BRTFI. We observe
that v € CO7 (B (x): R") N Wy (Br(x0): R") is a weak solution of div(|x,11|°Vv) +
IXmt11PG = 0 in Bg(xo), where G is measurable and |G (x, ¢)| < Cilg|* + C2. We will
derive estimates on classes of B, (y) with y € Br (xp) and p < g. We focus initially on an
estimate for the average energy on B 2 (y) in terms of that on B,(y). Since v is even with
respect to 8Rrﬁ+l we only need to consider B, (y) with y,,41 > 0. We consider two cases,

Ym+1 =0and y,41 > 0.
Suppose B, (y) is such that Bf (y) € B*(xo, R, g). An application of Minkowski’s

inequality, for maps in L,23 (B o (y); R*m+D)y yields

1 1

1 P 1 5 vwld
[xXm4117 1 Vo|“dx = [Xma11” [Vw]” dx
|Bs (¥)lp By () 1Bs (Vg By ()

C 2
4 —/ b1 1V (0 — w) P
[Bop JB, ()
(4.66)

for any w € W/;’Z(Bp(y);R”). Let w € W;‘Q(Bp(y);R") be the weak solution of
div(|xm+1|ﬁVw) = 01in B,(y) with w = v on 9B,(y), given by Lemma 2.18. Then w
is smooth in B, (y)\a]Rﬁ+1 and continuous in B, (y). Furthermore, since v is symmetric

with respect to 8Rﬂ+l, it follows from Lemma 2.19 that w is symmetric with respect to

BRT'I and, crucially, we are now free to apply Lemma 2.8 to w for every B € (—1, 1).
Asw —v e C(B,(y):R") N Wy5(B,y(y): R") and v satisfies div(|x, 1117 Vv) +

1Xm+112G = 0 and w satisfies div(|x,+1|# Vw) = 0 weakly in B, (y), we calculate

/ ot 11V (0 — w)[2dx = / Dot P <v —w, (:}>dx
B, By

<Cj sup |v—w| X181 VU2 dx
Bp(y) B[)(Y)
+ Cy sup v — w| X1 |Pdux. (4.67)
By (y) By (»)

The Holder continuity of v, together with the weak maximum and minimum principles given
by Lemma 2.18 imply

sup v —w| < Cp”. (4.68)
Bp(y)

Next we use the monotonicity and minimising properties of w to scale its averaged energy.
An application of Lemma 2.8, followed by an application of Lemma 2.18 yields

B (0l = [B,0lp
1

<

= 1B,lp

1 1
f o1 PP IV02dr < ———— / o1 IV 2dx
Bg(y) By(y)

/ [Xma1]? | Vol2dx. (4.69)
B, ()
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Combining (4.66)—(4.69) we see that

1

L/ It 1P IVOPdx | < Lf [t 1?1V dx
1BsWls Joy 0 1B,(Mlp /5,00

' 3
+ e —— / o1 PIVoPdx + Cap? |
|Bo(M1g JB, ()

- - 1
Define C; = (C| + Cz)% + Ciand Cy = C22 + C,. We square both sides of the preceding

inequality, using Young’s inequality (ab < % + % fora, b > 0) and the fact that y € (0, 1)
and p < R < 1 to see that

1

1 f ’ 1 2
—— [ lPIVelr < —/ 41190 2dx
1BsODls Jayi 1BoWlg JB,00

2
1
+ C | Cip” 7/ X1 1?1V dx
[By(Wp JB,(y)

1

+Cap |xm+1|ﬁ|Vv|2dx)

y_ | /
|B,0(y)|ﬂ By (y)

+C (clpy X121 VU Pdx + Csz)

1 /
[BoWp JB, ()
1
57/ o1 1P 1V ul2d
[BoWIg JB,(y)

1

2
+C (C1+C2),0y< / |xm+1|ﬁ|Vv|2dx) + Cap?
B, (y)

|Bp(¥)lp

+ CCip” [xm+11P1Vv]2dx + CCap”

o)
[Bpy(Wp JB,(y)

<(1+CCp7)

Y
2

[Xma12|VV?dx + CCap (4.70)

o .
[BoWp JB, ()

This holds on every B, (y) with B;r(y) e Bt (xo, R, g).
Now we iterate this estimate on concentric balls. Consider Bg(y) with B;F(y) IS
2

Y k
BF(xo, R, %). Let py = 27% & for k € Ny. First notice that p;” < 2~7% . Hence

0 Y > j -
I1 (1 + CC1pj2> <T1 (1 INel((ek: +c*)2—%) <C <o
=0 =0

where C depends on m, N, B and C*. It follows from (4.70) that, for every k > 1, we have

1 f 2
S X117 | Vo2 dx
|Bo (Wp J B, ()
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k
- ¥ 1
< 1+Cc1p2,>7f 117 Vo Pdx
H( ) BsOls Jegn
2

Jj—1

k
~ Y Y
+CC Yl ]] (1 +CCip 1)

j=l1 =1

k
- 1 r(
< gty Jy TP+ € 2k
R (X0 =
L B Ivu|Ad o C 4.71
< C|B+(xo)|,g ot )xm+1| v|“dx + CC,C. “4.71)
R X0

Now we consider estimates on B, (y) with By.41 (y) € B(xo, R, R): on this class of ball
2
we have

R
By(y) C Buna () C By (1) CBr(y") e B (xo, R, 5) NCNR)
2/m 2

where y© = y — (0, yur1). Let w € Wﬁl’z(Bp(y);]R") be the weak solution of

div(|xm+1|ﬁVw) = 0in B,(y) with w = v on dB,(y), given by Lemma 2.18 and sup-
pose 6 > 2 is such that y,,11 > 0p. Then Lemma 2.17 yields

1
|Bs (I By ()

C 1
IVw|?dx < <1 + ) m+1|Vw|2dx

m+1 =1/ 1By JB,»)

Hence, repeating (4.66)—(4.69) but with |B§ (»)|p replaced by |B§ ()|, we find
1 1

2 2
B 2 ¢ 1 P 2
by [Vu|“dx <|{d+-—) [Vu|“dx
m+1 ( 6 —1 |B (}’)| B,(y) m+l

1
[BsDI By (v
2

+ C (CI,O £+1|Vv|2dx + CZpyysz)

[B ()] B, (y)

We square both sides of this inequality analogously to (4.70), noting that 6 > 2 so glj <1,
y € (0,1)and p < R < 1, to see that

1
[Bs () By ()

xle |Vv|2dx

(1 +CCip% + L) ! B VuPRde + CCap2yE . @T73)
0 —1 |Bp(y)| B,(») m+1 m+1

This holds on every B, (y) with By,+1 (y) € B(xo, R, %) and y,+1 > 0p.
2

We iterate this estimate on concentric balls. Consider va+1 (y) € B(xo, R, g). Let pr =

27kl for k € Ny and observe that y,,11 > 2! p; and ,o <277 .Observe
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a ~ % C = w4 4 * _ir C
I1 1+ CCip} + 35— <T1 1+c((c>z+c)2 Fb o —
j=0

j=0

<C <o
where C depends on m, N, B and C*. It follows from (4.73) that, for every k > 1, we have
1

B 2
_ Vul|“dx
1Bo ) 5, (r) S V01
- C 1
< 1+ CCip2 ; + 4 ) |Vv|2dx
]l—IZI < k=j U ok—j+1 _ |Bymz+1 &%) Bypir () m+1
2

j—1

k
- v v C
+ Oy 2ori ;[ <1 +CCipl, T
j=1 I=1

1

<C—=7—
|B>'mT+1 DI Byt )
Imgt

xb L IVuPdx + CGCyE (4.74)

Now fix y € B*(xo) which implies va+1 (y) € B(xo, R, %) We divide (4.74) by yr’zﬂ,
let y© =y — (0, ym+1) and combine (4. 71) (4.72) and (4.74) to see that

y -8
_omtl b 1Voldx
1B D VB, (v)
y_ﬁ]
<cC—mH IVol*dx + CCoC
[Buags )1 Sy &
. 1 PR A
=CCo———+ [Xm4117|VV|7dx + CC2C
|B3y”é“ OOlp Iy, 05
~ a 1 ~ A~
<cCC—— / X2 IVuPdx + C(€ + EO)Cs.
BE o)l Jage !
An application of Lebesgue’s differentiation theorem concludes the proof. O

Remark 4.24 A consequence of the preceding lemma is that Holder continuous weak solu-
tions of d1v(xm+1Vv) + fo_]G =0in B+(x0) and xm+13m+1v =0in BOB;(XO), with G
satisfying the assumptions of the lemma on B+(xo), are actually Lipschitz continuous on
B ’é (x0).

4.13 Existence of higher order derivatives

The existence of higher order derivatives of minimisers of E? relative to O in directions
tangential to 8RT’1 follows using the usual method of difference quotients.

Lemma 4.25 Fix [ € Ny. Suppose v is a minimiser of EP relative to O and let B; (x0)
be a half-ball with E)OBIJQr (x0) C O. Suppose further that for every multi-index o' € Ng’“
with a;nH = 0 and |o'| < [ we have DYy € CO'V(B}'(xo); R™) N Wé’z(B;‘g(xo); R™)
for some y € (0,1) and VD*v € Lw(B;(xo);R(m"'l)"). Then for o € Ng”l with
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0‘;ln+1 =0and|a'| =landi =1, ..., m, theweak derivative V 9; DYy exists and V 0; DYy ¢
L(Bg (xo); RO"ED™).

Proof Without relabelling, we extend A to a smooth section of T*R"” ® T*R"” ® TR". Fix
s Ng”l with @), | = 0 and |&| = [. Since v is a minimiser of EP relative to O, the

regularity assumptions on v and DYy imply we may integrate by parts / times in (4.1); for
any ¢ € Cy°(Bg(xo); R") we have

/B+( )xﬁ+1(VD“’v,v¢)dx=A+( ) (@, DY (A@)(Vv, Vo))dx.  (4.75)
X0 r X0

Letn e Cgo(B¥ (x0)) be a smooth cutoff function such that » = 1 in B§ (x0), 1 >n>0in
Big (x0)\ B (x0) and | V| < € .Furthermore, let A7 D* v = h™' (DY v(x+he;)—D¥ v(x))
be the difference quotient of D*v and assume lh| < % Note that, by approximation,

w = —Ai_h (nzAf" D% v) is an admissible test function for (4.75). We substitute w into (4.75)
and apply ‘integration by parts’ for difference quotients to see that

/B+< K 20 1AV D v dx —/B ( )n2x,§+1<A{?Da’u,A?D“’(A(v)(w,w)))dx
X0 3r (X0
T

- / 20xl (AP DY v - Vi, AP DY v)dx.
3r (*0)

(4.76)

We now use Young’s inequality, ab < “ 5 +48%5 B for a,b > 0andé§ > 0, to move all of the
terms involving Af’ VD% v on the right hand 51de of (4.76) to the left hand side. We calculate

—/ 2pxf (AIV DY v - Vi, Al DY v)dx < C(S/ nxl 1AV DY v dx
z (X0) B (x0)

c
+ —f b1V 1Al DY v Pdx.
8 JB(x0)
(4.77)

We need to estimate the term involving AhD”" (A(w)(Vv, Vv)) in a similar fashion. An
application of the Mean Value Theorem, noting we are working on B 3z (X0) and |h| < K’

implies
| Al D¥ (AW)(Vv, Vv))| < C1| A} VD v| + G

where C1, Ca depend onm, N, B and ||VD5‘,U||LOO(B+(XO) Rn+Dny Where a e Ng‘“ with
|&'| < |o’| and & +1 = 0. Hence, using Young’s inequality again, we deduce

/ nox f;H(A”D“v A”D“ (A(v)(Vv, Vv)))dx
B3, (x0)

C3
< 8/ n meIAhVDO‘ v?dx + C =2 5 /+ xﬁ+ldx, 4.78)
3g (X0) B3y (x0)
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where C3 depends onm, N, g and ||VD% v| ILOQ(B;(XO);R@HU,,) where @’ € Ng’“ with |&'| <
|a’| and &;n = 0. Choosing ¢ sufficiently small in (4.77) and (4.78) we combine these
inequalities with (4.76). Since |Vn| < % andn = 1in B‘,‘;(xo), we see that

2

xb 1AV DY vPdx < C4R72+ 1) xb . dx,
B (x0)
2

B} (x0)

where Cy depends onm, N, g and ||V D% v |L°°(BIJ§(xo);]R(’"“)”) where @’ € Ng’“ with |&'| <
|a’| and &;”_H = 0. This bound is independent of i with |h| < % Hence by Lemma 2.11

we conclude that the weak derivative V0; D*'v exists and satisfies the above inequality with
Vd; D* v in place of A?VD“ v. This concludes the proof. O

4.14 Caccioppoli-type inequality

Here we show that the derivatives of minimisers of E? relative to O in directions tangential
to 8]errl all satisfy essentially the same Caccioppoli-type inequality.

Lemma 4.26 Fixl € Ny, letv € Wé’z(RT'l; N) be a minimiser of EP relative to © and
let B;(xo) be a half-ball with R < 1 and E)OB;(xo) C O. Suppose that for every multi-
index o' € Ngﬂrl with ) = 0 and |o'| < [ we have D¥v € CO’V(B;(xo);R") N

m+
Wé’z(B;(xo); R™) for some y € (0,1) and VDYv € LW(B;(xo); RO+Dmy - Suppose
further that for o/ € N with o/ . = 0 and |&'| = [ and some i € {1, ..., m}, we
0 m+1

have V0; D%y e L%(B;’e'(xo); R+Dmy 1 et B,(y) C Bg(xo) with yu+1 = 0. For each
o with ey, | = 0 and |&'| = [ there are constants C = C(m, N, B) and Cy, C2 which
depend on m, N, 8 and are comprised of polynomial functions, with no constant terms, of

oy . 1. ~ ~
||VD¥ v||L°C(Bp(y)mR'1+‘;R(WH)”)’ where &' € Ng’+ with |&'| < |o'| =l and &, | = 0,
such that
xP v DY vdx < C | C + L b 18:DYv — A%
g1 mALET - ! 2 it 11 v .
Bg ()NRYF P B,(y)NRY
+ G2 / b dx (4.79)
B, (y)NRY !

Sforany ) € R".

Proof Fix o’ with ), | = 0 and |&’| = [. Integrating by parts [ + 1 times in (4.1) shows
that for every ¥ € Cg°(Bg(xo); R"), we have

/}mo) b (v, DY v, Vy)dx :[ bW, DY (A) (Y, Vo)))dx.
R

B (x0)
Now, by approximation, we may choose ¥ = 5>(9; DY v — 1) where A € R" is a constant

vector and n € C§°(B,(y)) is a cutoff function with n = 1 in Bg (y),0 <n <1,and
[Vn| < %. We calculate
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f 1)c,‘:i+1;72|va,-DC"u|2dx < 61/ ]x,ﬁ+1n2|aiD“’u — M|V DY v|dx
By(NNRYT B,(nNRY™

+ 6'2/ x"anZIBiDO‘/v—AIdx
B, (y)NRYH!

+ c/ - <P VI8, DY v — A]|V3; DY vldx,
B,(n)NR”
(4.80)

where C = C(m, N, ) and C‘l, C‘z depend on m, N, B and are comprised of polynomial
. . ~' ~
functions, with no constant terms, of ||V D“ v|ILOO(BP(},)HMH;R(mﬂm where &’ € Ng”']

with |&'| <7 and &, ; = 0. We apply Young’s inequality, ab < % + % fora,b > 0 and
8 > 0, to each term on the right hand side of (4.80). We first apply this inequality to the
term corresponding to C, choosing § sufficiently small depending on C and hence only on
m, N, B and recalling |Vn| < % to see that

/ S IV D v dx < Gy / A 10D v = 3]|V9; DY vl
By (y)NR" B, (y)NRY

+ 6‘2/ xf;ﬂnzl('),-D“/v—de
B, (y)NR™H!

C ,
+ = ] B 1aDYv —aPdx (4.81)
P JB,(nNRYT

where Cy, C; are possibly different from before but have the same structure and dependence
as the constants in (4.80). Applying Young’s inequality again, now to the terms in (4.81)
corresponding to Cy, C> concludes the proof. O

4.15 Control of the mean squared oscillation of the derivatives on the boundary

We prove an analogue of Lemma 4.18 for the derivatives of minimisers of E? relative to O.

Lemma 4.27 Fix | € Ng. For every § > 0 there exist numbers ¢ > 0, T € (0,1) and
6 € (0, %] such that the following holds. Suppose v € Wé’z(R:’fH; N) is a minimiser of

EP relative to O with D¥v € C%7 (B (x0): R") N Wy (B (x0): R") for a y € (0. 1)
and VD" v € L°°(B}'(xo); ROy for every multi-index o' € Ng""l with ), | = 0 and
l&’| < I, where B;(xo) C Rﬂ“ satisfies R < 1 and 308;()(0) C O. Suppose further
that for o’ € Ng”'l with a;, | = 0 and |&'| = | and some i € {1,...,m}, we have

V; D" v € L3(Bf (x0); R™DM) If |o/'| =l and o, | = 0 and

Rl_m_ﬂ/ xﬁ+l|Vv|2dx < g2
B (x0)
then, for every B;r(y) e Bt (xg, R, TR), either
2
1-m—p B e 2 < r >
r X Vo;D¥ v|"dx <6 - 4.82
/Bm) mit VDAY =8 e (452

or

(gr)—(1+m+/3) /

B o ’ 2
X [0; DY v — 9; D¥ v p+ |“dx
B () b l Bor .8

@ Springer



109 Page 56 of 68 J. Roberts

§8r1_”’_ﬂ/ xb Ve DY v dx. (4.83)
B ()

Proof We use a blow-up argument, analogous in spirit to the argument we used in the proof
of Lemma 4.18. First we note that the statement of the lemma is invariant under rescaling and
translation by any point in B]RTFI . In particular, suppose the lemma holds for minimisers of
EP relative to O C 8]1&1“ whenever E)OB]Jr (0) C O. If the hypotheses of the lemma hold
for minimisers of E# relative to © and B; (xp) satisfies R < 1 and BOB; (x0) C O, then
applying the lemma to vg := v(R - +x¢) yields the conclusion of the lemma on B; (x0)-
We now prove the lemma when R = 1, xo = 0 and v is a minimiser of £ B relative to O

and BOB{" (0) C O. Suppose the statement is false. Then there exists § > 0 such that, for any
fixed 0 € (0, %], we may find a sequence (v)ken of minimisers of EP relative to O such

that the following holds. Each vy satisfies DY € CO*V(%; R™N W/;’Z(Bfr(O); R™)
foray € (0, 1) and VD“/vk € LOQ(BIJF(O); Rm+Dny for every multi-index o’ € NS”] with
o, =0and|a'| <I.Fora' € Ng”rl withe, | =0and|o'| =andafixedi = 1,...,m,
each vy further satisfies V9; D% vy € L% (Bfr(O); RO"+Dmy Moreover, the vy, satisfy

/B*(O x5:+1 IVvkl2 dx = 5,% — 0,
1

and, furthermore, there exists a sequence of numbers 0 < 7, — 07, half-balls B;: (k) €
BT(0, 1, ty), and numbers 0 < ry < tp — 0% such that

ry P / <P IV DY v Pdx > 81 (4.84)
B ()

and

(@rg)~A+m+h) / xle |0; D* vy — (31-D°‘/vk)36+rk (yk),ﬁlzdx

By, (%)
1_ —_ !
> 81, " ﬁ/+ xr’ZHIVt’J,‘D“ v 2dx (4.85)
B (k)

for & with |o'| =l and ), || = 0.
Since each v is a minimiser of E relative to O and v € W};’Z(BT(O);R”) N

cor (Bl+(0); R™) we deduce from Lemma 4.23 that each vy satisfies

2 B 2 2
VORI s gt gy imy < C/B+<0) xbIVuPdx < Cef — 0. (4.86)
3

The assumptions of the lemma guarantee that we may apply Lemma 4.26 on Bf(O) with

6
A = 0. We do so and conclude that there are constants C = C(m, N, ) and C, C, which
depend on m, N, B and are comprised of a polynomial function, with no constant terms, of
||VUk||L:>O(BI(0);R(m+I)n) and consequently satisfy Cy, C, — 0 as k — oo, such that for o/
3
with [@'| = land @), | =0

/ P IVDY yPdx < € (Cy + 1)/ P IDY e Pdx + Cs
BT BT (0
6 3
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< C(Cr+ D |[Vuel)?

4.
Loo<BT<o>;]R<m+1>n) TR0 68D
3

as k — oo. If I > 1, integrating by parts in (4.1), we see that when |o’| = 1 and O‘;n+1 =0,

DY Vg satisfies

B ! B
/;;T(O) X1 (VD vy, Vir)dx = / X (¥, G)dx
3

B} (0)
6

for every ¥ € CSO(B% (0); R™) where, by Young’s inequality, |G (x, g)| < C3|q|2 + Cy4 for

constants C3 = C3(m, N, ) and C4 whichdependsonm, N,  and is comprised of a polyno-

mial function, with no constant term, of || V|| Lo (B O):RUm+m) and hence C4 — Oask —
3

00. Now recall that by assumption D% v € C% (BT (0); R™*+Dm)nw 2 (BT (0): R+Dm)
6 6

for each o' € N"*! with |[o/| = 1 and «, ., = 0. Hence applying Lemma 4.23
again in conjunction with (4.86) and (4.87), we deduce that there exist positive constants
C3 = C3(m, N, B) and C4 which depends on m, N, B and k with C4 — 0 as k — oo such
that

/ ~ 1
[IVD® vl < C3 7/ VD v |2dx + C4 — 0
L°°<BT1(0);R('"+')”) |B+(0)|ﬂ B+(0) m“
36
as k — oo. Repeating the preceding process for DY v with |@/| = 2, then |o/| =
3,...,|d'| =1, we see that
IV D e [3 -0 (4.88)

LOO(B+ Wl (0);R(m+l)n)

ask — ooforeverya with |o/| <[ ando:erl =0.
Now fix @’ with |o'| = land«,, , | = 0. Discarding as may vy as necessary and re-indexing

the resulting sequence we may assume that 27 < 6-U+D 5o that Bt (k) C BZrk (k) C
B2+rk () € BT(0, 36_1 6~(*Dy and, in particular, B;r (k) C B16 ,(O). Define

1 2
kmﬂf+ b IV DY v Pdx = &2
rk(.yk)

Note that it is possible to show, combining Lemma 4.26 with A = 0 and (4.88), that 5,% — 0,
but this is not required in what follows.
We see from (4.84) and (4.85) that

82 > or} (4.89)
and

—(1+m+p) o
Ory) /Bg o m+l|8 D% v, — (0; D% Uk)B+ ), ﬂl dx > 8 (4.90)
Tk

Define

0 Da,vk(rkx + yk) — m&ﬁk (k).B

wi(x) = ~
&k
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Then

Vg (x) = ;—kVEiD“/vk(rkx + 0. (4.91)
k
Hence, using the change of variables x +— ryx + yi, we find
B 2 —
X [Vwg|“dx =1 and (wg)p+ =0. (4.92)
/l;]*(O) m+1 B (0).8
Furthermore, after changing variables again, we deduce from (4.90) that
g=(1+m+h) / b wPdx > 8. (4.93)
By (0)

The combination of (4.92) and the Poincaré inequality for A, weights implies (wi)xen is
bounded in Wé’z(B]Jr (0); R™). The the Rellich Compactness lemma, Lemma 2.5, therefore
yields a subsequence (wkj) jeN which converges weakly in W;’Z(BT(O); R") and strongly
in L2(Bf (0): R") toaw € Wy (B} (0); R").

Now we show that w is a weak solution of the Neumann-type problem (2.11) in Bl+(0).
Let¢ € CS°(B1(0); R") and define ¢ € CS°(By, (yi): R") by $(2) = ¢ (%) We observe

that ry Vq;(z) = V¢ (x) where x € B1(0) and z € B, (yx) satisfy z = rrx + yx. Hence, using
the change of variables x > rix + yx and (4.91), we find
B _ Tk B o
Xy (Vwg, Vo) dx = — X 1({V0; D% vp (rex + i), Vb (x))dx
B (0) €k JB(0)
—m—p

r ’ —
=Tk / & (VaDY v, Vo (Z yk))dz
€k Byt () Tk

rlfmfﬁ

=k /+ b (Vo DY v, V)dz. (4.94)
€k By (vk)

As ¢~5 € C3°(Br, (y); R™), vy is a minimiser of EP relative to © and, in view of (4.89), we

2
have ;—‘2 < %, it follows that
k

/B+< )zﬁ+]<v3ioa v, V)dz
% Ok

< C/ 2 (VDY vl + 1)dz
B ()

1 ’
=, /B oy e (VD w4 0] + Ddx
1

3 I
= Cr P /+ b (V] + = )dx
B (0) k

1

< Car™t? /Bw) (Vw487 )dx, (495

1
where C depends on m, N, f3, ||‘£||L°°(B?;(Vk);R") = ||¢||LQO(BI+(O);R,,) and is comprised of a
polynomial, with no constant terms, of ||VD5‘/ vk”Lw(BT 0):R") where |&@'| <[ = |o/| and
Le—1V)

@, .1 = 0 and is therefore independent of k in view of (4.88).
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We combine (4.92) and (4.95) to see that, for any ¢ € C3°(B1(0); R"), the weak conver-
gence of wy; to w in Wl 2(B"'(O) R") yields

= lim
j—>oo

(Vu, Ve)dx / (Vay,, Vé)dx
/B?’(O) m+1 BT(O) m+1 J

1
< C lim ry, /B+(O)xﬁ+l(|Vwkj|+5_7)dx
1

Jj—o00
=0
since ry; — 0. Hence w is a weak solution of (2.11) in B1+(0).

Using the Rellich Compactness Lemma, Lemma 2.5, we take limits in (4.92) and (4.93)
to see that

B 2 =
X [Vw|*dx <1 and wp+ =0 (4.96)
/1:31*(0) m+1 B} (0),8
and
9*<1+'"+ﬁ>/+ P wPdr =8 4.97)
B (0)
respectively. Now, in view of (4.96), the Poincaré inequality for A, weights yields
9—“+m+ﬂ>/ xbwPdx < cel—m—ﬂ/ b VwPdx. (498
B (0) By (0)

Lastly, since w is a weak solution of (2.11) we may apply Corollary 2.7 to w with § < % (so
that 20 < %). This gives a positive constant C (independent of 6) and a y € (0, 1) such that

elfm*ﬂ/ x,'f,+l|Vw|2dx <CQo)*>. (4.99)
By (0)
Combining (4.98) and (4.99) we see that
9*“*'"*/3)/ b wPde < coy?. (4.100)
By (0

€L

This holds for all fixed § € (0, 1]and we choose § < 2~ ( )% so that (4.100) contradicts
(4.97). Hence the lemma is proved. ]

4.16 Control of the mean squared oscillation of the derivatives in the interior

We need a counterpart to Lemma 4.27 which holds on a class of balls with closure contained
in the interior of RT’I.

Lemma 4.28 Fix [ € Ng. For every § > 0 there exist numbers ¢ > 0, T € (0,1) and
0 € (0, %] such that the following holds. Suppose v € Wl 2(]1%’"'H N) is a minimiser of

EP relative to O with D*v € CO7(Bj (x0); R") N Wy’ 2(B+(x0) R") foray € (0, 1)
and VD" v € L (B} (x0); R™+Dm) for every multi-zndex a € Ng’“ witha;, | =0 and
la’| < I, where B;(xo) C Rﬂ“ satisfies R < 1 and 80B;§(xo) C O. Suppose further

@ Springer



109 Page 60 of 68 J. Roberts

that for o’ € Ng"H with ), = 0 and |&'| = | and some i € {1,...,m}, we have
VDY v e L3 (B} (x0); R™ D). Ifo/| =l and «, | = 0 and

lemfﬁf xleIVvIde <&,
B (x0)

then, for every B,(y) € Ba(xo, R, TR), either

plom IV3; D v|2dx < 8 (L)2 (4.101)
Bo» T \RlI¥2 '

or
(er)*“*m)/ 10; D% v — 8; DY v, (1|7dx < 8r17’"/ IV3; D v|?dx. (4.102)
By (y) ’ By (y)

Proof The method of proof is similar to the proof of Lemma 4.27. We observe that the lemma
is invariant under scaling and translation with respect to xg in 8]1%1“ in the same way as
Lemma 4.27. Hence we assume R = 1, xo = 0, v is a minimiser of E# relative to © and

9B (0) C 0.

Suppose the statement is false. Then there exists § > 0 such that, for any fixed 6 € (0, %],
we may find a sequence (vg)ken of minimisers of £ B relative to © such that the following
holds. Each vy satisfies D* v € CO’V(W; R™) N Wé'z(Bf(O); R™) foray € (0,1)
and VDY vy € L®(B;(0); R*+D") for every multi-index o’ € Ni'™ with ), =0and
le’| < I.Fora € N(')”H withoz,/n+1 =0and |o'| =/and afixedi = 1,...,m, each vy
further satisfies Vd; D* vy € L3 (B} (0); R *+D")_ The vy also satisfy

/+ x,’zH IVvkl2 dx = e,% — 0.
B (0)

There furthermore exists a sequence of numbers 0 < 7, — 0, balls B, (yx) € B4(0, 1, ),
and numbers 0 < r; < 7z — 0 such that

" / IV3; D vg|2dx > 812 (4.103)
Brk(yk)
and
O™ [ D v = 5D v, P
Bory, (k)
> sl / |V3; D v |2dx (4.104)
By ()

for &’ with |o'| =l and ), | = 0.
Since the assumptions of the lemma are the same as the assumptions of Lemma 4.27 we
still have (4.88), namely, for every o’ with |a’| < [ and O‘;n+1 =0

||V D vy |2

— 0. (4.105)
Lo BT (0).R(m+l)n
%67|0‘/‘ 5

Define

r,l*'"/ IV3; D vy [Pdx = &2,
Brk k)

@ Springer



A regularity theory for intrinsic minimising fractional... Page 61 of 68 109

o no ;L . . . .
Fix o’ with |&’| = [ and ), ; = 0. Discarding as many k as necessary, and re-indexing

the resulting sequence to k € N, we may assume 27; < 6~ ¢*D so that B, (k) €

B4(0, %6’1, 6-U+Dy and, in particular, B, (yr) C Birs_, (0). Note that similarly to in the
3

proof of Lemma 4.27, using Lemma 4.26 with A = 0 and (4.105) we can show 5,% — 0, but
this is not used in what follows. Now consider the normalised sequence

3 DY v (rex + yi) — (8 D“/Uk)Berk %)

Ek

wi(x) =
We have

Vuwg(x) = £v8; DY vy (rex + i) - (4.106)
Ek

Hence, using the change of variables x +— rpx + yi, we find

/ |Vwi|>dx =1 and (W) gy0) =0 (4.107)
B1(0)
and, also using (4.104),
9*“*'")/ lwi|* dx > 8. (4.108)
By (0)

As a result of (4.107) and the Poincaré inequality, we observe (wi)ren is bounded in

WL2(B,(0); R"). The Rellich Compactness lemma [39, Section 1.3, Lemma 1], thus yields

a subsequence (wkj) jeN which converges weakly in Wb2(B,(0); R") and strongly in
L%(B1(0); R") to some w € W2(B;(0); R").
B

Define fr(x) = (l —{—(yk)r;]Hrkme) for each k € N. Observe that ar, =

(ykj):nilrkj € [0,47'] for every j, since each By, (yx) € Ba(0,1, 7). Thus there is
a subsequence, which we also index with k;, which converges to a € [0, 4_1]. Fur-
thermore, (fx j) jeN is uniformly bounded and equicontinuous so, by the Arzela—Ascoli
theorem, there is a uniformly convergent subsequence which we again index by k;. Since
fk‘/. x) = foy=>0+ ame)/3 pointwise, we must also have fk./‘ — f uniformly.

Now, for ¢ € Cgo (B1(0); R™), similar calculations to those in the proof of Lemma 4.27
yield

Jie (Vwy, Vo) dx
B1(0)

1
< C||¢||L°°(Bl(0);R”)rk/ [Vwg| +872dx — 0 (4.109)
By (0)

1(
as k — oo. Furthermore, as wy; converges weakly to w in W1’2(Bl(0); R™) and fk_, - f
uniformly, we conclude that

f(Vw, Vg)dx = lim fkj (Vuwg;, Ve¢)dx = 0. 4.110)

B (0) J=00.J By (0)

Hence w is a weak solution of div((1 +axm+1)ﬂ Vw) = 0 in B1(0). By linear elliptic
regularity theory, w is smooth in Bj(0). We also conclude by taking limits in (4.107) and
(4.108) that

/ |[Vw>dx <1 and Wp,0 =0 and 9—“+m>/ lw>dx > 8 (4.111)
B1(0) By (0)
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respectively using the Rellich Compactness Lemma. Since |Vw|> satisfies a mean value
inequality, namely supp, () [Vw|? < C(m, B) fB](O) |Vw|%dx as shown in Theorem 2.1 in
section III of [14], we apply the Poincaré inequality and (4.111) to see that

9—“+'">/ lw|?dx < cel—'"/ |[Vw|>dx < 092/ [Vw|?dx < CO%. (4.112)
By(0) By(0) B1(0)

This holds for all fixed 8 € (0, %] and we choose 0 < (%) 2 so that (4.112) contradicts the
last statement of (4.111). O

4.17 Higher order e-regularity

With the preceding theory in hand, we are now in a position to prove our main -regularity
theorem.

Proof of Theorem 4.1 Observe that the hypothesis of the theorem are invariant with respect

to the rescaling x — Rx + xg. Thus we will assume R = 1, xo = 0 and BOBlJr(O) c o.
We use proof by strong induction. We choose ¢ to be the number from Theorem 4.21. Then
the combination of Theorem 4.21, Lemmata 4.23 and 4.25 yielda6 = 6(m, N, B) < % and a

P € (0, 1) such that v € C7 (B (0); R") N Wg’z(B;(O); R"), Vv € L®(B] (0); R+
and d;v € Wé’z(Bg'(O); R") fori = 1,...,m. Now fix [ € Ny. The induction hypoth-
esis is that there exists § = é(m,N, B, < % anday = y@m,N,B,1) € (0,1)
such that the following holds. For o’ € Nom+l with a;rH—l = 0 and |o/| < I, we have
D¥v € CO7(BY(0); R") N Wy (B (0); R") and VDv € L¥(B (0); R™*D™). Fur-
thermore, when |a’| = [ and a;nH = 0 we suppose V0; D%y € L%(B;(O); Rty for
i =1,..., m. We have already observed that this is true when / = 0. The inductive step will
be to show the preceding statement holds, possibly for a different 6 and y, for D% v with

lo'| <!+ 1ande,,  ; = 0. We fix &' with |o¢'| =1 > 0 and o), | = 0 henceforth.
Applying Lemma 4.26, we see that

/ 1 /
/ - xﬁ+l|va,-pa v|?dx < Co (Cl + —2) / it xfl+1|aipa v — A|Pdx
By (WNRY P By ()NRY

B
+ CQ/ x!.dx (4.113)
Byt

for any B,(y) C Bz(0) with y,+1 > Oand i = 1,...,m, where Cop = Co(m, N, B)
and (,: 1, Co depend on m, N, B and are polynomial functions, with no constant terms, of
[|VD¥ v||L°C(B,J(y)mR’jj+1~R(m+'>") where &’ € N6"+1 with |&'| </ and @, | = 0. We apply

Lemmata 4.27 and 4.28, with § = %2,,,%200, to respectively obtain numbers €1 > 0, 7] €
(0,1) and 6 € (0, 1] and &2 > 0, 72 € (0, 1) and 6, € (0, 1], depending only on 8 and
hence only on m, N, §, such that if R < § and

R\-m—F /BW b IVuPdx < min(e, 3) (4.114)
R

then either (4.82) or (4.83) holds for every B;’l'(y) e BT(0, R, ‘L'llé) and either (4.101) or
(4.102) holds for every B, (y) € B4(0, R, rzlé). It follows from the proof of Theorem 4.21,
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bearing in mind R = 1 and xo = 0, that for every B;'(y) € BT(0, 1, %) we have
l—m—f} ,3 2 < 17
r /B,.*(y) X1 IVol7dx < Cr

for some y € (0, 1) and some constant C = C(m, N, ). In particular, this holds for y = 0
- - 2 2 NV 1
and r < % Hence if R = R(m, N, B,1) = (min{%‘, %2, (%) 17 then (4.114) holds on
B;f (0). We have assumed R < % so that we may later apply (4.113) with impunity on any
ball or half-ball in B;‘ 0).
First we show that (4.7) essentially holds for Vd; D* v on every B} (y) € B¥(0, R, 71 R).

‘We know that (4.82) or (4.83) holds on Brf (v). We apply (4.113) with A = 9; DO‘/UB; 3.8
1 ’

noting that |A]| < ||VD"‘/v| |L°°(B§ (y); R+ D) O S€€ that
11 ’

0 1-m—p ,
(il) / X 1V DY vPdx
2 BY,

0171
2

.
B, )

G900 = 3DV ve () gPdx - Crf.

(4.115)

Hence, regardless of which of (4.82) or (4.83) holds (bearing in mind our choice of § above),
we have

1

(o))" F /B+ ( x4V D v2dx < St /B+< )x,ﬁ+1|va,~D“’v|2dx +Cr?,
o1rp Y rp (Y

(4.116)

where 0] = %‘ and C depends on ||VD5‘/v||Lm(3§+(0);R(m+1),,) where |&@’| < [ with &;Hl =0

and, moreover, may depend on R,6;,m, N and B and hence only on m, N, B,1 as R =
R(m, N, B,1) and 6; = 6,(m, N, B). This holds for any Brf(y) e BY(0, R, T{ R). We may
apply (4.116) with r| replaced by olk r1 for every k € N and iterate to see that

l—m—ﬁ /
(0{‘}’1) /B )xlelVBiD“ v|%dx

+k (y
a1 r
1 k—1 .
o , IR
<5n'" ﬂ/+ xh 1V vPdx +C Y 27 (of T )2
rl y j=0
1 /
<= rll””’ﬁ/ xb IV DY vPdx + CrE ). @.117)
2 B ()
Setting y; = —llnngzl € (0, 1) we conclude that

r“’”*ﬂ/+ P 1V DY v Pdx
B ()

Y1 ,
<ol P <i> <r11—m—ﬁ / 8 1V9, DY v?dx + Cr%> (4.118)
A B ()
1 y
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for any r < ri, where C depends on the same factors as the constant in (4.116). This holds
for any B (y) € BY(0, R, 11 R).

We want a similar estimate for r, !~ fBrZ o) |V o; D"‘/vlzdx on balls B, (y) € B4(0, R,
(%) Ié). We calculate the constants in (4.6) from Sect. 4.3 explicitly. Then our choice of § and

a similar argument which lead to (ZNLI 182 yields the existence of a y» = y»(m, N, B) € (0, 1)
such that for any B, (y) € B4(0, R, 2 R) and any r < rp we have

, o 7\ 72 ,
rlf'"/ IVo; DY v?dx < o) "7 (—) rz“m/ |V; D* v|*dx + Cr3 |,
Br(y) rn By ()

(4.119)

where o9 = %2 and C depends on the same factors as in (4.118). We now use (4.118) and
(4.119) to show the hypothesis (4.7) from Lemma 4.8 is satisfied.

Define 7 = min{Lzl, n} < %, y = min{yj, y2}. We apply (4.118) with r; = TR. It
follows that for every BF (y) € B*(0, R, TR) we have B:FR (y) € BT(0, R, 71 R) and hence

rl_m_ﬁ/+ xZ+1|V3iD“/v|2dx
B/ (y)

y = !/ ~
=C <L> (rR)l"”‘ﬂ/ P IVaDYuPdx + CER? ). (4.120)
TR BT0)
Furthermore, applying (4.113) with A = 0 and p = 27 R implies that
(R =P / xf IV D vPdx < C(1L+ (tR)) < C, @.121)
B (¥)
R

where C dependsonm, N, 8, [ and ||VD&/U||L<>°(B§+(0);R<M+‘>") where |&/| < landéz;n_H =0.
We combine (4.120) and (4.121) to see that for every B,‘" (y) € B(0, R, ‘L'R) we have

14
plom=p /+ xb IV DY vPdx < € < ) < Cyr?, (4.122)
B/ (y) 'L'R

where C3 depends onm, N, B, and ||VD&/U||Loc(BT(0);R(m+l)n) where |&’| <[ and &;n+1 =
0.
Now let B, (y) € B4(0, R, & R). Then B, (y) C B (v) C B3>n+1 OH CBLOM e

B1(0, R, rR), where y© = y — (0, ypt1). Recalling again (4.6) from Sect. 4.3, we note that

1-m ,
(M) / |V3; D v|2dx
4 Bymg1 ()

3y 1 I=m—p /
<C (ﬁ) / b IVe DY v 2dx. (4.123)
2 Bt yH)

3Ym+1 Y
2

Since y,4+1 < TR <1, applying (4.119) on Byw41 (¥) € B4(0, R, rzlé), using (4.123), and
7
then applying (4.122) gives

rl—’"/ |V3; DY v|2dx
By (y)
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4 4 1—m ,
<C ( r ) (ym+1) / 1V, DY v[2dx + Cy,iﬂ
Ym+1 4 Byt )
r v 3y +1 ]_m_'B '3 /2 2
Sc(y ) C( Z ) f+ xm+1|vaiDa Ul dx+Cym+l
m+1 B3"m+1 (y+
Dmil
r 14 3 Y
< c( ) (CS( ym+1> +Cy,i+1>
Ym+1 2
=Gt (4.124)

where C4 depends on m, N, 8,1 and ||VD&/U||L:>0(Bg'(0);R(m+l)n) where |&@'| < [ and
5(;” +1 = 0. Together, (4.122) and (4.124) imply (4.7) from Lemma 4.8 holds for
Bt (y) € BT(0,R, %R) and B,(y) € B4(0, R, & R). Applying this lemma shows that
8,-D“/v € CO*?(B(;(O); R"™) for some é, y € (0,1) depending on m, N, B, 1. Hence,
recalling that the inductive hypothesis implies that 9; D¥v € W,;’Q(Bé+ (0); R™), we may

apply Lemmata 4.23 and 4.25 to respectively imply V9; DYv € L°°(B;£r(0); RO#+Dmy and
3

Vo;0; D%y € L/z3 (B;{(O); ]R"(m'“)) fori, j = 1, ..., m. This completes the inductive step

and therefore the pro(z)f. O

Remark 4.29 A consequence of the proof is that the number ¢ in Theorem 4.1 can be taken
to be the number from Theorem 4.21.

Theorem 4.1 yields an improvement to Theorem 4.21 for minimisers of E? relative to O.
We are now in a position to prove our partial regularity theorem.

Proof of Theorem 4.3 Aspects of the proof closely follow the proof of Theorem 3.2 in [29].
First, it follows from the theory of Schoen and Uhlenbeck [37] that there exists a set X C
Rﬁ“ , with Hausdorff dimension at most m — 2, such that v is smooth in a neighbourhood
of any point in Xjp.

Define

Shary = {y € 0: 08 (y) > ¢}

where ¢ is the number given by the Theorem 4.21 and @,’Jg (y) is the density function defined
in Remark 4.6. The upper semi-continuity of @{,3 was established in Remark 4.6 which, when
combined with the definition of Xyqyy, shows that Xy is relatively closed in O.

We write Xyqry as a countable union of compact sets of the form K N Xyqry, where
K C O is compact, and let £’ C X4y be such a set. Fix § > 0 and cover X’ by a
collection of balls B;:‘(x[) C O with BZ’ (xj)) C Owithx; € ¥ and0 < r; < 8. The
compactness of X', combined with Vitali’s covering theorem yields a finite subcollection

of balls, B:'l’ x1)y .ty B;’; (x7) for some I € N, of any such cover of X’, which satisfies

B, (x) N B, (xj) =9 fori # j 1 <i j<1I and X' C Uj_ Bs,(x;). Using the
boundary energy monotonicity formula, Lemma 4.5, we see that

I

I
Z(lOr;‘)mﬂs_1 < Z/B*( )x,i+1|Vv|2dx
ri (Xi

i=1 i=1

10m+ﬂ71
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10m+ﬁ—1
< 7/ xbIVuPda.
€ 0x[0,8]

We send § — 0T and use Lebesgue’s Dominated Convergence Theorem to see that
HM 1P (2') = 0 and hence H"~+F (Syary) = 0.

Let xg € (IR{’_’,fle UON\X. If xg € Rﬂ“ then xo € Rﬁ“\i‘im and v is smooth in
an open ball centred at xo and contained in RT‘I\Z}m C (R'f"l UON\X.Ifxg € O
then xo € O\ Xpqry and (*9{,3 (x0) < & which, combined with the fact that O\ X4,y is open
in O, implies there exists an R > 0 such that R1-m—B fB;(XO) x£+1 |Vv|2dx <& R <

1 and BOB+(xo) - (’)\Ebdry Consequently, Theorem 4.21 implies that there are 0, y €

(0, 1) such thatv € C 0, V(B z(x0); N). Furthermore, we deduce from (4.61) in the proof of
Theorem 4.21 that

l—m—ﬂ/ Vol <C( )V
r v X I
B ) m+1

on every B;F(z) € Bt (xo, R, g) which shows that @ (z) = 0 for every z € 3"B} (xo).
7

Now setting o = min{6, %} we see that @,'JS (z) = 0 forz € BOB:R (xp) which implies
BOBJr (x0) C O\ Xpqry. Furthermore, v is a Holder continuous weakly harmonic map in any
B, () with B,(y) C B »(x0). We apply Lemma 4.13 to see that v is smooth in B(,R(Xo)
and conclude that B+R (x0) C R’"H \ Zint. Consequently, we have B+R (x0) U3'BT e (x0) C
(R’"Jr1 UO)\ X. Note that B (xo)Ua B & (x0) is an open ball centred at x¢ in the (Euchdean)
topology of R’f“l UO.Hence X' is relatlvely closedin R’f“ UO. As the Hausdorff dimension
of X;nsisatmostm—2 < m—1+ 8 and Hm_l"'ﬂ(Ebdry) = 0, we deduce that H"HP—1(X) =

0. We also conclude v € Cloy((Rm+l UO)\X; N).

Consider xp € (IRT_Jrl UO)\ X with xg € O. Then, as above, we observe there isan R > 0
such that R'="~F [, xh [Vo2dy < &, R < 1 and 30B (x0) C O\ Zpary. In view
of Remark 4.29, Theorem 4.1 implies that for every [ € Ny there exist 8, y € (0, 1) such
that for every o’ € NB”H with |@| <7 and e, ; = 0 we have D¥v e C% V(B r(x0); R™).
However, we also know that (]RTH UO)\ X is open in Rﬁ“ U O. Hence there exists R > 0
such that Bg(xo) u aOBg(xo) C (R?T U O)\¥. Setting r = min{dR, R} we conclude
DY v e €% (B, (x0); R") and B;* (x0) Ud° B (x0) C (]Rﬁ+1 UO)\ X. We iteratively apply
Lemmata 4.23 and 4.25 to see that for every o’ € Ng‘“ with [o'| </and o, | = 0 we have
VD v € L¥(B; (x0); R"*FD") and D¥'v € Wé’2(8+(xo)' R") for some 7 < r. It follows
that B (xo) U 3" B (xo) C (R’ UO)\¥. Hence v € Cloc((R’”“ UO)\X; N) and for
every multi-index o’ € N”*! with o, 1 = 0 we have DYv € Cloc ((]RmJrl UO)\X; RY)
and VDYv € L (R U 0)\ Z; RODm),

Lastly, for xg as in the preceding paragraph, fix o’ € Ng”l withe,, .| =0and7 < 1such
that BF (x0) U9°B7 (x0) C (R71 U 0)\ . Making 7 smaller if necessary, we may assume
that VD% v € L®(B; (x0); R™FD1) and D*'v € CO1 (B (xg); R") for every & e NJ*!
with o?ﬁnJrl = 0 and |o;/| < |a’| + 2. We also observe that since v € CO*I(B;(xo); N)
is a Holder continuous harmonic map, it is smooth in B;r (x0) by Lemma 4.13 and
so we have x’;ﬁ18m+1(xri+18m+lD“/v) = —(A’DO‘/U + D"‘/(A(v)(Vv, Vv))) classi-

@ Springer



A regularity theory for intrinsic minimising fractional... Page 67 of 68 109

cally in B;r(xo), where A’ is the Laplacian with respect to x;, i = 1,...,m. Hence,

x,;f_lamﬂ (xf1+18m+1D"‘,v) is bounded in B;r(xo). Hence, for every B} (y) € B (xo, % %)
we calculate

Pl_m+ﬂ/ xn;—lil v (xﬁ+13m+1D°( U) 2dx < Cp*F2P.
B
Moreover, for every B, (y) € B(xo, % g) we calculate
Pl_m/ vV (xri+1am+1Da/v) IPdx < Cp*~2IP1,
By (y)
An application of Lemma 4.8 concludes the proof. O
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