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Abstract The convergence of spectra via two-scale convergence for double-porosity models
is well known. A crucial assumption in these works is that the stiff component of the body
forms a connected set. We show that under a relaxation of this assumption the (periodic) two-
scale limit of the operator is insufficient to capture the full asymptotic spectral properties
of high-contrast periodic media. Asymptotically, waves of all periods (or quasi-momenta)
are shown to persist and an appropriate extension of the notion of two-scale convergence
is introduced. As a result, homogenised limit equations with none trivial quasi-momentum
dependence are found as resolvent limits of the original operator family. This results in
asymptotic spectral behaviour with a rich dependence on quasimomenta.

Mathematics Subject Classification 35J70 · 35B27 · 47A10

1 Introduction

The model problem to study time-harmonic waves, with frequency ω, in media with
microstructure is

−div
(
aε(

x
ε
)∇u

) = ω2u in �

where the wave u represents the information being propagated, such as pressure in acoustics,
deformation in elasticity or electromagnetic fields in electromagnetism.1 The microstructured
nature of the media is characterised by periodic coefficients aε:2

1 In elasticity and electromagnetism the wave equation describes certain polarised waves: e.g. Shear polarised
wave in elasticity or Transverse Electric and Transverse Magnetic polarised waves for the Maxwell system.
2 The implied non-trivial dependence of a on ε is deliberate and, as we shall see, important.
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Fig. 1 A typical schematic of some three-dimensional composite media with period microstructure

aε(y) =
{
a1ε(y), y ∈ Q1,

a0ε(y), y ∈ Q0,

where a0ε, a1ε are (the square-root of) the wave speeds of the individual constitutive mate-
rial components, see Fig. 1. The parameter ε represents the ratio between the size of the
microstructure and the observable length scale, and is typically taken to be small. From the
point of view of applications, it is important to study the asymptotic behaviour of these waves
in the limit of vanishing ε.

A classical approximation, provided by the homogenisation theorem,3 states that for fixed
frequency ω the microstructured media can be approximated by an ‘effective’ homogeneous
media whose wave speed ahom is constant and determined directly from the ‘local periodic’
behaviour of the problem. The intuition behind why the homogenisation theorem holds is that
the ‘wavelength’ of u is long with respect to the microstructure: variations in u appear over
much longer distances than the media’s period. Mathematically, this is ensured by assuming
that aε are taken to be uniformly bounded and elliptic with respect to ε, for example

a1ε = a1, a0ε = a0, for bounded elliptic a0, a1.

It has been known for some time now that interesting effects appear when the above elliptic
conditions are not uniform. This happens for example in so-called high-contrast media. In the
context of waves, high-contrast media of particular interest are the so-called double porosity
models which admit the ‘critical’ scaling:

a1ε = a1, a0ε = ε2a0.

Physically, this critical scaling corresponds to the wavelength of u remaining ‘long’ within the
media Q1 but in media Q0 the wavelength is at the ‘resonant’ scale, i.e. of the same order as
the size of the microstructure. Thus violating the underlying intuition for the long-wavelength
approximation.

The mathematical analysis of high-contrast problems has given rise to rigorous descrip-
tions of various scale-interaction phenomena such as memory effects and other non-local
effects (e.g. [5,7–9,14,17,28]). Within the context of wave propagation, an important fea-
ture of high-contrast problems is that they contain spectral gaps (cf. [18,30,31]): frequencies
at which no wave can propagate through the underlying medium. Such gaps are important

3 Also called the long-wavelength or quasi-static approximation depending on the community.
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from the point of view of wave-guiding applications such as photonic crystal fibres. An
important initial work in the study of the spectrum of high-contrast elliptic operators was
undertaken by Zhikov [30,31]. Therein, the homogenisation theory for double porosity-type
problems was developed within the framework of the so-called two-scale convergence of
Nguetseng–Allaire [1,27]. Using this theory, Zhikov derived two-scale limit spectral equa-
tions that contain a non-trivial coupling between micro- and macro-scales. Such a coupling
leads to an eigenvalue problem with a highly non-linear spectral dependence, described by
a function β. The convergence of spectra (in the appropriate sense) was proved and, by
doing so, demonstrates that this β function provides an explicit description of the asymptotic
structure of the spectrum. Such an explicit description of the limit spectral behaviour via
two-scale homogenisation has made way for mathematical studies of high-contrast media as
wave-guides: in [20] using multi-scale asymptotics and supplemented with analysis based
on two-scale convergence in [10].

Moreover, the Zhikov β function was later independently discovered by Bouchitté and
Felbacq [6] in the specific context of TM-polarised electromagnetic wave propagation in a
dilute dielectric two-dimensional photonic crystal fibre; therein the authors made the interest-
ing interpretation of the β-function playing the role of effective negative magnetism. Later,
in the context of elasticity, a matrix analogue of the β function is derived and plays the role
of frequency-dependent effective density [3,4,32]. Such works demonstrate that the unusual
phenomena observed in high-contrast media can be described by non-standard constitutive
laws provided via two-scale homogenisation.

The idea that high-contrast media can result in the appearance of non-standard constitutive
laws and give rise to composite media with complex wave phenomena near micro-resonances
has prompted a recent energetic pursuit of such laws in the contexts of elasticity (e.g. [24])
and electromagnetism (e.g. [12,22]). Applications can be found in areas such as cloaking
(e.g. [25,26]). It was shown in the work of Smyshlyaev [29], building on related ideas in [14],
that the two-scale homogenised limit of various anisotropic elastic media contain not only
the temporal non-locality (as described by the Zhikov β function) but also exhibit spatial
non-locality. The presence of which leads to the phenomena of ‘directional’ localisation: the
number of admissible propagating wave modes depends not only on the frequency but on
the direction of propagation. Such a feature is important for cloaking applications. These
motivating works have led to recent systematic study containing rigorous asymptotic and
spectral analysis of general mathematical constructions containing ‘high-contrasts’ [21].
Analysis based on the work [21] has led to the demonstration that the two-scale convergence
is insufficient to fully study the spectrum of general high-contrast problems, see [15, Chapter
5], [11]. The reason for this inconsistency is due to the presence of quasi-periodic micro-
oscillations that persist at leading-order in general high-contrast media.

In this work we appropriately develop homogenisation theory to study quasi-periodic
micro-oscillations. This is achieved by extending the two-scale convergence framework to
admit such oscillations. We explain the (lack of the) role these micro-oscillations in the
numerous previous works on high-contrast problems. Then, we apply this theory in the
spectral analysis of a novel class of high-contrast media. In particular, we shall show that
by relaxing the geometric assumptions in the double-porosity model leads to multi-scale
homogenised models that contain a new feature: the effective wave speed depends on the
quasi-momenta in a highly discontinuous fashion. Specifically, the non-standard constitutive
equations for such high-contrast media exhibit spatial dispersion. The presence of this novel
feature is related to the contribution of the quasi-periodic waves on the microscale.
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Notations

We end the introduction with some words on the notation used in this article.
Vectors and vector-valued functions are represented by lower-case boldface symbols with

the exception of the co-ordinate points. {e1, e2, e3} denotes the Euclidean basis in R
3. For a

vector u ∈ R
3, we denote by ui its component with respect to ei , and write

u = (u1, u2, u3) =
3∑

i=1

uiei .

Points in R
3 will be denoted by the symbol x and points in the unit cell � := [0, 1)3 will

be denoted by y. The notation ∂i will be used to denote partial differentiation with respect to
the i-th coordinate variable, and we shall replace the suffix i with xi or yi when we wish to
emphasis the macroscopic or microscopic variable. Similarly, the notion divx , divy , ∇x , and
∇y , are used for the divergence or gradient of a function in terms of x or y.

Throughout � is a domain in R
d , d ≥ 1, � := (0, 1)d and θ ∈ [0, 2π)d . All of the

functions, even if real-valued, are considered to take values in the complex field.
The space C∞

# (�) denotes the usual space of smooth �-periodic functions. Whereas,
C∞

θ (�) shall denote the space of smooth functions ϕ(y) whose functions and derivatives
are θ -quasi-periodic with respect to y: ϕ(y + e j ) = exp(iθ j )ϕ(y) for each y ∈ � and each
Euclidean basis vector e j , j = 1, . . . , d . Equivalently,

C∞
θ (�) = {φ | φ = eiθ ·yψ,ψ ∈ C∞

# (�)}.
Note that C∞

0 (�) = C∞
# (�) and use the latter to avoid confusion with the notation for the

space compactly supported smooth functions.
The Sobolev space H1

# (�) is the usual Sobolev space of H1 �-periodic functions. Whereas
H1

θ (�) is defined as the closure of C∞
θ (�) with respect to the H1 norm, or equivalently as

H1
θ (�) := {eiθ ·yu# | u# ∈ H1

# (�)}. (1.1)

Also, we note H1
0 (�) = H1

# (�) and, in this situation, we use the latter to avoid confusion
with the Sobolev space of zero trace H1 functions.

For subsets {Sε}ε and S of R
d we say that Sε converges to S in the Hausdorff sense if the

following conditions hold:

1. For every λε ∈ Sε such that λε converges to some λ0, then λ0 ∈ S.
2. For every λ0 ∈ S there exists λε ∈ Sε such that limε λε = λ0.

We shall use the notation limε Sε = S when a sequence of sets Sε Hausdorff converges to S.
The Einstein summation convention will not be used in this article, that is we do not sum

with respect to repeated indices.

2 Quasi-periodic two-scale convergence

In this section we introduce an appropriate notion of convergence that will account for the
presence of microscopic oscillations that are quasi-periodic in nature. This convergence will
turn out to be a natural extension of the standard (periodic) two-scale convergence introduced
by Nguetseng–Allaire [1,27]. In particular, we aim to use this extended notion of two-scale
convergence to study the spectral properties of operator families in homogenisation theory
in a similar vein to that first introduced by Zhikov [30,31].
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2.1 Motivation

We shall motivate the notion of quasi-periodic two-scale convergence here. This motivation is
based on the principle goal of characterising the spectral asymptotics of high-contrast elliptic
operators.

Let ε be a sequence of positive real numbers with limit zero. Consider the differential
operator Aε : D(Aε) ⊂ L2(Rd) → L2(Rd) whose action is given by

Aεu := −div
(
aε(

·
ε
)∇u

)

and domainD(Aε) consists of u for which Aεu ∈ L2(Rd). Here aε are �-periodic measurable
functions, that are bounded and elliptic: ∃ν1, ν2 > 0 such that

ν1 I ≤ aε ≤ ν2 I.

In this article, we focus on aε that are uniformly bounded, i.e. ν2 is independent of ε, but
aε may degenerate in the sense that ν1 = ν1(ε) with limε ν1(ε) ≥ 0. We are interested in
analysing the structure of the spectrum σ(Aε) of Aε in the limit of ε. The strategy of the
study is to establish the existence of some operator A0 such that σ(Aε) Hausdorff converges
to σ(A0); i.e. the following conditions hold:

1. For every λε ∈ σ(Aε) such that λε converges to some λ0 we deduce that λ0 ∈ σ(A0).
2. For every λ0 ∈ σ(A0) we find λε ∈ σ(Aε) such that limε λε = λ0.

A crucial question is how to determine the operator A0. For example, in classical and
semi-classical high-contrast problems, A0 turns out the be the strong two-scale resolvent
homogenised limit of Aε, cf. [16,30,31]. To develop some intuition on what to expect in the
general case, let us recall an important result from the spectral theory of elliptic operators
with ε�-periodic coefficients: the Floquet–Bloch decomposition (see for example [23] for
more details). This result states that the following characterisation of σ(Aε) holds:

σ(Aε) =
⋃

�∈
[
0,

2π
ε

)d
σ(Aε(�))

where Aε(�) : D(Aε(�)) ⊂ L2(ε�) → L2(ε�), describe a family of densely defined self-
adjoint operators with compact resolvent given by the action that Aε(�)u = f ∈ L2(�) if
u ∈ H1

# (ε�) solves

−div
(
aε(

x
ε
)∇ei�·xu

) = ei�·x f (x), x ∈ ε�.

Taking the above into consideration we see that λε ∈ σ(Aε) if, and only if, there exists

�ε ∈ [0, 2π
ε

)d
and non-trivial uε ∈ H1

# (ε�) such that

−div
(
aε(

x
ε
)∇ei�·xuε

) = λεe
i�·xuε(x), x ∈ ε�.

By a change of variables y = x/ε and θ = ε�, we see that wε(y) := eiθ ·yuε(εy) solves

−div
(
ε−2aε(y)∇wε

) = λεwε(y), y ∈ �, (2.1)

and wε belongs to the space of H1(�) functions that satisfy the condition

wε(y + z) = eiθ ·zwε(y), y ∈ �, z ∈ Z
d ,

for some θ ∈ [0, 2π)d . This condition is typically referred to as the Bloch or quasi-periodic
condition and θ is known as the quasi-momentum. Note that θ = 0 is the usual periodicity
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condition. The Sobolev space of H1(�) θ -quasi-periodic functions coincides with H1
θ (�)

which, we recall, is be defined as

H1
θ (�) := {eiθ ·yu# | u# ∈ H1

# (�)}.
The general principle to observe here is that if we wish to study the asymptotic behaviour
of the spectrum σ(Aε) we need to keep track of the eigenfunctions that are θ -quasi-periodic
on micro-scale y := x/ε, for all θ ∈ [0, 2π)d . The notion of quasi-periodic two-scale
convergence, introduced in Sect. 2.2 below, performs such a task.

We note here that in the case of the whole space, as discussed above, one need not
refer to a notion of quasi-periodic two-scale convergence to study the asymptotics of the
spectrum; one may study the norm-resolvent limits of the operators Aε(θ) to study spectral
asymptotics, cf. [18] where the point-wise (in θ ) limits or [13] where the uniform limits were
considered in the double-porosity setting. That being said, for boundary-value problems, the
Bloch decomposition does not hold; nevertheless, the whole space (or Bloch) spectrum is
expected to contribute asymptotically to the bounded domain spectrum and the precluding
discussion is still relevant. It is this setting that the quasi-periodic two-scale convergence will
be particularly useful.

Finally, we comment that the above discussion leads to the natural question: why in
previous cases considered was it sufficient to consider the standard (periodic) two-scale limit
of Aε to ensure spectral convergence? Or put another way, when in the asymptotic limit of
ε do we need consider all quasi-periodicity and not just θ = 0. This shall be explained in
Sect. 2.3.

2.2 Definition and basic properties

This section is dedicated to the introduction of the notion quasi-periodic two-scale conver-
gence and an exposition of results that are appropriate to homogenisation theory.

Recall C∞
# (�) denotes the usual space of smooth �-periodic functions and

C∞
θ (�) = {φ | φ = eiθ ·yψ,ψ ∈ C∞

# (�)}.
The following mean-value property will be important: For every ϕ ∈ C∞

θ (�) and every
φ ∈ C∞

0 (�) the following convergence

lim
ε→0

∫

�

∣∣φ(x)ϕ
( x

ε

)∣∣2 dx =
∫

�

∫

�
|φ(x)ϕ(y)|2, (2.2)

holds. This fact follows by noting that the assertion holds for elements in C∞
# (�), see for

example [1, Lemma 1.3], and observing that multiplication by exp(−iθ · y) defines an iso-
morphism between C∞

θ (�) and C∞
# (�) that preserves absolute value. Indeed, ϕ belongs to

C∞
θ (�) if, and only if, exp(−iθ · y)ϕ belongs to C∞

# (�) and |ϕ| = |exp(−iθ · y)ϕ| in �.
We remark here that because C∞

θ (�) is isomorphic to C∞
# (�) = C∞

0 (�), with isomor-
phism exp

(− iθ · y), then the results presented in this section4 are immediately established
for each θ ∈ [0, 2π)3 if proved for θ = 0. We shall demonstrate this with the first result of
the section and omit the remaining proofs which follow in a similar manner.

Definition 1 Let uε ∈ L2(�) be a bounded sequence and u ∈ L2(� × �). Then, we say uε

(weakly) θ-quasi-periodic two-scale converges to u, denoted by uε
2−θ
⇀ u, if the following

convergence

4 The results in this section can be established by first principles making no reference to such an isomorphism.
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lim
ε→0

∫

�

uε(x)φ(x)ϕ
( x

ε

)
dx

=
∫

�

∫

�
u(x, y)φ(x)ϕ(y) dydx, ∀φ ∈ C∞

0 (�), ∀ϕ ∈ C∞
θ (�) (2.3)

holds.

Remark 1 Notice that for θ = 0, this is the standard notion of two-scale convergence.

The next important result states that bounded sequences in L2(�) are relatively compact with
respect to quasi-periodic two-scale convergence.

Proposition 1 If uε is bounded in L2(�) then, up to a subsequence, uε weakly θ -quasi-
periodic two-scale converges to some u ∈ L2(� × �).

Proof The result has been established previously for the case θ = 0, see for example [1,27,
30]. Let us consider θ 
= 0. Note that the function ũε = exp

(− iθ · y)uε is bounded in L2 and
therefore by the assertion for θ = 0, up to a discarded subsequence, ũε (0-quasi-periodically)
two-scale converges to some ũ ∈ L2(� × Q). Now, the result follows from this fact and
noting that for fixed ϕ ∈ C∞

θ (�) one has
∫

�

uε(x)φ(x)ϕ( x
ε
) dx =

∫

�

ũε(x)φ(x)exp
(− iθ · x

ε

)
ϕ( x

ε
) dx,

∫

�

∫

�
exp
(
iθ · y)ũ(x, y)φ(x)ϕ(y) dydx =

∫

�

∫

Q
ũ(x, y)φ(x)exp

(− iθ · y)ϕ(y) dydx,

and that exp
(− iθ · y) is a smooth periodic function. Hence uε

2−θ
⇀ exp

(
iθ · y)ũ. ��

An important result from the point of view of homogenisation theory is that the test functions
ϕ in (2.3) can be taken to be quasi-periodic elements of L2(�), i.e. the following result holds.

Proposition 2 If uε ∈ L2(�) θ -quasi-periodic two-scale converges to u ∈ L2(�×�), then
the following convergence

lim
ε→0

∫

�

uε(x)φ(x)ψ
( x

ε

)
dx =

∫

�

∫

�
u(x, y)φ(x)ψ(y) dydx

holds for all φ ∈ C∞
0 (�), and for all ψ ∈ L2(�) such that ψ(y + e j ) = exp(iθ j )ψ(y) for

almost every y ∈ � and j = 1, . . . , d.

Remark 2 If � is a bounded domain, as in this article, then additionally the test functions φ

can be taken to be elements of C(�).

The following results are of interest.

Proposition 3

1. For uε ∈ L2(�) θ -quasi-periodic two-scale converging to u ∈ L2(� × �) one has that

exp(−iθ · x
ε
)uε(x) ⇀

∫

�
exp(−iθ · y)u(x, y) dy weakly in L2(�).

2. For uε ∈ L2(�) θ -quasi-periodic two-scale converging to u ∈ L2(� × �) then

lim inf
ε→0

∫

�

|uε(x)|2 dx ≥
∫

�

∫

�
|u(x, y)|2 dydx .
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A result of particular interest in high-contrast homogenisation problems is the following.

Proposition 4 Let uε ∈ H1(�) satisfy

sup
ε

||uε||L2(�) < ∞, sup
ε

||ε∇uε||L2(�) < ∞.

Then, there exists u ∈ L2(�; H1
θ (�)) such that, up to a subsequence, the following conver-

gences hold:

uε
2−θ
⇀ u, ε∇uε

2−θ
⇀ ∇yu.

Recall here that H1
θ (�) is given by (1.1).

Proof Let φ and � denote respectively fixed arbitrary elements of C∞
0 (�) and C∞

θ (�; C
d).

By Proposition 1, there exists u ∈ L2(� × �) and χ ∈ L2(� × �; C
d) such that, up to a

discarded subsequence, the following convergences hold:

uε
2−θ
⇀ u, ε∇uε

2−θ
⇀ χ. (2.4)

Note that, since uε is bounded in L2(�), then εuε strongly converges to zero in L2(�)

and from Proposition 3 part 2. we conclude that

εuε
2−θ
⇀ 0. (2.5)

Let us prove that u ∈ L2(�; H1
θ (Q)). Using the convergences (2.4) and (2.5) we pass to the

limit in the identity
∫

�

ε∇uε(x) · φ(x)�( x
ε
) dx = −

∫

�

uε(x)εdiv
(
φ(x)�( x

ε
)
)

dx

= −
∫

�

uε(x)ε∇xφ(x) · �( x
ε
) dx

−
∫

�

uε(x)φ(x)divy�( x
ε
) dx,

to deduce that
∫

�

∫

�
χ(x, y) · φ(x)�(y) dydx = −

∫

�

∫

�
u(x, y)φ(x)divy�(y) dydx .

Therefore, for almost every x , the functions χ(x, ·) and u(x, ·) are related by the identity
∫

�
χ(x, y) · �(y) dy = −

∫

�
u(x, y)divy�(y) dy, ∀� ∈ C∞

θ (�; C
d).

It is clear that C∞
0

(
(0, 1)d

) ⊂ C∞
θ (�) and so u ∈ H1(�) with ∇yu = χ . It remains to show

u belongs to H1
θ (�). This follows from noting that after performing integration by parts in

the above identity we arrive at
∫

∂�
u(x, y)�(y) · ν dS(y) = 0, ∀� ∈ C∞

θ (�; C
d).

Setting � = eiθ ·y�# above, for arbitrary smooth �-periodic �#, demonstrates that
u#(x, ·) := e−iθ ·yu(x, ·) is an element of H1(�) that satisfies periodic boundary conditions
with respect to y. That is, u#(x, ·) ∈ H1

# (�) and so [see Definition (1.1)] u(x, ·) ∈ H1
θ (�).

��
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We end this section with a result that is illuminating when it comes to studying the convergence
of spectra for parameter-dependent operator families. It readily provides a one-sided justifi-
cation for the Hausdorff convergence of the high-contrast spectra to the spectrum associated
to quasi-periodic two-scale limits. This result is based on the following definition, which
extends the notion of strong resolvent two-scale convergence first introduced by Zhikov
[30,31].

Definition 2 Fix θ ∈ [0, 2π)d , and let Aε and A be non-negative self-adjoint operators
respectively defined in L2(�) and H a closed subset of L2(� × �). We say that Aε strong
resolvent θ -quasi-periodic two-scale converges to A if for every fε(x) ∈ L2(�) that θ -quasi-
periodic two-scale converges to f (x, y) ∈ L2(� × �), the following convergence

uε = (Aε + I )−1 fε
2−θ
⇀ u = (A + I )−1P f, as ε → 0

holds. Here, P is the orthogonal projection onto H in L2(� × �).

Here, we state an important consequence of such resolvent convergence. The proof, omitted
here, follows standard spectral theoretic arguments, see for example [30].

Proposition 5 If Aε strong resolvent θ -quasi-periodic two-scale converges to A then the
spectrum σ(A) of A is related to the spectrum σ(Aε) of Aε in the following sense:

For every λ ∈ σ(A) there exists λε ∈ σ(Aε) such that λε converges to λ as ε tends to
zero.

2.3 On the relevance of quasi-periodic two-scale convergence in spectral
asymptotics

Proposition 5 informs us that, in principle, one should consider all strong quasi-periodic
two-scale limits of an operator Aε to fully characterise its limit spectrum (in the Hausdorff
sense). Yet, clearly this is not always the case: such a notion of convergence has not appeared
previously, nor was it needed, to study the spectral asymptotics of classical and particular
double-porosity operators. The reason for this shall be elucidated here. Moreover, at the end
of this section we shall argue when quasi-periodic convergence is necessary via a model
problem that we later study in detail in this article.

2.3.1 Classical homogenisation

Consider the resolvent problem: For fixed f ∈ L2(�) find uε ∈ H1
0 (�) such that

− div
(
a( x

ε
)∇uε

)+ uε = f, (2.6)

where the symmetric matrix-valued function a is �-periodic, elliptic and bounded: ∃ν > 0
such that

ν|ξ |2 ≤ a(y)ξ · ξ ≤ ν−1|ξ |2, ∀ξ ∈ C
d , a.e. y ∈ �.

The following homogenisation theorem is classical.

Theorem 1 (Classical homogenisation theorem) Let ε be a sequence with limit 0, and fε ∈
L2(�) a sequence such that fε weakly converges in L2(�) to some f0 as ε tends to zero. Then
uε ∈ H1

0 (�) the solution to (2.6), for f = fε, converges weakly in H1
0 (�) (and strongly in

L2(�)) to u0 ∈ H1
0 (�) the solution to

−div
(
ahom∇u0

)+ u0 = f0.

123



76 Page 10 of 33 S. Cooper

Here ahom is the constant symmetric homogenised matrix determined by a:

ahomξ · ξ := min
N∈H1

# (�)

∫

�
a
(∇N + ξ) · (∇N + ξ), ∀ξ ∈ R

d .

It is well-known that the homogenisation theorem implies the Hausdorff convergence of
spectra (cf. [2, Section 2]):

lim
ε

σ (Aε) = σ(Ahom).

Let us study the quasi-periodic two-scale limits of uε.

Proposition 6 Fix θ ∈ (0, 2π)d and consider fε ∈ L2(�) such that fε
2−θ
⇀ f0. Then,

uε ∈ H1
0 (�) θ -quasi-periodic two-scale converges to zero; that is uε

2−θ
⇀ 0.

Remark 3 1. Proposition 6 informs us that for the classical resolvent problem (2.6), the non-
zero quasi-periodic micro-oscillations at leading order do not contribute to the spectral
asymptotics. So one need only study the θ = 0 quasi-periodic oscillations, i.e. the
standard two-scale limit. It is well-known that the (periodic) two-scale limit coincides
with the classical limit provided by Theorem 1, see for example [1,30].

2. The part of the spectrum corresponding the θ -quasi-periodic micro-oscillations, for θ 
=
0, actually resides in an ε−2 neighbourhood of infinity; this can be formally seen from
the considerations of Sect. 2.1: for aε independent of ε, the eigenvalues λε in (2.1) are
clearly of the order ε−2. To study such ‘high-frequency’ spectrum one can consider
the re-scaled operator ε2Aε, that is consider coefficients of the form aε = ε2a. The
precise study of such high-frequency spectra was performed in [2] for a broader class
of moderately contrasting locally periodic coefficients. Therein, the authors provide a
rigorous description of the high-frequency spectral asymptotics in terms of non-trivial
quasi-momenta θ . This was done by introducing an appropriate notion of “Bloch wave
homogenisation”. For the reduced setting of (globally) periodic coefficients, the Bloch-
wave operator-limits determined therin can readily be shown to be equivalent to the
θ-quasi-periodic two-scale limits.

Proof of Proposition 6 The sequence fε weakly converges, cf. Proposition 3 part 1., and so
is bounded. Multiplying (2.6) (for f = fε) and integrating over �, and using the ellipticity
of a, produces the a-priori bound

‖uε‖2
L2(�)

+ ν‖∇uε‖2
L2(�)

≤ ‖ fε‖2
L2(�)

≤ C < ∞.

Applying Proposition 4, we deduce that there exists u ∈ L2(�; H1
θ (�)) such that, up to a

subsequence, the following convergences hold:

uε
2−θ
⇀ u, ε∇uε

2−θ
⇀ ∇yu.

Let us show u = 0: ∇uε is a bounded sequence and so ε∇uε strongly converges to zero in
L2. Therefore, by Proposition 3 part 2., we deduce ∇yu = 0. As � is connected it follows
that u is constant. Yet uε ∈ H1

θ (�) and there are no non-trivial constant θ -quasi-periodic
functions for θ 
= 0, see (1.1). Hence, u = 0. ��
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2.3.2 Double-porosity model

Consider the resolvent problem: For fixed f ∈ L2(�) find uε ∈ H1
0 (�) such that

− div
(
aε(

x
ε
)∇uε

)+ uε = f. (2.7)

Here

aε(y) =
{

a1(y), y ∈ Q1,

ε2a0(y), y ∈ Q0,

where Q0 is a smooth compactly contained subset of � such that, for Q1 := �\Q0, the
periodic extension

F1 :=
⋃

z∈Zd

(Q1 + z)

forms a connected set in R
d . The functions ai , i = 0, 1 are taken to be real-valued, elliptic

and bounded on Qi . The following homogenisation theorem is established in [30, Theorem
5.1].

Theorem 2 Suppose f = fε in the right-hand side of (2.7) two-scale converges to some

f0, that is fε
2−θ
⇀ f0 for θ = 0. Then, the sequence of solutions uε two-scale converges to

u0(x, y) = u(x) + v(x, y), where (u, v) belongs to

V0 = H1
0 (�) ⊕ L2(�; H1

0 (Q0))

and uniquely solves
∫

�

ahom
dp ∇xu(x) · ∇xφ(x) dx +

∫

�

∫

�
a0(y)∇yv(x, y) · ∇yϕ(x, y) dydx

+
∫

�

∫

�
(u(x) + v(x, y)) · (φ(x) + ϕ(x, y)) dydx

=
∫

�

∫

�
f0(x, y) · (φ(x) + ϕ(x, y)) dydx, ∀φ ∈ H1

0 (�), ∀ϕ ∈ L2(�; H1
0 (Q0)).

(2.8)
Here, ahom

dp is the constant symmetric andpositive homogenisedmatrix for perforated domains
determined by a1:

ahom
dp ξ · ξ := min

N∈H1
# (Q1)

∫

Q1

a1
(∇N + ξ) · (∇N + ξ), ∀ξ ∈ R

d .

This result informs us that Aε strongly two-scale converges to the operator A0, defined
in L2(� × �), associated to the above two-scale limit resolvent problem. Therefore, by
Proposition 5 for θ = 0, the lower-semicontinuity of the spectral convergence is ensured. In
fact, Zhikov proved in [30, Theorem 8.1], under the condition that F1 is connected in R

d ,
the stronger result

lim
ε

σ (Aε) = σ(A0).

Let us determine the strong resolvent quasi-periodic two-scale limits of Aε.

Proposition 7 Fix θ ∈ (0, 2π)d . Suppose f = fε in the right-hand side of (2.7) such that

fε
2−θ
⇀ f0 to some f0 ∈ L2(�×�). Then, the sequence of solutions uε θ -quasi-periodically

two-scale converges to v0(x, y) ∈ L2(�; H1
0 (Q0)) the solution to
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∫

�

∫

�
a0(y)∇yv0(x, y) · ∇yϕ(x, y) dydx

+
∫

�

∫

�
v(x, y) · ϕ(x, y) dydx

=
∫

�

∫

�
f0(x, y) · ϕ(x, y) dydx, ∀ϕ ∈ L2(�; H1

0 (Q0)). (2.9)

Remark 4 1. Note that Aθ = A is independent of θ for θ 
= 0, and its spectrum is the
point spectrum given by the operator whose action is u �→ −div(a0∇u) with domain
{u ∈ H1

0 (Q0) | − div(a0∇u) ∈ L2(Q0)}.
2. It is easy to see A ⊂ A0 [by noting that setting u = φ = 0 in (2.8) gives (2.9)] and so

⋃

θ 
=0

σ(Aθ ) = σ(A) ⊂ σ(A0).

The set
⋃

θ 
=0

σ(Aθ ),

is the limit spectrum arriving from quasi-periodic micro-oscillations.
3. The restriction of the limit spectrum σ(A0) to

⋃
θ 
=0 σ(Aθ ) is achieved by considering the

purely macro-scopic component u(x) (of eigenfunctions) to be zero. For this reason, we
coin this spectrum to be pure Bloch spectrum. In the simplified setting of double-porosity
the pure Bloch spectrum is point spectrum (due to the fact Aθ = A is independent of θ

for θ 
= 0). In general, we expect this spectrum to have band-gap structure, and the gaps
have only contracted to points here due to the geometric constraint that F1 is connected
in R

d . This expectation is verified in Sect. 6.
4. Even though the strong resolvent θ -quasi-periodic limit of Aε exists, it has trivial depen-

dence on θ , θ 
= 0 and more importantly is a restriction of the two-scale limit A0. Hence,
one need only consider A0, and this explains why in this setting one is to expect Zhikov’s
result limε σ (Aε) = σ(A0). In general, the limit A0 will not be sufficient to capture the
full spectral asymptotics.

Proof of Proposition 7 Let us consider a1 (respect. a0) to be extended by zero into Q0

(respect Q1), and consider ν > 0 to be the constant such that

a1 + a0 ≥ ν.

The solution uε solves
∫

�

(a1(
x
ε
) + ε2a0(

x
ε
))∇uε · ∇φ +

∫

�

uεφ =
∫

�

fεφ, ∀φ ∈ H1
0 (�). (2.10)

Setting φ = uε in the above variational problem and using the fact that a1 + a0 ≥ ν, we
deduce the a-priori bound (for ε ≤ 1)

‖uε‖2
L2(�)

+ ν‖ε∇uε‖2
L2(�)

≤ ‖ fε‖2
L2(�)

≤ C < ∞.

Additionally, we have the bound

‖√a1(
x
ε
)∇uε‖2

L2(�)
≤ ‖ fε‖2

L2(�)
≤ C < ∞.

Indeed, a1 ≥ 0 and
∫

�

a1(
x
ε
)∇uε · ∇uε ≤

∫

�

(a1(
x
ε
) + ε2a0(

x
ε
))∇uε · ∇uε +

∫

�

|uε|2 =
∫

�

fεuε.
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By Proposition 4 it follows that, up to a discarded subsequence,

uε
2−θ
⇀ v0, and ε∇uε

2−θ
⇀ ∇yv0, (2.11)

for some v0 ∈ L2(�; H1
θ (Q)).

Let us show that v0 ∈ L2(�; H1
0 (Q0)). By Proposition 2 it follows that

√
a1(

x
ε
)ε∇uε

2−θ
⇀

√
a1(y)∇yv0.

Yet
√
a1(

x
ε
)ε∇uε strongly converges to zero in L2(�). Therefore

√
a1(y)∇yv0 = 0, which

is equivalent to ∇yv0 = 0 on Q1 (recall a1 is positive on Q1 and zero on Q0). As Q1 is
connected then v0 is constant in Q1. Now, since the periodic extension F1 =⋃z∈Zd (Q1 + z)
forms a connected set then v0 is constant in F1. Yet, v0 ∈ H1

θ (�) for θ 
= 0 and consequently
this constant is zero, cf (1.1).

It remains to prove v0 solves (2.9). This can easily be deduced by passing the the θ -quasi-
periodic limit in (2.10) for test functions φ(x) = ψ(x)ϕ( x

ε
), ψ ∈ H1

0 (�), ϕ ∈ H1
0 (Q0) and

using convergences (2.11). ��

2.3.3 An example with non-trivial quasi-periodic limits

Let us provide an example which demonstrates that in general the family Aθ , of strong
resolvent θ -quasi-periodic limits to Aε, are not restrictions of A0.

Suppose, we consider (2.7) for coefficients

aε = a1 + ε2a0,

and ai are real-valued �-functions such that a1 ≥ 0 and a1 + a0 ≥ ν > 0. Let fε be a
bounded sequence and uε solve (2.7) for f = fε. Arguing as in the proof of Proposition 7,
we see that uε to solution to (2.7) will satisfy the a-priori bounds

‖uε‖2
L2(�)

+ ν‖ε∇uε‖2
L2(�)

+ ‖√a1(
x
ε
)∇uε‖2

L2(�)
≤ ‖ fε‖2

L2(�)
≤ C < ∞.

In particular, Proposition 4 informs us that up to a subsequence

uε
2−θ
⇀ u0, and ε∇uε

2−θ
⇀ ∇yu0,

for some u0 ∈ L2(�; H1
θ (Q)). Moreover, by an application of Proposition 2 we deduce that

√
a1∇yu0 = 0.

Denoting by Vθ the closed linear subspace of H1
θ (�) given by5

Vθ = {v ∈ H1
θ (�) | √a1∇yv = 0}.

Suppose we show an example where Vθ is not a subset of V0 for some non-trivial Vθ , θ 
= 0.
Then, for such examples we should not expect that A0 is an extension of Aθ , nor should we
expect σ(Aθ ) ⊂ σ(A0). Let us provide such an example. The conjectures (stated immediately
above) based on this example will be proved rigorously in the remainder of the article.

Suppose Q1 is the cylinderical domain

Q1 := [0, 1) × [ 1
4 , 3

4

]2
,

5 The space V0 was first introduced in [29] and coined the space of microscopic oscillations. We have appro-
priately extended this notion to θ-quasi-periodic oscillations here, θ 
= 0.
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and

a1(y) :=
{

1, y ∈ Q1,

0, y ∈ Q0.

Notice that F1 :=⋃z∈Z3(Q1 + z) the periodic extension of Q1 into R
d consists of infinitely

many mutually disjoint cylindersCl := R×[ 1
4 +l1,

3
4 +l2]2, ∀l ∈ Z

2. That is, the assumptions
of Sect. 2.3.2, and in particular [30,31], do not hold.

Now v ∈ Vθ if, and only if, v ∈ H1
θ (�) with v = c for some c ∈ C on Q1. This implies,

cf (1.1), that

v(1, y2, y3) = eiθ1v(0, y2, y3), (y1, y2) ∈ (0, 1)2, j ∈ {1, 2, 3},
(in the sense of trace). Then, for (y2, y3) ∈ ( 1

4 , 3
4 )2 we arrive at the condition

c = eiθ1c.

Therefore, if θ1 
= 0, then the above condition only holds if c = 0. That is v must necessarily
be zero on Q1. On the other hand, if θ1 = 0 then any H1

θ (�) function that is constant on Q1

belongs to Vθ . In particular we see that Vθ does not belong to V0 for all θ ∈ (0, 2π)3.

Remark 5 Note that if Q1 contains a connected subset which joins two opposite faces of the
square � then the space Vθ non-trivially depends on θ . Consequently, non-trivial limit Bloch
spectrum is expected for θ aligned orthogonally to these faces.

The remainder of the article is dedicated to determining the strong quasi-periodic two-
scale limits of Aε for such fibre-like inclusions. Moreover, we demonstrate that indeed Aθ

are not restrictions of A0 and that σ(Aθ ) form non-trivial subsets of limε σ (Aε).

3 Problem formulation and homogenisation

In this article we are concerned with the asymptotic analysis of the resolvent problem
{

Find uε ∈ H1
0 (�) such that

− div
(
aε(

x
ε
)∇uε

)+ uε = fε in �
(3.1)

where ε < 1 is a small parameter, � is a smooth open bounded star-shaped domain6 and
fε ∈ L2(�) known. The coefficient aε is given by

aε(y) =
{

a1(y), y ∈ Q1,

ε2a0(y), y ∈ Q0,
0 ≤ ai , a

−1
i ∈ L∞(Qi ), ai = 0 on Q1−i , i = 0, 1,

(3.2)
and the regions Q0 and Q1 are described as follows (cf. Fig. 2).

Geometric assumptions For j = 1, 2, 3 we consider smooth domains S j compactly contained
in (0, 1)2 that have mutually disjoint closures. We denote by C j the cylinder aligned to the
j-th co-ordinate axis with cross-section S j , i.e. C1 := {y ∈ (0, 1)3

∣∣ y ∈ (0, 1) × S1},
C2 := {y ∈ (0, 1)3

∣∣ y = (z2, z3, z1), z ∈ (0, 1) × S2} and C3 := {y ∈ (0, 1)3
∣∣ y =

(z3, z1, z2), z ∈ (0, 1) × S3}.
Then, for a given non-empty subset I of {1, 2, 3}, we consider Q1 = ∪i∈ICi . We denote

by �i = ∂Ci\∂Q and � =⋃i∈I �i = ∂Q1\∂Q.

6 All the results and proofs follow through in an identical manner for the case where � is the whole space.
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Under this geometric assumption we determine for each θ ∈ [0, 2π)3 the strong resolvent
θ -quasi-periodic two-scale limit, cf. Sect. 2, of the self-adjoint operator Aε associated to
resolvent problem (3.1). That is, for a fixed θ ∈ [0, 2π)3 and a given bounded sequence

fε ∈ L2(�) such that fε
2−θ
⇀ f , i.e.

lim
ε→0

∫

�

fε(x)φ(x)ϕ
( x

ε

)
dx

=
∫

�

∫

�
f (x, y)φ(x)ϕ(y) dydx, ∀φ ∈ C∞

0 (�), ∀ϕ ∈ C∞
θ (�)

we aim to determine the θ -quasi-periodic two-scale limit behaviour of the solution uε ∈
H1

0 (�) to
∫

�

(
a1(

x
ε
) + ε2a0(

x
ε
)
)∇uε(x) · ∇φ(x) dx +

∫

�

uε(x)φ(x) dx

=
∫

�

fε(x)φ(x) dx, ∀φ ∈ C∞
0 (�). (3.3)

As fε is bounded in L2(�), upon setting φ = uε in (3.3) we deduce that the sequences

||√a1(
·
ε
)∇uε||L2(�;C3), ||ε∇uε||L2(�;C3), and ||uε||L2(�), (3.4)

are bounded. Let us describe the θ -quasi-periodic two-scale limit, referring to Sect. 4 for the
details.

The limit of uε(x) will be a function u(x, y), of two variables x ∈ �, y ∈ Q, that is
θ -quasi-periodic with respect to the second variable y, cf Proposition 4. Furthermore, due to
the fact that in each cylinder Ci , i ∈ I, the gradient of uε is bounded, the limit u necessarily
belongs to the (Bochner) space L2(�; Vθ ) where

Vθ := {v ∈ H1
θ (Q) | v is constant in Ci for each i ∈ I}. (3.5)

It follows from this [see (1.1)] that u is non-zero in cylinder Ci if and only if the i-th
component θi of θ is zero. If θi = 0, then we determine that ui is not only non-trivial but it
is actually more regular in the xi -th coordinate direction: ∂xi ui ∈ L2(�).

More precisely, for Iθ the subset of indexes I ⊆ {1, 2, 3} given by Iθ := {i ∈ I | θi = 0},
we denote by C

θ the closed subspace of C
3 spanned by {ei }i∈Iθ ,7 and show that the function

u belongs to the set

Uθ = {u ∈ L2(�; H1
θ (Q))

∣∣ u = ui on � × Ci ,

for some u ∈ L2(�; C
θ ) with ∂i ui ∈ L2(�) and uiνi = 0 on ∂�

}
,

(3.6)

which is clearly a Hilbert space when endowed with the inner product

(u, v)Uθ
:=
∑

i∈Iθ

∫

�

∂i ui (x)∂ivi (x) dx +
∫

�

∫

Q0

∇yu(x, y) · ∇yv(x, y) dydx

+
∫

�

∫

Q
u(x, y)v(x, y), dydx .

Here, ν is the outer unit normal to ∂�.

7 Note that C
θ is either the whole space, a plane or a line in C

3.
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For each fibre Ci there corresponds an effective constant material parameter ahom
i > 0

given by

ahom
i =

∫

Ci

a1(y)[∂yi N (i)(y) + 1] dy, (3.7)

where N (i) ∈ H1
#i

(Ci ) := {u ∈ H1(Ci ) | u is 1-periodic in the variable yi } is the unique
solution to the cell problem

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ci

a1(y)
[∇N (i)(y) + ei

] · ∇φ(y) dy = 0, ∀φ ∈ H1
#i (Ci ),

∫

Ci

N (i) = 0.

(3.8)

Then, for each θ ∈ [0, 2π)3, the θ -quasi-periodic two-scale limit problem is formulated as
follows: For f ∈ L2(� × Q) find u ∈ Uθ such that

∑

i∈Iθ

∫

�

ahom
i ∂xi ui (x)∂xi φi (x) dx +

∫

�

∫

Q0

a0(y)∇yu(x, y) · ∇yφ(x, y) dydx

+
∫

�

∫

Q
u(x, y)φ(x, y) dydx =

∫

�

∫

Q
f (x, y)φ(x, y) dydx, ∀φ ∈ Uθ .

(3.9)

As ahom
i are positive numbers and a−1

0 ∈ L∞(Q0) it follows that the left-hand side of the
above problem defines an equivalent inner product on the space Uθ , and consequently the
existence and uniqueness of solutions u to (3.9) are ensured by the Riesz representation
theorem.

Setting φ = 0 on Q1 in (3.9) gives the equation

−divy
(
a0(y)∇yu(x, y)

)+ u(x, y) = f (x, y), x ∈ �, y ∈ Q0,

and a subsequent integration by parts in (3.9) leads to the variational formula

∑

i∈Iθ

∫

�

ahom
i ∂xi ui (x)∂xi φi (x) dx +

∑

i∈Iθ

∫

�

(∫

�i

a0(y)∇yu(x, y) · n(y) dy

)
φi (x)dx

+
∑

i∈Iθ

|Ci |
∫

�

ui (x)φi (x)dx =
∑

i∈Iθ

∫

�

(∫

Ci

f (x, y) dy

)
φi (x)dx,

for all φ ∈ L2(�, C
θ ), such that ∂iφi ∈ L2(�). For each fixed j ∈ Iθ we set φ j = φ,

φ ∈ C∞
0 (�) and φi = 0 for i 
= j , above. This leads to the θ -quasi-periodic two-scale

homogenised system of equations.

for each j ∈ Iθ :

⎧
⎪⎨

⎪⎩

−ahom
j ∂2

x j u j (x) + T j (u) + |C j |u j = 〈 f 〉 j (x), x ∈ �,

−divy
(
a0(y)∇yu(x, y)

)+ u(x, y) = f (x, y), x ∈ �, y ∈ Q0,

u0 = u j on � × � j , u jν j = 0 on ∂�,

and u0 = 0 on � × �i , for i ∈ I\Iθ .

(3.10)
Here

T j (u)(x) =
∫

� j

a0(y)∇yu(x, y) · n(y) dS(y), 〈 f 〉 j (x) =
∫

C j

f (x, y) dy,

for n the outer unit normal of � j = ∂C j\∂Q. We now state the main result of the article.
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Theorem 3 Consider fε ∈ L2(�), f ∈ L2(� × Q) such that fε
2−θ
⇀ f , and uε the solution

to (3.3). Then uε converges, up to some subsequence, in the θ -quasi-periodic sense to u ∈ Uθ

the unique solution to (3.9), equivalently (3.10).

An immediate consequence of Theorem 3 is that for each θ ∈ [0, 2π)3, the operator Aε

strong resolvent θ -quasi-periodically two-scale converges to the operator Ahom
θ associated to

problem (3.10), see Definition 2 in Sect. 2. Consequently, Proposition 5 informs us that the
lower semi-continuity of the spectra in the Hausdorff sense is ensured:

for every λ ∈
⋃

θ∈[0,2π)3

σ(Ahom
θ ) ∃ λε ∈ σ(Aε) such that lim

ε→0
λε = λ.

The structure of the limit spectrum
⋃

θ∈[0,2π)3
σ(Ahom

θ ) is analysed in Sect. 6 and described in

Proposition 10.

Remark 6 A seperate issue, not explored here, is the so-called spectral completeness state-
ment, i.e. the question of whether or not the remaining criterion for Hausdorff convergence
of spectra is satisfied: does it follow that

for every λε such that lim
ε→0

λε = λ, then λ ∈
⋃

θ∈[0,2π)3

σ(Ahom
θ )?

In general this will not be true due to the presence of the boundary, and the fact that Q0

intersects the boundary. This leads to the expectation that there exists non-trivial spectrum
due to surface waves asymptotically localised near the boundary, cf. [2] for analoguous results
in the context of classical locally periodic media. For the case of � being the torus or the
whole space the above assertion is expected to hold and will be explored in future works.

4 Proof of the homogenisation theorem

This section is dedicated to the proof of Theorem 3. To do this, we shall develop an appropriate
quasi-periodic two-scale variation of a powerful method first introduced in [21] in the context
of standard (periodic) two-scale convergence, i.e. θ -quasi-periodic two-scale convergence for
θ = 0. In what follows φ, ϕ and � will denote respectively fixed arbitrary elements ofC∞

0 (�),
C∞

θ (Q) and C∞
θ (Q; C

3).

4.1 Technical preliminaries

The following results will be of importance in the proof of the homogenisation theorem.

Lemma 1 Let B be the closure of a smooth domain and let B1 be a smooth bounded domain
such that B ⊂ B1 and A = B1\B is a connected set. Then every u ∈ H1

(
(0, 1) × A

)
can be

extended to (0, 1) × B1 as a function ũ ∈ H1
(
(0, 1) × B1

)
such that

∫

(0,1)×B1

|∇ũ|2 ≤ c
∫

(0,1)×A
|∇u|2,

∫

(0,1)×B1

|̃u|2 ≤ c
∫

(0,1)×A
|u|2,

(4.1)

where c does not depend on u ∈ H1((0, 1) × A).
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Proof Suppose u ∈ H1
(
(0, 1)× A

)
. Then, by Fubini’s theorem, for almost every x1 ∈ (0, 1)

the function u(x1, ·) belongs to H1(A) and let Eu(x1, ·) be the Sobolev extension of u(x1, ·)
into B1 given in [19, Lemma 3.2, pg. 88]. In particular, one has

∫

B1

|∇′Eu(x1, ·)|2 ≤ c
∫

A
|∇′u(x1, ·)|2,

∫

B1

|Eu(x1, ·)|2 ≤ c
∫

A
|u(x1, ·)|2,

(4.2)

where c does not depend on u nor x1. Here, ∇′ denotes the gradient vector (0, ∂x2 , ∂x3).
Consider ũ given by

ũ(x1, ·) := Eu(x1, ·), a.e. x1 ∈ (0, 1). (4.3)

Then ∇′ũ(x1, ·) = ∇′Eu(x1, ·) and from assertion (4.2) it follows that
∫

(0,1)×B1

|∇′ũ|2 ≤ c
∫

(0,1)×A
|∇′u|2,

∫

(0,1)×B1

|̃u|2 ≤ c
∫

(0,1)×A
|u|2.

To prove (4.1), it remains to demonstrate that ∂x1 ũ ∈ L2
(
(0, 1) × B1

)
and

∫ 1

0

∫

B1

|∂x1 ũ|2(x1, x
′) dx ′dx1 ≤ c

∫ 1

0

∫

A
|∂x1u|2(x1, x

′) dx ′dx1. (4.4)

For each t ∈ R, the difference quotient is given by

Dt ũ(x1, x
′) := ũ(x1 + t, x ′) − ũ(x1, x ′)

t
,

where we have extended ũ trivially by zero into R\(0, 1). Notice that Dt ũ = EDtu, i.e. the
extension into B1 of the function u(x1+t,·)−u(x1,·)

t = Dtu(x1 + t, ·), and consequently

∫ 1

0

∫

B1

|Dt ũ|2(x1, x
′) dx ′dx1 ≤ c

∫ 1

0

∫

A
|Dtu|2(x1, x

′) dx ′dx1.

Since Dtu converges strongly in L2
(
(0, 1) × A

)
to ∂x1u, it follows that Dt ũ is a Cauchy

sequence in L2
(
(0, 1)× B1

)
and this limit can be identified, using the fact that (Dt ũ, φ)L2 =

(̃u, D−tφ)L2 for φ ∈ C∞
0

(
(0, 1) × B1

)
, as ∂x1 ũ. Furthermore, passing to the limit in the

above inequality yields (4.4). ��
Proposition 8 Fix θ ∈ [0, 2π)3. There exists a constant C = Cθ > 0 such that

inf
v∈Vθ

||u − v||H1
θ
(Q) ≤ Cθ ||√a1∇u||L2(Q), ∀u ∈ H1

θ (Q).

Here Vθ = ker
√
a1∇θ = {u ∈ H1

θ (Q)
∣∣√a1∇u ≡ 0}.

Proof For each i ∈ I, let Si be the cross-section of the cylinder Ci . Since Si are compactly
contained in (0, 1)2 and have mutually disjoint closures then there exists open Ai such that
Si ⊂ Ai ⊂ (0, 1)2 and Ai are mutually disjoint. Let χi ∈ C∞

0 (Ai ) be smooth cut-off
functions that are identity on Si , we extend χi by zero to (0, 1)2.
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Now using Lemma 1, let ũi be the extension of u|Ci ∈ H1(Ci ) to H1(Di ), where Di is
the cylinder whose axis is parallel to yi with cross-section Ai . Note that since u is θi -quasi-
periodic in the variable yi , then the extension will be also, see (4.3). By Lemma 1 it follows
that ∫

Di

|∇ũi |2 ≤ c
∫

Ci

|∇ui |2. (4.5)

For θi 
= 0, the following Poincaré inequality
∫

Di

|ũi |2 ≤ |θi |−2
∫

Di

|∇ũi |2 (4.6)

holds8 For θi = 0, one has
∫

Di

|ũi − 〈ũi 〉|2 ≤ C
∫

Di

|∇ũi |2 (4.7)

for some C > 0. Here 〈ũi 〉 := 1
Di

∫
Di

ũi .

Recalling, Iθ = {i ∈ I | θi = 0}, we set ũ =∑i∈Iθ χi (ũi − 〈ũi 〉) +∑i∈I\Iθ χi ũi , here
χi are taken to be constant in the variable yi and as above the complementary directions. It
follows that ũ ∈ H1

θ (Q) and u − ũ ∈ Vθ . Note that, by construction and inequalities (4.6),
and (4.7), one has

||̃u||2H1(Q)
≤ cθ

∑

i∈I
||∇ũi ||2L2(Di )

.

Now, the positivity of a1 on Q1 and (4.5) imply that the element v := u − ũ of Vθ is such
that

||u − v||2H1(Q)
= ||̃u||2H1(Q)

≤ Cθ

∫

Q1

a1|∇u|2,

and the result follows. ��
4.2 Proof of Theorem 3

Consider the sequence uε of solutions to (3.3), i.e.
∫

�

(
a1(

x
ε
) + ε2a0(

x
ε
)
)∇uε(x) · ∇φ(x) dx +

∫

�

uε(x)φ(x) dx

=
∫

�

fε(x)φ(x) dx, ∀φ ∈ C∞
0 (�). (4.8)

for fε
2−θ
⇀ f , and recall, cf. (3.4), that

sup
ε

(||√a1(
·
ε
)∇uε||L2(�;C3) + ||ε∇uε||L2(�;C3) + ||uε||L2(�)

)
< ∞. (4.9)

Consequently, Proposition 4 informs us that a subsequence of uε θ -quasi-periodic two-scale

converges to some u ∈ L2(�; H1
θ (Q)), and moreover ε∇uε

2−θ
⇀ ∇yu. Let us study the

structure of this limit u further.

8 This follows from noting the lower bound on the spectrum of the laplacian on the space of H1θ(Di ) functions
that are θi -quasi-periodic in direction yi .
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We begin by introducing the densely defined unbounded linear operator
√
a1∇θ :

H1
θ (Q) ⊂ L2(Q) → L2(Q; C

3) which is given by the action

w �→ √
a1∇w, for w ∈ H1

θ (Q).

We now argue that a generalised Weyl’s decomposition holds, which was first introduced and
proved for the case θ = 0 in [21].

Lemma 2 Let (
√
a1∇θ )

∗ denote the adjoint of√a1∇θ . Then, the orthogonal decomposition

L2(Q; C
3) = ker

(
(
√
a1∇θ )

∗)⊕ Ran(
√
a1∇θ )

holds.

Remark 7 Lemma 2 is a generalisation of the well-known fact that (periodic) divergence-free
vector fields are mutually orthogonal to gradients of (periodic) potentials in L2. In fact, this
classical result can be deduced from the above lemma by (formally)9 setting

√
a1 = I on �.

Proof of Lemma 2 By the Banach closed ranged theorem, this result will follow if we demon-
strate that the range of

√
a1∇θ is closed, and this fact is implied by Proposition 8.

Indeed, suppose un ∈ Ran(
√
a1∇θ ) converges strongly in L2(Q; C

3) to some u as n →
∞, i.e. there exists wn ∈ H1

θ (Q) such that
√
a1∇wn converges strongly in L2(Q; C

3) to u. By
Proposition 8, the sequence w⊥

n , where w⊥
n denotes the orthogonal projection of wn onto the

orthogonal complement V⊥
θ of Vθ in H1

θ (Q), is a Cauchy sequence in H1
θ (Q) and therefore

converges, up to some subsequence, to w ∈ H1
θ (Q). In particular,

√
a1∇wn = √

a1∇w⊥
n

converges strongly in L2(Q) to
√
a1∇w and, consequently u = √

a1∇w. Hence, the range
of

√
a1∇θ is closed. ��

Let us now describe u in detail.

Lemma 3 The function u belongs to the Bochner space L2(�; Vθ ).

Proof Recall that

Vθ = {v ∈ H1
θ (Q)

∣∣∇v = 0 in Q1} = ker(
√
a1∇θ ),

and so we aim to show that
√
a1∇θu = 0.

On the one hand we deduce from (4.9) and (2.2) that

lim
ε→0

ε

∫

�

a1(
x
ε
)∇uε · φ(x)�( x

ε
) dx = 0.

Yet, on the other hand, Proposition 2 and the assertion ε∇uε
2−θ
⇀ ∇yu imply

lim
ε→0

ε

∫

�

a1(
x
ε
)∇uε · φ(x)�( x

ε
) dx = lim

ε→0

∫

�

ε∇uε · φ(x)a1(
x
ε
)�( x

ε
) dx

=
∫

�

∫

Q
a1(y)∇yu(x, y) · φ(x)�(y) dx .

Therefore, as finite sums of φ(x)�(y) are dense in L2(�×Q; C
3) it follows that a1∇yu = 0

and since
√
a1

−1 ∈ L∞(Q) we find that u ∈ L2(�; Vθ ). ��

9 In fact, as expected the proof of this statement for I is much easier as I is positive where as
√
a1 is

non-negative.
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The following result is of fundamental importance in characterising the (θ -quasi-periodic)
limit of the flux a1(

·
ε
)∇uε in terms of the limit u of the function uε. Put another way, this

identity is crucial for determining the homogenised coefficients.

Lemma 4 There exists ξ ∈ L2(�×Q; C
3) such that, up to a subsequence,

√
a1(

·
ε
)∇uε

2−θ
⇀

ξ . Moreover, ξ belongs to the Bochner space L2
(
�; ker

(
(
√
a1∇θ )

∗)) and the pair (u, ξ)

satisfies the identity
∫

�

∫

Q
ξ(x, y) · φ(x)�(y) dydx = −

∫

�

∫

Q

√
a1(y)u(x, y)∇xφ(x) · �(y) dydx,

∀φ ∈ C∞(�),� ∈ ker
(
(
√
a1∇θ )

∗).
(4.10)

Proof By Proposition 1 and (4.9) there exists ξ ∈ L2(� × Q; C
3) such that, up to a subse-

quence that we discard, one has

√
a1(

·
ε
)∇uε

2−θ
⇀ ξ . (4.11)

To prove ξ ∈ L2
(
�; ker

(
(
√
a1∇θ )

∗), we take in (4.8) test functions of the form
εφ(x)ϕ( x

ε
), φ ∈ C∞

0 (�), ϕ ∈ C∞
θ (Q), and use (4.9), (4.11) to pass to the limit in ε and

deduce that
∫

�

∫

Q

√
a1(y)ξ(x, y) · φ(x)∇yϕ(y) dydx = 0.

Therefore, for almost every x ∈ � one has
∫

Q

√
a1(y)ξ(x, y) · ∇yϕ(y) dy = 0, ∀ϕ ∈ H1

θ (Q),

and, hence by Lemma 2 it follows that ξ(x, y) ∈ L2
(
�; ker

(
(
√
a1∇θ )

∗).
Let us now prove assertion (4.10). Henceforth, we consider � ∈ ker

(
(
√
a1∇θ )

∗) to be
θ -quasi-periodically extended to R

3. We shall prove below the following “integration by
parts” formula:

∫

�

√
a1(

x
ε
)∇uε(x) · φ(x)�( x

ε
) dx = −

∫

�

√
a1(

x
ε
)uε(x)∇xφ(x) · �( x

ε
) dx,

∀φ ∈ C∞(�),� ∈ ker
(
(
√
a1∇θ )

∗).
(4.12)

Using Proposition 2, (4.11) and the convergence uε
2−θ
⇀ u, we pass to the limit in the above

formula to readily arrive at (4.10).
To prove (4.12), it is sufficient to prove the following: for every w ∈ H1(R3) one has

∫

R3

√
a1(

x
ε
)∇w(x) · �( x

ε
) dx = 0. (4.13)

Indeed, (4.12) follows from utilising (4.13) and the following facts: for φ ∈ C∞(�) then
uεφ belongs to H1

0 (�), as uε ∈ H1
0 (�), and can be trivially extended to H1(R3), and that

∫

�

√
a1(

x
ε
)∇uε(x) · φ(x)�( x

ε
) dx

=
∫

�

√
a1(

x
ε
)∇(uεφ)(x) · �( x

ε
) dx −

∫

�

√
a1(

x
ε
)uε(x)∇xφ(x) · �( x

ε
) dx .
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Let us now prove (4.13). For Q(z)
ε =∏3

i=1 ε(zi , zi + 1), z ∈ Z
3, it follows that

∫

R3

√
a1(

x
ε
)∇w(x) · �( x

ε
) dx =

∑

z∈Z3

∫

Q(z)
ε

√
a1(

x
ε
)∇w(x) · �( x

ε
) dx

= ε3
∑

z∈Z3

∫

Q

√
a1(y)∇w(εy + εz) · exp(iθ · z)�(y) dy,

where the last equality comes from the change of variables x = ε(y + z) and recalling that
a1(y) is periodic and � is θ -quasi-periodic. By noting, for w ∈ H1(R3), that

wε(y) :=
∑

z∈Z3

w(εy + εz)exp(−iθ · z), y ∈ Q,

is an element of H1
θ (Q), and that

∇wε(y) := ε
∑

z∈Z3

∇w(εy + εz)exp(−iθ · z), y ∈ Q,

the identity (4.13) follows. ��
We are now ready to describe the properties of the macroscopic part of u and express the flux
ξ in terms of u.

Lemma 5 Let (u, ξ), u ∈ L2(�; Vθ ) and ξ ∈ L2(�; ker
(
(
√
a1∇θ )

∗), be a pair which
satisfies the identity (4.10). Then, u ∈ Uθ , see (3.6). That is, for every for i ∈ Iθ = {i ∈
I | θi = 0}, one has u = ui on � × Ci , where ∂i ui ∈ L2(�) with uiνi = 0 on ∂�, for ν the
outer unit normal to ∂�. Furthermore,

ξ(x, y) = √
a1(y)

∑

i∈Iθ

∂xi ui (x)1Ci (y)[∇y N
(i)(y) + ei ], x ∈ �, y ∈ Q1. (4.14)

Here, N (i) solve (3.8).

The following result immediately follows from the above lemma.

Proposition 9 For every for i ∈ Iθ , one has
∫

Ci

√
a1(y)ξ(x, y) dy = ahom

i ∂xi ui (x)ei , for almost every x ∈ �.

Here, ahom are given by (3.7), i.e.

ahom
i =

∫

Ci

a1(y)[∂yi N (i)(y) + 1] dy > 0,

for N (i) ∈ H1
#i

(Ci ) = {u ∈ H1(Ci ) | u is 1-periodic in the variable yi } is the unique solution
to the cell problem

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ci

a1(y)
[∇N (i)(y) + ei

] · ∇φ(y) dy = 0, ∀φ ∈ H1
#i (Ci ),

∫

Ci

N (i) = 0.

(4.15)
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Proof Equation (4.14) implies
∫

Ci

√
a1(y)ξ(x, y) dy = ∂xi ui (x)

∫

Ci

a1(y)[∇y N
(i)(y) + ei ] dy.

For each j ∈ {1, 2, 3}\{i}, we set φ = y j in (4.15) to determine that
∫

Ci

a1(y)
[∇y N

(i)(y) + ei
] · ∇y j (y) dy =

∫

Ci

a1(y)
[∇y N

(i)(y) + ei
]

dy · e j = 0.

Hence, it follows that
∫

Ci

√
a1(y)ξ(x, y) dy = ∂xi ui (x)

∫

Ci

a1(y)[∇y N
(i)(y) · ei + 1]ei dy

= ahom
i ∂xi ui (x)ei ,

for almost every x ∈ �. Finally, from (4.15) it follows that
∫

Ci

a1(y)[∇y N
(i)(y) · ei + 1] =

∫

Ci

a1(y)[∇y N
(i)(y) + ei ] · ei

=
∫

Ci

a1(y)[∇y N
(i)(y) + ei ] · [∇y N (i)(y) + ei ].

Then, the positivity of ahom
i can be seen by the inequality

∫

Ci

a1(y)[∇y N
(i)(y) + ei ] · [∇y N (i)(y) + ei ] ≥ ||a−1

1 ||−1
L∞(Q1)

∫

Ci

|∇y
(
N (i)(y) + yi

)|2 dy,

and noting that the right-hand side of this inequality can not be zero for this would contradict
the periodicity of N (i) in the yi variable. ��

Proof of Lemma 5 As u ∈ L2(�; Vθ ), see Lemma 3, then u is constant in each fibre Ci ,
i ∈ I. Now if θi 
= 0 then u is necessarily zero in Ci . On the other hand, if θi = 0, i.e. i ∈ Iθ ,
then u(x, y) = ui (x) for x ∈ �, y ∈ Ci . That is, u = ui on �×Ci for some u ∈ L2(�, C

θ ),
where we recall that C

θ is the closed subspace of C
3 spanned by {ei }i∈Iθ .

Let us now demonstrate that u belongs to the Hilbert space Uθ . By substituting u = ui
on � × Ci , i ∈ I, into (4.10), we deduce that
∫

�

∫

Q
ξ(x, y) · φ(x)�(y) dydx = −

∑

i∈Iθ

∫

�

∫

Ci

√
a1(y)ui (x)∇xφ(x) · �(y) dydx,

∀φ ∈ C∞(�),� ∈ ker
(
(
√
a1∇θ )

∗).
(4.16)

For fixed j ∈ Iθ , we will show directly below that there exists a function �( j)ker
(
(
√
a1∇θ )

∗)

such that ∫

Ci

√
a1�

( j) = 0 i 
= j, and
∫

C j

√
a1�

( j) = e j . (4.17)

Therefore

∑

i∈Iθ

ui (x)∇xφ ·
∫

Ci

√
a1(y)�( j)(y) dy = u j (x)∂x j φ(x), a.e. x ∈ �,
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and consequently substituting �( j) into (4.16) gives

∫

�

(∫

Q
ξ(x, y) · �( j) dy

)
φ(x)dx = −

∫

�

u j (x)∂x j φ(x) dx,

∀φ ∈C∞(�).

That is, ∂x j u j (x) = ∫Q ξ(x, y) · �( j) dy ∈ L2(�) and u jν j = 0 on ∂� where ν is the outer
unit normal to ∂�, i.e. u ∈ Uθ if (4.17) holds.

To show (4.17), we note that under the geometric assumptions on cylinders Ci , i ∈ I,
there exists a function

χi ∈ C∞(Q) such that χi = 1 on Ci , supp(χi ) compactly contained in Q

and supp(χi ) ∩ Ck = ∅ for k 
= i.
(4.18)

Then, for each j ∈ Iθ = {i ∈ I | θi = 0}, the function �( j) = 1
|C j |√a1

χ je j clearly

satisfies (4.17). Furthermore, �( j) belongs to ker
(
(
√
a1∇)∗

)
: Indeed, as θ j = 0, an element

φ ∈ H1
θ (Q) is 1-periodic in the variable y j , and it follows

∫

Q

1√
a1

χ je j · √
a1∇yφ =

∫

C j

∂y j φ = 0.

Therefore, (4.17) holds.
Let us now demonstrate (4.14). For i ∈ Iθ , and almost every x ∈ �, notice that

√
a1(y)ui (x)

∑

j∈{1,2,3}
j 
=i

e j∂x j φ(x)

= √
a1(y)∇y

⎛

⎜⎜
⎝ui (x)

∑

j∈{1,2,3}
j 
=i

∂x j φ(x)y j

⎞

⎟⎟
⎠ , a.e. y ∈ Ci ,

and, by the geometric assumption of the cylinders, we can extend y j into Q such that the
extensions are elements of H1

θ (Q) and equal to zero on C j . Therefore, it follows that

∫

�

∫

Ci

√
a1(y)ui (x)

∑

j∈{1,2,3}
j 
=i

∂x j φ(x)� j (y) dydx

=
∫

�

∫

Q

√
a1(y)∇y

⎛

⎜⎜
⎝ui (x)

∑

j∈{1,2,3}
j 
=i

∂x j φ(x)y j

⎞

⎟⎟
⎠ · �(y) dydx = 0.

Consequently, (4.16) takes the form
∫

�

∫

Q
ξ(x, y) · φ(x)�(y) dydx = −

∑

i∈Iθ

∫

�

∫

Ci

√
a1(y)ui (x)∂xi φ(x)�i (y) dydx,

∀φ ∈ C∞(�),� ∈ ker
(
(
√
a1∇θ )

∗).
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Integrating by parts above, which is permissible since ∂i ui ∈ L2(�), we deduce that
∫

�

∫

Q
ξ(x, y) · φ(x)�(y) dydx =

∑

i∈Iθ

∫

�

∫

Ci

√
a1(y)∂xi ui (x)φ(x)�i (y) dydx,

∀φ ∈ C∞
0 (�),� ∈ ker

(
(
√
a1∇θ )

∗).

That is, for almost every x , ξ(x, ·) is the projection onto ker
(
(
√
a1∇θ )

∗) of the function

w(x, ·) = √
a1(·)

∑

i∈Iθ

∂xi ui (x)1Ci (·)ei .

For each i ∈ Iθ , let χi given by (4.18), and we introduce Ñ i ∈ H1(Q) the extension into
Q, given by Lemma 1, of the function N (i) ∈ H1

#i
(Ci ) that solves (4.15). It follows that

∑
i∈Iθ χi

˜N (i) belongs to H1
θ (Q) and

∫

Q
a1χi [∇˜N (i) + ei ] · ∇φ =

∫

Ci

a1[∇N (i) + ei ] · ∇φ = 0

for all φ ∈ H1
θ (Q). That is,

√
a1χi [∇˜N (i) + ei ] belongs to ker

(
(
√
a1∇θ )

∗). Obviously

w(x, y) = w(x, y) + √
a1(y)

∑

i∈Iθ

∂xi ui (x)χi (y)∇y
˜N (i)(y)

−√
a1(y)

∑

i∈Iθ

∂xi ui (x)χi (y)∇y
˜N (i)(y),

and
√
a1χi∇˜N (i) = √

a1∇(χi
˜N (i)),

since χi is piece-wise constant on C . Consequently, as ξ(x, ·) is the projection of w(x, ·)
onto ker

(
(
√
a1∇)∗

)
, we have

ξ(x, y) = w(x, y) + √
a1(y)

∑

i∈Iθ

∂xi ui (x)χi (y)∇y
˜N (i)(y)

= √
a1(y)

∑

i∈Iθ

∂xi ui (x)[1Ci (y)ei + χi (y)∇y
˜N (i)(y)],

Hence, (4.14) holds and the proof is complete. ��
We now conclude with the proof of Theorem 3. That is, we show that u solves (3.9).

We being by stating that under the assumption that � is star-shaped, standard pull-back and
mollification type arguments prove that functions smooth in x are dense in the Hilbert space
Uθ . Therefore, it is sufficient to show (3.9) holds for such test functions φ. Let us take such a φ

and consider the test functions φε(x) = φ(x, x
ε
), x ∈ � in (4.8). Utilising the convergences

uε
2−θ
⇀ u, ε∇uε

2−θ
⇀ ∇yu,

√
a1(

·
ε
)∇uε

2−θ
⇀ ξ ,

we pass to the limit ε → 0 in (4.8) to deduce that
∫

�

∫

C

√
a1(y)ξ(x, y)·∇xφ(x, y) dydx +

∫

�

∫

Q0

a0(y)∇yu(x, y) · ∇yφ(x, y) dydx

+
∫

�

∫

Q
u(x, y)φ(x, y) dydx =

∫

�

∫

Q
f (x, y)φ(x, y) dydx .
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Then, as φ = φi on � × Ci , with φ 
= 0 only if i ∈ Iθ , Proposition 9 implies that
∫

�

∫

C

√
a1(y)ξ(x, y) · ∇xφ(x, y) dydx =

∑

i∈Iθ

∫

�

(∫

Ci

√
a1(y)ξ(x, y) dy

)
· ∇xφi (x)dx

=
∑

i∈Iθ

∫

�

ahom
i ∂xi ui (x)∂xi φi (x)dx

and (3.9) follows.

5 Quasi-periodic two-scale limit operator

For θ ∈ [0, 2π)3, we consider the subspace H which is the closure of Uθ in L2(�× Q), i.e.

H = {u ∈ L2(� × Q)
∣
∣ u = ui on � × Ci

for some u ∈ L2(�; C
θ )
}
.

Indeed, for f ∈ H , we have f = fi on � × Ci , i ∈ I, and consequently we deduce that

|| f ||2L2(�;L2(Q1))
=
∑

i∈Iθ

|Ci ||| fi ||2L2(�)
,

and therefore, H is closed in L2(R3; L2(Q)). It is also straightforward to show that Uθ is
dense in H . Defining on Uθ the form

Qθ (u, v) :=
∑

i∈Iθ

∫

�

ahom
i ∂xi ui (x)∂xi vi (x) dx +

∫

�

∫

Q0

a0(y)∇yu(x, y) · ∇yv(x, y) dydx,

we find that, since ahom
i are positive constants and a−1

0 ∈ L∞(Q0), Qθ is closed when consid-
ered as a form on H . Setting Ahom

θ : D(Ahom
θ ) ⊂ H → H to be the unbounded self-adjoint

operator generated by Qθ , for f ∈ L2(R3; Q) the θ -quasi-periodic two-scale homogenised
limit problem (3.9) takes the form Ahom

θ u = Pθ f . Here, Pθ : L2(R3; L2(Q)) → H is the
orthogonal projection given by

Pθ f (x, y) =
{∫

Ci
f (x, y) dy, y ∈ Ci ,

f (x, y), y ∈ Q0.

An immediate consequence of Theorem 3 is that for each θ ∈ [0, 2π)3, the operator Aε

strong θ -quasi-periodic two-scale resolvent converges to Ahom
θ , see Sect. 2 Definition 2.

5.1 Spatial operators

Introducing the notation

D :=
⎛

⎝
∂x1 0 0
0 ∂x2 0
0 0 ∂x3

⎞

⎠ , Ahom :=
⎛

⎝
ahom

1 0 0
0 ahom

2 0
0 0 ahom

3

⎞

⎠ ,

we consider the Hilbert space

Hθ :=
{
u ∈ L2(�; C

θ ) | Du ∈ L2(�), uiνi = 0 on ∂�, i = 1, 2, 3
}

,
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endowed with the inner product

(u, v)H :=
∫

�

Du · Dv,

and the following bilinear form defined on H :

αθ (u, v) :=
∑

i∈Iθ

∫

�

ahom
i ∂xi ui · ∂xi vi =

∫

�

AhomDu · Dv, u, v ∈ Hθ .

Note that for θ such that Iθ = {i ∈ I | θi = 0} = ∅ then Hθ is zero and for such θ we define
our ‘spatial’ operator Aθ to be the zero map. Otherwise, αθ is a positive form on Hθ and
therefore has a positive self-adjoint operator Aθ , densely defined in L2(�; C

θ ), associated
with the form. The space H is compactly embedded10 into L2, and consequently the spatial
operator Aθ has compact resolvent and therefore its spectrum is discrete.

5.2 Pure Bloch operators

Consider the space
Vθ = {v ∈ H1

θ (Q) | v ≡ 0 on Q1}, (5.1)

which is a closed subspace of H1
θ (Q), and therefore is a Hilbert space when equipped with

standard H1
θ (Q) norm. Define the sesquilinear form

βθ (u, v) :=
∫

Q0

a0(y)∇yu(y) · ∇yv(y) dy, u, v ∈ Vθ .

Since a0 is positive and bounded on Q0, and elements of Vθ have zero trace on the part of the
boundary � = ∂Q1, then by Poincaré’s inequality the form βθ is (uniformly in θ ) coercive
and bounded on Vθ , i.e. there exists c1 and c2 independent of θ such that

|βθ (u, v)| ≤ c1||u||H1
θ
||v||H1

θ
,

βθ (u, u) ≥ c2||u||2
H1

θ

,

for all u, v ∈ Vθ . This implies that for every f ∈ L2(Q0) there exists a unique solution
u ∈ Vθ such that

βθ (u, v) =
∫

Q0

f (y)v(y) dy, ∀v ∈ Vθ .

Consequently, the unbounded self-adjoint linear operator Bθ , defined in L2(Q0), given by
Bθu = f , is positive and, moreover, by the Rellich embedding theorem has compact resol-
vent. Therefore the spectrum of Bθ is discrete, and we order the eigenvalues in accordance
with the min-max principle. These eigenvalues can be shown to be continuous functions of
θ , in fact the following result holds.

10 This follows from an application of Vitali’s theorem, which is permissible by noting that since ui has an
L2 weak derivative in the xi -th direction one can use the fundamental theorem of calculus to prove that any
bounded sequence in H is 2-equi-integrable.
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Lemma 6 For each n ∈ N, let μ
(n)
θ denote the n-th eigenvalue of Bθ as ordered according

to the min-max principle, i.e.

μ
(n)
θ = sup

v1,...,vn−1∈Vθ

inf
v∈Vθ ,

||v||L2(Q0)
=1,

v⊥vi ,∀i=1,...,n

∫

Q0

a0∇v · ∇v, θ ∈ [0, 2π)3, (5.2)

where v ⊥ vi is shorthand for v is orthogonal to vi in L2(Q0). Then, for each n ∈ N the
function λn(θ) := μ

(n)
θ is Lipschitz continuous, that is there exists a Cn > 0 such that

|λn(θ ′) − λn(θ)| ≤ Cn |θ ′ − θ |, ∀θ, θ ′ ∈ [0, 2π)3.

The proof relies on an important observation that the spaces Vθ , θ ∈ [0, 2π)3, are mutually
isomorphic. Indeed, if θ , θ ′ ∈ [0, 2π)3 then it is clear that the isometric mapping U(θ , θ ′) :
L2(Q) → L2(Q) defined as multiplication by the function exp

(
i(θ ′ − θ) · y) defines an

isomorphism between Vθ and Vθ ′ .

Proof Let v be L2(Q0)-normalised element ofVθ and consider v′ := U(θ , θ ′)v = exp
(
i(θ ′−

θ) · y)v. Then, v′ is an L2(Q0)-normalised element of Vθ ′ and the following identity
∫

Q0

a0∇v′ · ∇v′ =
∫

Q0

a0(y)∇v(y) · ∇v(y) dy +
∫

Q0

a0(y)∇v(y) · i(θ ′ − θ)v(y) dy

+
∫

Q0

a0(y)i(θ
′ − θ)exp

(
i(θ ′ − θ)y

)
v(y) · ∇v′(y) dy

holds. Therefore, one has
∣∣∣∣

∫

Q0

a0∇v′ · ∇v′ −
∫

Q0

a0∇v · ∇v

∣∣∣∣

≤ ||a0||1/2
L∞(Q0)|θ ′ − θ |

[(∫

Q0

a0∇v · ∇v

)1/2

+
(∫

Q0

a0∇v′ · ∇v′
)1/2

]

.

Consequently, as the isometric mapping U(θ , θ ′) : L2(Q0) → L2(Q0) is an isomorphism
between Vθ and Vθ ′ , the above inequality and the min-max formula (5.2) implies that

|λn(θ ′) − λn(θ)| ≤ ||a0||1/2
L∞(Q0)|θ ′ − θ |(λn(θ ′) + λn(θ)

)
. (5.3)

Now, if we consider the self-adjoint Dirichlet operator in L2(Q0) associated with the form

βD(u, v) :=
∫

Q0

a0∇u · ∇v, ∀u, v ∈ H1
0 (Q0),

then, since H1
0 (Q0) is embedded in Vθ for all θ , one has

λn(θ) ≤ μn := sup
v1,...,vn−1∈H1

0 (Q0)

inf
v∈H1

0 (Q0),

||v||L2(Q0)
=1,

v⊥vi ,∀i=1,...,n

∫

Q0

a0∇v · ∇v, ∀θ ∈ [0, 2π)3.

Here μn is the n-th eigenvalue11 of the operator BD , defined in a similar manner as Bθ above.
Hence, we deduce from (5.3) that λn(θ) is Lipschitz continuous with a Lipschitz constant
bounded from above by 2||a0||1/2

L∞(Q0)μn . ��
11 The spectrum of BD is discrete, which again is a consequence of the Rellich theorem.
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6 Quasi-periodic two-scale limit spectrum

In this section we study the spectrum
⋃

θ∈[0,2π)3

σ(Ahom
θ ).

In particular we shall characterise the spectrum in terms of the spatial and pure Bloch operators
introduced in Sect. 5. This leads to an appropriate analogue of the Zhikov β function, cf.
[30].

Let us fix θ ∈ [0, 2π)3 and suppose that λθ is in the spectrum of Ahom
θ . Then, there exists

an eigenfunction uθ ∈ Vθ that solves the spectral problem
⎧
⎪⎪⎨

⎪⎪⎩

−divy
(
a0(y)∇yuθ (x, y)

) = λθuθ (x, y), x ∈ �, y ∈ Q0,

uθ (x, y) = ui (x), x ∈ �, y ∈ Ci ,

where ui ≡ 0 if θi 
= 0 or otherwise solves
−ahom

i ∂2
xi ui (x) + Ti (uθ )(x) = λ|Ci |ui (x), for x ∈ �.

(6.1)

Here, we recall that

Ti (uθ )(x) =
∫

�i

a0(y)∇yuθ (x, y) · n(y) dS(y).

There are two subcases to study: when θ ∈ ∪i∈I�i , for �i := {θ ∈ [0, 2π2)3 | θ ·ei = 0},
and θ ∈ [0, 2π)3\( ∪i∈I �i

)
.

Pure Bloch spectrum If θ ∈ [0, 2π)3\( ∪i∈I �i
)
, then λθ , uθ solves the problem

{−divy
(
a0(y)∇yuθ (x, y)

) = λθuθ (x, y), x ∈ �, y ∈ Q0,

uθ (x, y) = 0, x ∈ �, y ∈ �.
(6.2)

Therefore, setting uθ (x, y) = φ(x)vθ (y) for a sufficiently arbitrary φ, we find that vθ solves
{−divy

(
a0(y)∇yvθ (y)

) = λθvθ (y), y ∈ Q0,

vθ (y) = 0, y ∈ �.
(6.3)

Therefore, the spectrum of Ahom
θ for θ ∈ [0, 2π)3\( ∪i∈I �i

)
consists of eigenvalues of

infinite multiplicity, and these eigenvalues coincide with the eigenvalues the pure Bloch
operator Bθ introduced in Sect. 5.2. Lemma 6 implies that these eigenvalues are continuous
with respect to θ , and by continuously extending θ from [0, 2π)3\(∪i∈I �i

)
to [0, 2π)3 we

deduce that

σ(Ahom) ⊃
⋃

θ∈[0,2π)3

σ(Bθ ).

It is for this reason that we call
⋃

θ∈[0,2π)3 σ(Bθ ) the pure Bloch spectrum of Ahom
θ .

Spatial spectrum Let us now suppose that θ ∈ ∪i∈I�i and λθ ∈ σ(Aθ ) is not a pure Bloch
eigenvalue, i.e. λθ /∈ ⋃θ∈[0,2π)3 σ(Bθ ). Introducing, for i ∈ Iθ the functions b(i)

θ ∈ H1
θ (Q)

that satisfy {
−divy

(
a0(y)∇yb

(i)
θ (y)

) = 0, y ∈ Q0,

b(i)
θ (y) = δi j , y ∈ C j , j = 1, 2, 3,

(6.4)
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we represent uθ as follows

uθ (x, y) =
∑

i∈Iθ

ui (x)b
(i)
θ (y) + vθ (x, y),

and substitute this representation into (6.1) to deduce that vθ (x, y) ∈ Vθ , see (5.1), solves

−divy
(
a0(y)∇yvθ (x, y)

)− λθvθ (x, y) = λθ

∑

i∈Iθ

ui (x)b
(i)
θ (y), x ∈ �, y ∈ Q0. (6.5)

Denoting respectively by μ
(m)
θ and v

(m)
θ the m-th eigenvalue and orthonormal eigenfunction

of Bθ , we perform a spectral decomposition of vθ and b(i)
θ to conclude that

vθ (x, y) =
∑

m∈N
cm(θ , x)v(m)

θ (y), b(i)
θ (y) =

∑

m∈N
b(i)
m (θ)v

(m)
θ (y),

for some cm(θ , x) and constants b(i)
m (θ) = ∫

Q0
b(i)
θ v

(m)
θ . Substituting the spectral represen-

tations into (6.5) gives

cm(θ , x) = λθ

μ
(m)
θ

−λθ

∑

i∈Iθ

ui (x)b
(i)
m (θ).

Therefore, uθ admits the form

uθ (x, y) =
∑

i∈Iθ

∑

m∈N

(
μ

(m)
θ

μ
(m)
θ

−λθ

)
ui (x)b

(i)
m (θ)v

(m)
θ (y), x ∈ �, y ∈ Q0.

Consequently, we calculate

T j (uθ )(x) =
∑

i∈Iθ

∑

m∈N

(
μ

(m)
θ

μ
(m)
θ

−λθ

)
ui (x)b

(i)
m (θ)

∫

� j

a0∇yv
(m)
θ (y) · n(y) dS(y).

Recalling that b(i)
θ solves (6.4), v

(m)
θ solves (6.3), and utilising Green’s identity, we deduce

that
∫

� j

a0∇yv
(m)
θ (y) · n(y) dS(y) =

∫

�

a0∇yv
(m)
θ (y) · n(y)b( j)

θ (y) dS(y)

= −μ
(m)
θ

∫

Q0

v
(m)
θ b( j)

θ

= −μ
(m)
θ b( j)

m (θ).

Therefore

T j (uθ )(x) = −
∑

i∈Iθ

∑

m∈N

( |μ(m)
θ

|2
μ

(m)
θ

−λθ

)
ui (x)b

(i)
m (θ)b( j)

m (θ),

and for each i ∈ Iθ , ui solves the problem

−ahom
i ∂2

xi ui (x) =
∑

j∈Iθ

β
(i j)
θ (λθ )u j (x) x ∈ �, uiνi = 0 on ∂�,

for

β
(i j)
θ (λ) = λ|Ci |δi j +

∑

m∈N

( |μ(m)
θ

|2
μ

(m)
θ

−λ

)
b( j)
m (θ)b(i)

m (θ), λ ∈ R. (6.6)
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Hence, we have demonstrated the following.

Proposition 10 The spectrum of
⋃

θ∈[0,2π)3
σ(Ahom

θ ) is the union of the following two sets:

• The pure Bloch spectrum:

⋃

θ∈[0,2π)3

σ(Bθ ) =
∑

m∈N

[
min

θ∈[0,2π)3

(
μ

(m)
θ

)
, max
θ∈[0,2π)3

(
μ

(m)
θ

)
]

,

where μ
(m)
θ are the eigenvalues of Bθ ordered according to the min-max principle.

• The spatial spectrum: {λ ∈ [0,∞) | γ (θ)(λ) ∈ σ(Aθ )}, where Aθ is an operator with
compact resolvent. Here γ : R

3 → S
3 is for each θ a (possibly) sign-indefinite symmetric

matrix defined by setting for i /∈ Iθ , γi j (θ) = 0 for all j , and γi j (θ) = β
(i j)
θ otherwise.
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