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Abstract
Still image human action recognition (HAR) is a challenging problem owing to limited sources of information and large

intra-class and small inter-class variations which requires highly discriminative features. Transfer learning offers the

necessary capabilities in producing such features by preserving prior knowledge while learning new representations.

However, optimally identifying dynamic numbers of re-trainable layers in the transfer learning process poses a challenge.

In this study, we aim to automate the process of optimal configuration identification. Specifically, we propose a novel

particle swarm optimisation (PSO) variant, denoted as EnvPSO, for optimal hyper-parameter selection in the transfer

learning process with respect to HAR tasks with still images. It incorporates Gaussian fitness surface prediction and

exponential search coefficients to overcome stagnation. It optimises the learning rate, batch size, and number of re-trained

layers of a pre-trained convolutional neural network (CNN). To overcome bias of single optimised networks, an ensemble

model with three optimised CNN streams is introduced. The first and second streams employ raw images and segmentation

masks yielded by mask R-CNN as inputs, while the third stream fuses a pair of networks with raw image and saliency maps

as inputs, respectively. The final prediction results are obtained by computing the average of class predictions from all three

streams. By leveraging differences between learned representations within optimised streams, our ensemble model out-

performs counterparts devised by PSO and other state-of-the-art methods for HAR. In addition, evaluated using diverse

artificial landscape functions, EnvPSO performs better than other search methods with statistically significant difference in

performance.

Keywords Convolutional neural network � Ensemble model � Human action recognition � Hyper-parameter optimisation �
Object detection and classification

1 Introduction

Human action recognition (HAR) aims to identify human

actions from visual data. A good HAR model is important

in many applications, such as detecting falls, recognising

violent behaviours, identifying theft and many other day-

to-day activities in various sectors such as healthcare and

security. Such potential benefits have led to significant

interest in developing robust, accurate, and efficient HAR

models. Recent HAR-based solutions cover three main data

domains: (1) still images, (2) RGB video streams, and (3)
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RGB-D video streams. In this respect, video action

recognition has attracted significant attention, which takes

both spatial and temporal information into account for

action classification. However, the extraction of optical

flow information requires substantial additional effort, with

significant computational cost and complexity. Some of

these issues can be overcome by using still images.

In comparison with video HAR, still image HAR has

limited sources of information, i.e. only containing spatial

information without any temporal cues. In addition,

because of viewpoint variations, background clutter, rota-

tions, occlusions, large intra-class and small inter-class

variations, still image HAR is a challenging task. Owing to

inefficiency in extracting low-level features directly from

whole images caused by the aforementioned distracting

factors (e.g. cluttered scenes and complex actions), diverse

high-level cues, such as human body, body parts, poses,

objects, and scene contexts, have been extracted for

enhancing performance of still image HAR in existing

studies [1]. Traditional non-deep learning based methods

derive such high-level cues through multiple pre-process-

ing steps, which lead to high computational costs. As an

example, Zheng et al. [2] extracted a combination of

human pose and context information for still image HAR,

while pose primitive-based HAR was performed by Thurau

and Hlavac [3]. Desai et al. [4] and Shapovalova et al. [5]

extracted human body, objects, and human–object inter-

action, while Li and Fei-Fei [6] and Gupta et al. [7] derived

human body, objects, and scene contexts for HAR. In

addition, body parts, objects, and human–object interaction

were used in Maji et al. [8], Desai and Ramanan [9], and

Delaitre et al. [10], whereas Sener et al. [11], Yao and Fei-

Fei [12], and Yao et al. [13] adopted human body, body

parts, objects, and scene contexts.

In the literature, such high-level cues are then charac-

terised by using various low-level features for HAR. As an

example, Gupta et al. [7] employed histogram of oriented

gradients (HOG), GIST, shape context, colour histogram,

and edge distance features, while Li and Ma [14] adopted

scale-invariant feature transform (SIFT), HOG, and GIST

features. A number of existing studies used both HOG and

SIFT features, e.g. Zheng et al. [2], Shapovalova et al. [5],

Sener et al. [11], Yao and Fei-Fei [12], Le et al. [15], Yao

et al. [16], Delaitre et al. [17], and Qazi et al. [18]. Other

studies employed purely HOG features, e.g. Thurau and

Hlavac [3], Desai et al. [4], Maji et al. [8], Desai and

Ramanan [9], Delaitre et al. [10], and Yao et al. [13], while

SIFT features were used purely in Li and Fei-Fei [6],

Sharma et al. [19], and Dhulavvagol and Kundur [20].

However, such feature descriptors are subject to various

drawbacks. As an example, although SIFT is invariant to

scaling, rotation, and illumination changes, it is sensitive to

threshold settings [21]. Owing to feature matching, it is

computationally costly with large memory consumption

[22, 23]. In comparison with SIFT, HOG is not scale and

rotation invariant [24, 25]. Its performance degrades when

dealing with regions cluttered with noisy edges [26].

Despite the generation of a basic low-dimensional spatial

representation of a given image [27], GIST shows signifi-

cant limitations in capturing fine image details [28][29]. In

short, the low-level features extracted by traditional feature

descriptors are susceptible to various drawbacks, limiting

their discriminative capabilities in tackling still image

HAR.

In comparison with traditional methods, deep convolu-

tional neural networks (CNNs) conduct hierarchical layer-

wise feature learning in an end-to-end fashion without the

requirement of complex computing pipelines. Their feature

detectors (i.e. the filters in CNNs) are trainable and highly

adaptive. Since the filters learn to adapt to new tasks,

CNNs are able to learn bespoke features from a given data

set automatically. The machine learned features in earlier

layers are similar to those (e.g. edges and corners) yielded

by SIFT and HOG descriptors, while the final layers in

CNNs are able to produce comparatively more abstract

high-level representations (e.g. eyes and wheels). Their

efficiency has been ascertained in various HAR tasks in

recent years [30–36]. Besides that, CNNs yield superior

performances over those of traditional methods in solving

diverse other image classification tasks [37–40]. Therefore,

we adopt CNNs in this research for still image HAR.

Notably, the configurations of CNN architectures affect

model performance. As such, we focus on a well-estab-

lished architecture, i.e. the VGG19 network [41], in view

of its proven efficiency in tackling large-scale image

classification tasks. In this research, to adapt such efficient

deep networks to an alternative target domain, transfer

learning is used to learn CNN feature maps from the new

data set whilst keeping the prior learned features. It shows

significant capabilities in overcoming data sparsity issues

and achieves impressive performance by re-training a pre-

trained network using a comparatively smaller data set.

However, to obtain a good balance between preserving

the generalisability of the earlier layers and re-training the

later layers on the new data set, the capability of identi-

fying suitable transfer learning settings, such as the optimal

number of re-trainable layers, poses a great challenge.

Other learning hyper-parameters such as the learning rate

and batch-size also influence the network performance.

Optimising these hyper-parameter settings is challenging,

which involves expert knowledge and iterative exploration.

It presents a high knowledge barrier that needs focused

attention and time. The manual fine-tuning process of

hyper-parameters is thus undesirable, which we aim to

overcome by using automated search methods.
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While the use of a simple grid search can be exploited to

identify aforementioned hyper-parameters, it is inefficient

as many iterations are necessary. In comparison with such

brute-force methods, swarm intelligence algorithms offer

capabilities in solving diverse single and multi-objective

optimisation problems. Such evolving search algorithms

are motivated by observations of natural behaviours, such

as ant colonies, beehives, and bird flocks. In this respect,

one of the most prevalent algorithms is particle swarm

optimisation (PSO). The PSO algorithm is robust for

tackling diverse optimisation problems with fast conver-

gence rates. However, owing to reliance on a global best

leader, the PSO model is prone to being trapped in local

optima. Many PSO variants have been proposed to adjust

both exploratory and exploitative aspects of the search to

help escaping from local optima in the process of finding

the best solution.

In this research, we propose a new PSO variant for

hyper-parameter fine-tuning in a transfer learning setting

for undertaking HAR tasks with still images. Denoted as

EnvPSO, this PSO variant incorporates Gaussian fitness

surface prediction and adaptive coefficients to accelerate

convergence. It is used to optimise the hyper-parameters of

VGG19 deep networks, including the number of re-trained

layers in the transfer learning process (denoted as layer

strip-back), batch size, and learning rate. Moreover, moti-

vated by the well-known two-stream CNN architecture

proposed by Simonyan and Zisserman [31] where features

extracted from multi-modal inputs are used for action

classification, we design a three-stream based ensemble

model with multiple optimised VGG19 networks using

EnvPSO for tackling HAR problems. Specifically, in the

first stream, we employ an optimised VGG19 network with

raw images as inputs. In the second stream, mask R-CNN

is first adopted to generate semantic segmentation masks

for each input image. The yielded saliency maps are sub-

sequently used as inputs for another optimised VGG19

network for action recognition. In the third stream, a fusion

network is constructed by concatenating two VGG19 net-

works configured in the same manner as the first and sec-

ond streams. Each of the three CNN streams, denoted as

Streams 1, 2, and 3, is optimised independently by the

EnvPSO algorithm to identify optimal settings for the

learning rate, batch size, and layer strip-back hyper-pa-

rameters. These three streams are then combined in an

ensemble manner. The final classification results are

obtained by taking the average of probabilistic class pre-

dictions from the three CNN streams. In other words, the

class predictions generated by the optimised CNN streams

are summed and divided by the number of streams to

produce an average prediction for each input image. A

high-level depiction of the proposed EnvPSO-optimised

CNN ensemble model is provided in Fig. 1.

Our proposed solution aims to maximise classification

accuracy in HAR tasks on still images by taking advantage

of diversity of different model architectures and feature

inputs. Additionally, the need for expert knowledge and

attention required to manually fine-tune a CNN model are

overcome by employing a variant of standard PSO to

optimise the batch-size, learning rate, and layer strip-back

configurations. By incorporating the nonlinear adaptive

coefficients and the environmental term embedding Gaus-

sian fitness surface prediction, the proposed EnvPSO

model is able to balance well between exploitation and

exploration while accelerating convergence. Our research

contributions are summarised as follows.

1. A new EnvPSO variant is proposed for automating the

fine-tuning process of CNNs. Specifically, EnvPSO

introduces three mechanisms to overcome stagnation,

i.e. (1) a new optimisation parameter named layer strip-

back, which determines the number of layers to be re-

trained in the VGG19 networks during transfer learn-

ing; (2) nonlinear functions for search coefficient

generation which enable the search process to achieve

a better balance between diversification and intensifi-

cation; (3) an additional environmental term embed-

ding a Gaussian fitness surface prediction, which

guides the search process towards optimal regions.

These three mechanisms work cooperatively to over-

come stagnation and automate hyper-parameter fine-

tuning of CNNs.

2. An ensemble model with three CNN-based streams is

proposed for tackling HAR with still images. Specif-

ically, the first stream employs a VGG19 network with

EnvPSO-optimised hyper-parameters, which uses the

original images as its inputs. The second stream adopts

another VGG19 network with EnvPSO-optimised

hyper-parameters, which uses semantic segmentation

masks yielded by mask R-CNN as inputs. Such

extracted saliency maps from mask R-CNN provide

another modality of inputs, which in particular offer

better efficiency in representing various action classes

(e.g. JugglingBalls, SoccerJuggling, and SkateBoard-

ing) for recognition in human–object interaction. The

third stream fuses both VGG19 networks trained with

raw images and segmented masks, respectively, by

using a flatten and concatenation layer before the fully

connected layers. This fused CNN stream helps induce

diversity in the learned feature sets extracted from raw

images and segmented salient regions. The final

classification result for each image is obtained by

calculating the mean average of the results from the

three streams. The EnvPSO-optimised VGG19 net-

works with a variety of learning configurations yield

better diversity and complementary characteristics to
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enhance ensemble model performance, as demon-

strated in a series of empirical studies.

The organisation of the remaining part of this paper is as

follows. Section 2 presents swarm intelligence-based

algorithms such as PSO and its variants, as well as state-of-

the-art methods for handling still image-based HAR tasks.

In Sect. 3, the proposed EnvPSO algorithm and the

ensemble model integrating three EnvPSO-optimised CNN

streams are explained. In Sect. 4, the performance of the

proposed ensemble model is compared with those from

baseline and state-of-the-art methods, along with detailed

analysis and discussion of their implications. In Sect. 5, a

further evaluation using unimodal and multi-modal

benchmark test functions is presented, in order to further

evaluate the effectiveness of the proposed EnvPSO algo-

rithm. Conclusions and suggestions for future work are

given in Sect. 6.

2 Related work

In this section, we introduce the original PSO algorithm

and diverse state-of-the-art PSO variants. Recent studies on

HAR are also discussed.

2.1 Particle swarm optimisation

PSO is a useful swarm intelligence algorithm for solving

optimisation tasks, such as optimal hyper-parameter

selection in CNNs [39, 42–45]. The algorithm works on the

assumption that multiple agents can usually find a solution

close to the global optima by emulating swarming beha-

viours found in nature. Its search process is as follows.

Firstly, a swarm population in a given search space is

initiated. Each particle moves around in the search space

by following local and global optimal signals (see Equa-

tion 1). A fitness function is used to evaluate the current

position of each particle. Specifically, a new velocity is

calculated using the inertia weight component, as well as

the social- and cognitive-inspired terms. In particular, the

social-inspired term establishes a tendency of agents to

cluster together to exploit some promising regions of the

search space. The cognitive-inspired term promotes a ten-

dency of agents to investigate other optimal areas identified

by each particle on its own. To achieve swarming beha-

viours, each particle records its position with the best fit-

ness score as pbesti , while the best solution found by the

overall swarm is recorded as gbest. Subsequently, the cog-

nitive-based term is formed as r1c1ðptbesti � xtiÞ, which

specifically influences the extent an agent conducts search

near its own personal best solution. The social-based term

is defined as r2c2ðgtbest � xtiÞ, which dictates the extent an

agent is compelled to search near the current global best

solution. These terms are formalised in Equation 1:

vtþ1
i ¼ wvti þ r1c1ðptbesti � xtiÞ þ r2c2ðgtbest � xtiÞ ð1Þ

where vtþ1
i is the velocity of the ith particle at the ðt þ 1Þth

iteration and w is the inertia weight defining the contribu-

tion of the particle’s previous velocity vti towards a new one

generated in the next iteration. The personal best solution

of particle i at the tth iteration is denoted as ptbesti , while the

global best solution of the overall swarm at the tth iteration

is represented as gtbest. Parameters r1 and r2 are random

factors sampled from uniform distribution U(0, 1), while c1
and c2 are acceleration coefficients that determine the

Fig. 1 A high-level

representation of the proposed

CNN stream ensemble model

with the raw images and

segmented masks yielded by

mask R-CNN as inputs. Stream

1 employs an optimised VGG19

network with raw images as

inputs. Stream 2 uses another

optimised VGG19 network

trained on the saliency maps

yielded by mask R-CNN.

Stream 3 fuses a pair of

optimised VGG19 networks

with raw images and segmented

masks as inputs, respectively.

Each stream is individually

optimised using EnvPSO to

identify its optimal settings

9208 Neural Computing and Applications (2022) 34:9205–9231

123



contribution of cognitive- and social-based terms, respec-

tively. The next particle position xtþ1
i is then obtained using

Equation 2 by summing the current particle position xti and

new velocity vtþ1
i . The pseudo-code of the original PSO

model is illustrated in Algorithm 1.

xtþ1
i ¼ xti þ vtþ1

i ð2Þ

2.2 Variants of particle swarm optimisation

The original PSO algorithm shows efficient search capa-

bilities in tackling diverse optimisations problems.

Nonetheless, owing to the guidance of single global best

leader, the swarm tends to converge prematurely, leading

to local optima solutions [46–48]. As a result, many PSO

variants have been proposed to tackle the challenges. As an

example, Fielding and Zhang [49] proposed a Swarm

Optimised DenseBlock Architecture Ensemble (SODBAE)

integrated with a PSO variant for image classification. The

model was capable of devising CNN architectures with

residual connections and dense connectivity to increase

network diversity. Specifically, it employed adaptive

acceleration coefficients generated using cosine annealing

mechanisms to overcome stagnation. Two weight inheri-

tance learning mechanisms were introduced to enable the

devised CNN layers to inherit weights from previously

optimised ones based on their positions and parameter

matrix sizes, with the attempt to reduce computational

costs. The model outperformed other state-of-the-art

methods as well as manually designed deep networks in a

case study with the CIFAR-10 data set.

Nobile et al. [50] proposed a fuzzy self-tuning PSO

(FST-PSO) algorithm. It provided fully automated param-

eter configurations to each particle by integrating fuzzy

logic into the PSO algorithm. Two linguistic variables were

used to establish fuzzy membership functions, i.e. one for

determining the distance between the current particle and

global best position as ‘close’, ‘medium’, or ‘far’, while

another for measuring fitness improvement of a particle

between two successive iterations as ‘worse’, ‘same’, or

‘better’. These linguistic variables were used in conjunc-

tion with a list of rules associated with the inertia weight,

social and cognitive search coefficients, and lower/upper

clamping values for velocity. Through dynamically

adjusting these fuzzy variables, each particle was capable

of exploring more promising search regions autonomously.

Evaluated on 12 benchmark functions, FST-PSO illustrated

fast convergence speed, while maintaining competitive

performance, as compared with classical search methods,

such as Differential Evolution (DE) and Artificial Bee

Colony (ABC).

Tan et al. [40] proposed a PSO variant to optimise

hyper-parameters of CNNs as well as cluster centroids of

fuzzy C-means (FCM) clustering for skin lesion segmen-

tation. PSO was combined with helix and DE search

mechanisms to increase search diversification. A spiral

function was used to assign search coefficients to these

search operations, while Simulated Annealing (SA) and

Levy flight were employed to increase intensification. The

model then assigned these local and global search opera-

tions in a cascading manner. It started with SA-based local

exploitation, and then switched to other search strategies

such as PSO, helix or DE actions when the search process

became stagnant. In this way, the swarm performed mul-

tiple search actions simultaneously in each iteration, in

order to diversify the search process. The model was used

to not only optimise hyper-parameters of pixelwise CNNs,

but also fine-tune the cluster centroids of FCM. The opti-

mised CNN and FCM components formed two separate

ensemble models for lesion segmentation. Evaluated using

three skin lesion data sets, i.e. Dermofit Image Library,

PH2, and ISIC 2017, the devised PSO-based ensemble

model illustrated significant superiority over other clus-

tering and deep networks in lesion segmentation.

Singh et al. [51] proposed a multi-level PSO (MPSO)

model for optimisation of architectures and hyper-param-

eters of CNNs. The proposed model exploited the concept

of multiple populations. Specifically, the initial swarm at

level one was used for CNN architecture generation (i.e.

identification of the most optimal settings of convolutional,

pooling, and fully connected layers), while multiple pop-

ulations at level two were subsequently used to optimise

hyper-parameters (e.g. number of filters, filter size, and

number of neurons) of each CNN from level one. An

adaptive inertia weight implemented by a sigmoid function

was leveraged to balance diversification and intensification.

Evaluated using five well-known data sets, including
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MNIST, CIFAR-10, and CIFAR-100, the devised model

with optimal hyper-parameters produced an impressive

performance.

Bai et al. [52] proposed a dynamic weight PSO-based

sine map (SDWPSO) algorithm for optimising weights and

biases of a backpropagation neural network (BPNN) for

reliability prediction in engineering problems. A new

position updating operation was proposed, where dynamic

weights were used to adjust the proportions of contribu-

tions of the current position, the new velocity and the

global best solution for position updating. The sine map

with an adaptive control factor was used to adjust the

inertia weight. Evaluated using 14 benchmark functions

and reliability prediction of turbocharger and industrial

robot systems, the model outperformed Support Vector

Machine (SVM) and Artificial Neural Network (ANN)

methods significantly.

Lan et al. [53] developed a hierarchical sorting swarm

optimiser (HSSO) to solve large-scale optimisation prob-

lems. HSSO incorporated a new learning strategy to sort

the particles into a hierarchical structure based on fitness

scores. Specifically, the particles were recursively sorted

into groups containing solutions with promising or poor

fitness values. Promising particles were used in each sub-

sequent recursion. This hierarchical structure employed

elite solutions with promising fitness scores to update the

velocities and positions of worst-performing particles. In

addition, the personal best solution in the cognitive term

was also replaced with those promising solutions in the

hierarchical structure. The mean position of the overall

swarm was adopted in the social term as opposed to a

global best position. Using 39 generic benchmark test

functions, HSSO showed improved exploration and

exploitation capabilities against those of social learning

PSO (SL-PSO), a Competitive Swarm Optimiser (CSO),

Efficient Population Utilisation Strategy PSO (EPUS-

PSO), Dynamic Multi-Swarm PSO (DMS-PSO), and

Multi-level Cooperative Coevolution (MLCC).

Han et al. [54] developed an adaptive gradient multi-

objective PSO (AGMOPSO) algorithm to address slow

convergence and sub-optimal performance inherent in

multi-objective optimisation problems. The main goal of

multi-objective optimisation is to achieve a weighting of

contribution across all the evaluation functions (objectives)

by optimising some target variables. This ideal weighting is

known as the Pareto-optimal set. A stock ticker multi-ob-

jective gradient (stocktickerMOG) method was devised to

approximate the optimal Pareto set of solutions. A unique

self-adaptive flight mechanism which affected both social

and cognitive terms was introduced. To achieve this, a

fixed sized archive was updated with the global best

position, provided that it was not dominated by any current

entries in the archive. During each PSO iteration, Multi-

Objective Gradient (MOG) was used to obtain gradient

information so that the archive entries can be incremented

towards the Pareto-optimal set. A unique self-adaptive

flight parameter was calculated based on the distance

between the closest and furthest particles corresponding to

the swarm leader as well as the distance between the cur-

rent particle and global best solution. This flight parameter

was applied to each particle differently depending on its

dominance state with respect to the current entries in the

archive. This allowed each particle to dynamically adapt

the amount of contribution from the social and cognitive

terms. Evaluated on a series of established multi-objective

benchmark functions (ZDT [55] and DTLZ [56]) using the

Inverted Generational Distance (IGD) and spacing metrics,

AGMOPSO achieved better diversity and accuracy as

compared with seven multi-objective PSO algorithms as

well as non-dominated sorting genetic algorithm II

(NSGA-II) and strength Pareto evolutionary algorithm 2

(SPEA2).

Cai et al. [57] combined PSO with density peaks clus-

tering (PDPC) to address the limitations in manual selec-

tion of initial cluster centroids and the influence of a

distance cut-off parameter required by density peaks clus-

tering (DPC). The distance cut-off parameter was deter-

mined by calculating the Gaussian distances between all

data points and taking the mean value of the maximum and

minimum Gaussian distances. Initial cluster centroids of

DPC were selected using PSO, where the inverse product

of density and distance was used as the fitness function.

Evaluated using nine UCI benchmark data sets, PDPC

showed great superiority in solving cluster centroid selec-

tion, yielding promising accuracy, precision, and recall

scores in contrast to several methods, including K-means

clustering, Improved K-means clustering, original DPC and

density peak K-medoids.

The aforementioned PSO variants are useful for tackling

issues of premature convergence of original PSO, where

stagnation is often attributed to non-optimal exploration

and exploitation of the search processes. Many studies

change the flight characteristics of the cognitive and social

terms. These changes are often applied to the velocity

updating operation, as defined in Equation 1, which plays a

significant role in determining a particle’s search beha-

viour. The velocity updating operation often incorporates

certain new factors to affect the social and/or cognitive

terms. In some cases, the inertia weight is adjusted as well,

in order to obtain a delicate control of the velocity scale

applied to each particle in each iteration. In comparison

with the existing studies, EnvPSO has the following con-

tributions, i.e. (1) a new environmental term is introduced,

which estimates the fitness surface of unexplored search

regions by using a Gaussian filter and information obtained

from previously explored search space. It provides each
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particle with a sense of environmental awareness to com-

plement the effects of both social and cognitive terms. (2)

An exponential function is embedded to adjust the search

effects of the social and cognitive terms adaptively in each

iteration. (3) A new optimisation parameter (i.e. layer strip-

back) is proposed to determine the number of re-trainable

layers of each CNN model in the transfer learning process

to increase network variations. By adopting adaptive

scheduling of the social and cognitive terms as well as

providing additional environmental awareness, our model

achieves an enhanced trade-off of intensification and

diversification. The empirical results indicate its capabili-

ties in identifying hyper-parameters that yield distinctive

competent stream ensemble CNN models for undertaking

HAR problems.

2.3 Human action recognition

HAR has gained increasing research attention, owing to its

broad range of real-life deployments such as healthcare,

security, and surveillance [30]. As an example, Sharma

et al. [58] presented an expanded parts model (EPM) to

tackle HAR problems. The model selected discriminative

part templates with an associated scale space location and

scored them using a novel SVM-like classifier. A unique

scoring function was proposed, which promoted learning

diverse spatial and descriptive image patches to best rep-

resent the action. The EPM model, when visualised,

showed an interesting collage of class relevant image pat-

ches spatially overlaid atop the original image with non-

relevant parts of the images remaining black. This gave an

idea of how the classifier matched parts with relevant

aspects in an image to optimise accuracy. Evaluated using

the Stanford40 and Human Attributes (HAT) data sets, the

EPM model in combination with VGG16-based feature

extraction achieved superior mean average precision

(MAP) scores as compared with nine other methods,

including spatial pyramid matching.

Zhang et al. [59] presented a part-based method called

minimum annotation effort (MAE) to handle still image-

based HAR tasks. The model included two main compo-

nents, i.e. delineation of the ‘action mask’ and a unique

feature representation for action classification. Delineating

the action mask required two steps, i.e. object parts gen-

eration and action mask discovery. To address the first

issue, bounding-box based object proposals were obtained

using unsupervised selective search and passed through a

VGG16 network. A multi-max pooling technique was

applied to the outputs from the last convolutional layer of

the VGG16 network to yield object parts. To retrieve the

action mask, an energy minimisation problem on a Markov

random field was formulated. The solution produced a

shared global parts model, a part model for each class and

action-masks for each image. In addition, feature repre-

sentation was conducted by applying product quantisation

to the initial object proposals that had sufficient overlaps

with the action mask. These formed the inputs to a one-vs-

all linear SVM classifier for action classification. Evaluated

using benchmark still image data sets (such as PASCAL

VOC 2012, Stanford40, and Willow7), the model outper-

formed existing methods such as regularised max pooling

(RMP), object bank, locality-constrained linear coding

(LLC), and EPM.

Wang and Wang [60] proposed a Joint learning hierar-

chical spatial sum product network (JHS-SPN) for HAR

tasks. A novel feature representation scheme was intro-

duced. Image patches were sequentially extracted from the

images. Action features were established by extracting

CNN features from these sampled image patches. The

feature vectors were clustered and used to fine-tune a CNN

model. Multiple SVMs were trained on these feature

clusters to produce part activation vectors. JHS-SPN

altered the original sum product network (SPN) model by

introducing hierarchical partitioning. It learned optimal

channels by dividing an image and capturing deformable

spatial relationships between object parts. Part activation

vectors and spatial relationships were extracted from each

image subdivision, in order to reduce the computation

complexity. Based on the Willow7 action data set, JHS-

SPN produced superior MAP scores as compared with

those from EPM, Discriminative spatial Saliency (Dsal),

and the interaction pairs method. Evaluated on the Stan-

ford40 data set, JHS-SPN outperformed EPM, LLC, object

bank, and spatial pyramid matching methods.

Li et al. [61] proposed attention-based transfer learning

for image-video adaptation for both HAR and human

interaction recognition. A new human interaction image

(HII) data set was introduced. Specifically, the method

employed class-discriminative spatial attention maps and a

Siamese EnergyNet structure for video classification.

Class-discriminative spatial attention maps were generated

for each video frame using a pre-trained CNN integrated

with gradient-weighted class activation mapping (Grad-

CAM). These attention maps were subsequently combined

with word embedding vectors derived from the class

description. The combined feature vectors were used as

inputs to the Siamese EnergyNet. This network comprised

four parallel dense CNN layers, which was optimised using

both energy loss and triplet loss functions. To boost

training efficiency, these four parallel dense CNN layers

adopted four different types of inputs, i.e. a ground truth

label, a false example, a positive example from a different

video clip and an incorrect example with minor differences

from the ground truth. The model produced competitive

MAP scores on the UCF101 data set against 11 other state-
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of-the-art methods. Its superior performance on the HII

data set was also demonstrated.

Safaei [62] proposed an ensemble method combining

spatio-temporal CNN (STCNN) and zero-shot tensor

decomposition (ZTD) to solve still image HAR problems.

A novel strategy for generating spatio-temporal features

along with STCNN and ZDT models was formulated. A

new large-scale image data set, namely UCF-Star, was also

introduced. The spatio-temporal feature extraction process

was unique as the generated temporal information from

still images did not inherently exist. To achieve this, the

optical flow vectors across several frames were clustered

into quantised groups. Taking an image and its corre-

sponding motion clusters as labels, a CNN was optimised

using a spatial loss function to classify the regions as

probability distribution over the motion vectors. In effect,

this produced vertical and horizontal predicted optical flow

information. A 3-channel tensor was produced for each

image by combining these optical flow predictions with a

saliency map derived from a bottom-up ranking method.

These spatio-temporal features were used to fine-tune a

VGG16 network pre-trained on ImageNet forming the first

part of the ensemble model, i.e. STCNN. The second part

of the ensemble model was based on ZTD. It conducted

HAR by forming action prototypes, applying Tucker

decomposition and then performing classification by cal-

culating the set of joint probability distributions between

class labels and each test image. The STCNN and ZTD

models were combined using multiple linear regression

(MLR). Evaluated using the UCFSI-101 (i.e. extracted

frames from UCF101), Willow7, Stanford40, WIDER, and

UCF-Star data sets, the MLR ensemble method integrating

STCNN and ZTD outperformed object bank, LLC, and

multi-region CNN methods, significantly.

Yu et al. [63] proposed a non-sequential CNN (NCNN)

to solve still image HAR tasks. The NCNN model added

multiple parallel branches of convolutional layers to a pre-

trained CNN, in order to separately learn spatial and

channel-wise features. An end-to-end trainable ensemble of

CNN models incorporating NCNN blocks was formed.

This ensemble model was compared against traditional

ensemble methods (e.g. majority voting, averaging, and

weighted averaging) using three different voting strategies

(e.g. tuning weight, hard, and soft voting schemes). An

ensemble of VGG16, VGG19, ResNet50, VGG16_NCNN,

VGG19_NCNN, and ResNet50_NCNN using the tuning

weight voting scheme achieved the best performance on

the Willow7 data set.

Liu et al. [64] proposed loss guided activation for still

image HAR tasks. A novel human mask loss was intro-

duced for optimising a unique human localisation stream.

This stream along with another action classification stream

was appended to the final convolutional layer of an

Inception-ResNet-v2 network. Such strategies enabled

joint predictions on both human action classes and a human

localisation heatmap, forcing the learned feature repre-

sentations to focus on the most action-relevant human

subjects in the image. The method showed great superiority

over 7 other state-of-the-art methods on the MPII and

Stanford40 data sets.

Yan et al. [65] proposed multi-branch attention networks

for still image HAR problems. The method leveraged the

idea of human attention as applied to viewing images. To

achieve this, a soft attention mechanism was devised by

adding two branches to a VGG16 model, one branch to

capture scene level attention while another to handle

region-level attention. A two-step alternating optimisation

technique was introduced. The classification and region-

level attention parameters were first trained before training

those associated with scene-level attention. The method

showed great performance on the PASCAL VOC 2012 and

Stanford40 data sets.

3 EnvPSO-optimised ensemble CNN model
for human action recognition

The proposed ensemble model comprises two main com-

ponents, i.e. EnvPSO and EnvPSO-optimised CNN stream

ensemble model. The CNN stream ensemble model is used

to generate class predictions for HAR with still images as

inputs. EnvPSO is used to optimise the hyper-parameters of

each CNN stream, i.e. the learning rate, batch size, and

layer strip-back. Once the CNN streams are optimised, they

are trained and used to generate class predictions which are

subsequently summed and divided by the number of

streams to produce an average prediction for each input

image. We describe the key components in the following

subsections, leading with the proposed EnvPSO variant.

Then, the details of the EnvPSO-optimised CNN stream

ensemble model are explained.

3.1 The proposed PSO variant

As previously mentioned, PSO establishes two key ele-

ments by stimulating its swarm behaviours, i.e. social and

cognitive terms. The social term replicates a collaborative

behaviour by influencing the search directions of particles

towards the global best solution. The cognitive term guides

each particle to move towards its personal best experience.

Instead of using fixed coefficients for both terms in a

standard PSO algorithm, we aim to fine-tune them, and

enhance exploration and exploitation of particles. On the

other hand, a standard PSO algorithm does not take envi-

ronmental factors, such as fitness prediction, into account,

9212 Neural Computing and Applications (2022) 34:9205–9231

123



which can be beneficial to complement both social and

cognitive terms in accelerating convergence.

Therefore, in this research, a new PSO variant, i.e.

EnvPSO, is proposed. It incorporates a new environmental

element embedding Gaussian fitness surface prediction,

and linear and exponential adaptive coefficients to balance

between diversification and intensification. Specifically,

linear and exponential functions are used to generate

adaptive search parameters that allow the swarm to focus

on global exploration in the beginning and local exploita-

tion towards the end during the search process. In other

words, adaptive functions are proposed to adjust both

social and cognitive terms to gradually move from explo-

ration to exploitation. To complement the social and cog-

nitive terms, a third environmental term is proposed, which

estimates the fitness surface of the search space for an input

function using a Gaussian distribution. It simulates parti-

cles to move towards more promising search regions during

the search process, in an attempt to accelerate convergence.

Details of EnvPSO are shown in Algorithm 2.

3.1.1 Adaptive coefficients

As indicated in Equation 1, the standard PSO algorithm

assigns constant values to the acceleration coefficients, i.e.

c1 and c2, which guide the search process. In this research,

we investigate the effects of adjusting these parameters

during the search process. Specifically, we propose linear

and exponential functions for search coefficient generation.

Equations 3-4 and Equations 5-6 define both linear and

exponential formulae, respectively. Moreover, static coef-

ficients are employed in EnvPSO by setting c1 ¼ 2:5 and

c2 ¼ 2:0, for performance comparison purpose.

c1 ¼ cmax �
cmax � cmin

imax
i ð3Þ

c2 ¼ cmin þ
cmax � cmin

imax
i ð4Þ

c1 ¼
cmax � cmin

1þ e
5

imax
ði�imax

2
Þ
þ cmin ð5Þ

c2 ¼
cmin � cmax

1þ e
5

imax
ði�imax

2
Þ
þ cmax ð6Þ

Neural Computing and Applications (2022) 34:9205–9231 9213

123



where cmax ¼ 2:5 and cmin ¼ 0:5, while i denotes the cur-

rent iteration and imax represents the maximum number of

iterations. Figure 2 illustrates the adaptive search coeffi-

cients generated using Equations 3-4 and 5-6, respectively.

Such adaptive linear and exponential coefficients enable

the swarm to focus on global exploration at the beginning of

the search process and local exploitation towards the end.

Besides adaptive social- and cognitive-based terms, we

propose an environmental term pertaining to fitness surface

estimation using Gaussian distribution, as explained in the

following subsection.

3.1.2 Gaussian fitness surface prediction

To further enhance the exploitation and exploration capa-

bilities of PSO, we introduce a third environmental term to

complement both social and cognitive-based terms in the

velocity-updating formula. In essence, this new strategy

adds an environmental awareness to particles by providing

information on the function being evaluated. Since it is not

possible to obtain the fitness scores of unevaluated posi-

tions in the search space, we can instead estimate the fit-

ness scores associated with vicinity of previously evaluated

positions. Using these estimations, we can create a rough

landscape of the fitness surface for the input function. As

the algorithm progresses, estimation of the complete fitness

surface becomes more accurate. Based on the estimated

surface, we can extract gradient information to influence

the velocity of a particle by pushing it along the direction

towards fitter solutions. The extracted gradient information

lays the foundation for the proposed third environmental

term in accelerating convergence.

A pictorial example of this fitness surface is displayed in

Fig. 3. It shows how the landscape of estimated fitness

surface changes over time when EnvPSO is used to solve a

classic minimisation problem, i.e. the Ackley benchmark

function. Initially, the landscape of estimated fitness sur-

face (magenta) appears flat (when i ¼ 1 in Fig. 3). When

particles explore and evaluate positions of the input func-

tion (i.e. Ackley function), the associated gradient infor-

mation in each dimension of the estimated fitness surface is

extracted and exploited to influence their velocity. Notice

that the estimated surface does not form a one-to-one

representation pertaining to the input function. Instead, the

estimated surface is convolved with a dimensionally

appropriate Gaussian kernel, in order to smooth the fitness

landscape and provide a better approximation of the shape

of the input function. This leads to appropriate gradient

information to be utilised for influencing velocities of

particles in the search process.

Specifically, we generate the gradient information by

collecting all the currently evaluated positions in the search

space and mapping them to a zero index n-dimensional

integer array, where n represents the number of targeted

hyper-parameters. Mapping parameters with a continuous

domain in this way requires an array of infinite size. To

solve this problem, we choose several equidistant points

between the maximum and minimum values of the con-

tinuous domain to serve as indexes of a particular dimen-

sion. Once defined, each value in fitness array A is

initialised to zero. When a particle is evaluated, its fitness

value f ðxtiÞ is stored in A at an index corresponding to its

current particle position x, as defined in Equation 7.

AðxtiÞ ¼ f ðxtiÞ ð7Þ

where xti is the position of the ith particle at iteration t.

After evaluating all particles in the current iteration, an n-

dimensional fitness hyper-surface S is created by con-

volving a Gaussian filter over A using Equations 8, 9, 10,

and 11. Firstly, Equation 8 is used to calculate the standard

deviation of the Gaussian operation.

rd ¼ h� ðmaxðVdÞ � minðVdÞÞ ð8Þ

where rd is the standard deviation of dimension d with h as

a predefined smoothing factor. Then, rd is used in Equa-

tion 9 to generate the Gaussian kernel for convolution

operations.

GdðrÞ ¼
1
ffiffiffiffiffiffi

2p
p

rd
e
� r2

2r2
d ð9Þ

where Gd is the Gaussian kernel for dimension d and its

domain R is defined in Equation 10.

R ¼ fr j r is an integer, and� 4rd þ 0:5� r� 4rd þ 1:5g
ð10Þ

The Gaussian kernel in the dth dimension is convolved

sequentially along the dth axis of A as indicated in

Equation 11.

SdðsÞ ¼ AðsÞ � GdðsÞ ð11Þ

Before updating each particle’s position and velocity, its

current position xti is used to index a point on the fitness

hyper-surface SdðsÞ generated using Equation 11, from

which the gradient information of the surface in each

dimension is extracted. The gradient information is calcu-

lated using second-order finite central differences, as in

Equation 12.

Dxid ¼
Sðxid þ hÞ � Sðxid � hÞ

2h
ð12Þ

where Dxid is the gradient associated with dimension d of

the ith particle at an indexed position x. Note that xid þ h

represents the proceeding neighbouring point of xid at a

predetermined distance h, while xid � h indicates an
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indexed position in the opposite direction. Since S is

indexed with integers incrementing by 1, h ¼ 1 is applied

to obtain the adjacent position. Figure 4 shows the under-

lying procedure.

With the gradient information extracted from Equa-

tion 12, the environmental term Dxti for the ith particle can

be constructed, resulting in a vector of fitness gradient

information with length d for velocity updating. Equa-

tion 13 is used to update each particle’s velocity.

vtþ1
i ¼ wvti þ r1c1ðptbest � xtiÞ þ r2c2ðgtbest � xtiÞ þ Dxti

ð13Þ

Fig. 2 Left: Equation 3 (red line) generates the linear cognitive

coefficient c1 and Equation 4 (green line) generates linear social

coefficient c2.Right: Equation 5 (red line) generates exponential

cognitive coefficient c1 and Equation 6 (green line) generates

exponential social coefficient c2 (Color figure online)

Fig. 3 Variations of the Ackley function (yellow surface) and

estimated Gaussian fitness surface (magenta surface) yielded by

EnvPSO at iteration i=1, 50, 100, and 150. Blue points indicate

current positions of particles, cyan dots show their historical personal

best positions, while red star indicates the current global best position

(Color figure online)
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Finally, the new particle velocity is used for updating its

position using Equation 2. The proposed Gaussian fitness

estimation surface equips the swarm with higher chances in

exploring promising search regions, while reducing the risk

of being trapped in local optima, in order to accelerate

convergence.

The final PSO addition, namely layer strip-back, defines

the number of CNN layers to be re-trained in the transfer

learning process when EnvPSO is used to optimise network

hyper-parameters. An analysis is provided below.

3.1.3 Layer strip-back

Three CNN streams are used to form the ensemble model.

The first stream is based on a VGG19 [41] backbone pre-

trained on the ImageNet data set. Its structure is displayed

in Fig. 5. To optimise matrix calculations and GPU

memory allocation when training a pre-trained CNN for a

new task, we can manually select a number of layers to be

re-trained. By reducing the number of trained layers, we

reduce the number of required matrix calculations, leading

Fig. 4 The use of finite central

differences to an arbitrary

function, where xi refers to the

ith particle and the red line

represents the estimated fitness

surface of the function, where

d ¼ 0 indicates a one-

dimensional input. Here h is the

step-size in Equation 12, which

is set to 1 so that it lines up with

the integer indexing scheme of

A

Fig. 5 Layer configurations of the VGG19 network. The ImageNet

pre-trained VGG19 models used in the proposed three streams are

provided in the Python package tensorflow.keras.application, which

require an input shape of (224, 224, 3). Each network is adjusted by

replacing the final three dense layers with three new counterparts,

where the first and second dense layers have 1000 and 100 neurons,

respectively, while the final output layer has neurons equivalent to the

target classes in the training set

Fig. 6 The layer strip-back

parameter is applied to the

VGG19 network. Note that zero

indicates that no convolutional

layer prior to the flatten layer

needs to be re-trained
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to economical use of computation cycles and GPU mem-

ory. Rather than manually determining the number of re-

trained layers for transfer learning, we automate the layer

selection process by creating a variable called layer strip-

back, which is presented in Fig. 6.

This variable is assigned an integer value in a range of

[0, 10], which determines the number of layers back from

the final layer of the backbone network used for re-training.

For instance, if the layer strip-back value is 2, then only the

last two layers in the network need to be re-trained. This

variable is automatically determined, like any other hyper-

parameters (i.e. the learning rate and batch size), during the

optimisation process. After optimisation with EnvPSO, the

proposed CNN ensemble model is used in a multi-stream

form for HAR tasks.

3.2 The multi-stream ensemble model

Motivated by the well-known two-stream CNN architec-

ture proposed by [31], where spatial and temporal infor-

mation was extracted by separate streams for action

classification, we propose an ensemble model consisting of

three EnvPSO-optimised CNN streams, as shown in Fig. 1,

to diversify action recognition. The first stream employs a

VGG19 network with raw images as inputs. The second

stream adopts another VGG19 network with the segmented

masks yielded by mask R-CNN as inputs. The third stream

fuses two VGG19 networks with raw images and seg-

mented masks as inputs, respectively. The network in each

CNN stream is individually optimised. Specifically, opti-

mal transfer learning settings, which include the learning

rate, batch size, and layer strip-back hyper-parameters, are

devised using EnvPSO for each stream. The three opti-

mised streams are combined in an ensemble manner using

the average of their probabilistic class predictions.

Moreover, the search ranges of the optimised hyper-

parameters, i.e. the learning rate, batch size, and layer strip-

back, are shown in Table 1. The three optimised hyper-

parameters affect network performance. As an example,

the learning rate affects model learning behaviours. A very

small learning rate is more inclined to be stuck in local

optima, which requires substantial training effort to reach

optimal solutions. A moderate setting is more likely to

result in steady delicate training steps while obtaining

promising performances. In addition, the batch size defines

the number of samples processed before updating the net-

work parameters. According to Masters and Luschi [66], a

suitable batch size ranges between 8 and 32. Since it is

highly likely that there are multiple configurations that can

produce promising performances, the capability of identi-

fying optimal settings is important. Furthermore, the layer

strip-back hyper-parameter determines the number of re-

trainable layers in the transfer learning process. A moderate

setting can solicit sufficient knowledge from the new

domain while taking advantage of prior knowledge learned

from the pre-trained domains. A comparatively small set-

ting may not be effective enough to learn sufficient new

feature representations (especially when the new domain is

very different from the pre-trained domain), which can

limit network performance. Therefore, we optimise the

learning rate, batch size, and layer strip-back hyper-pa-

rameters for each CNN stream using the proposed EnvPSO

algorithm. Further details of each stream are explained in

the following subsections.

3.2.1 Stream 1—VGG19 with Raw Images

The first stream is a VGG19 network [41] pre-trained on

the ImageNet data set. Its structure is displayed in Fig. 5. It

is adjusted by replacing the original final three dense layers

with three new fully connected dense layers, where the first

dense layer has 1000 neurons, the second dense layer with

100 neurons, and the final output layer has neurons

equivalent to the target classes in the training data set. The

input images are resized to (224, 224, 3), in order to match

the input shape of the first convolutional layer of the

VGG19 network. An overview of this first stream is pro-

vided in Fig. 7. In addition, as mentioned above, EnvPSO

is used to identify the optimal transfer learning configura-

tions of this CNN stream, i.e. the learning rate, batch size,

and layer strip-back hyper-parameters, to better adapt it to

the new tasks.

3.2.2 Stream 2—VGG19 with mask R-CNN features

The second stream is composed in a manner similarly to

that of the first CNN stream, but differs by the input it

receives. Instead of using the resized raw images as inputs,

a pre-processing step is applied to the raw images to extract

saliency maps via a mask R-CNN [67] pre-trained on the

MSCOCO data set. Mask R-CNN uses a Region Proposal

Network (RPN) to propose candidate object bounding

boxes. Classification and bounding box regression are then

performed, while concurrently producing a binary seg-

mentation mask for each class. This allows retrieval of the

class probability, the bounding box offset and a binary

segmentation mask for each detected object in a given

Table 1 Hyper-parameter search ranges

Hyper-parameter Range

Batch size [8, 64]

Learning rate [0.001, 0.01]

Layer strip-back [0, 10]
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input image. In addition, each detected class is represented

by a particular shade. This pre-processing procedure using

mask R-CNN yields a resized grey-scale unsigned 8-bit

integer image with class-encoded segmentation masks for

all detected objects (see Fig. 8). This output grey-scale

image is used as the input to the VGG19 network in Stream

2. In this way, we represent class categories as different

shades, allowing previously identified class information to

inform subsequent classification. Figure 9 illustrates the

overview of this stream.

Using mask R-CNN, we transform raw image inputs

into saliency maps containing object and location data, in

Fig. 7 An overview of the first

stream

Fig. 8 Examples from three of the 7 classes from the Willow7 data set

as well as three of the 101 classes from the BU101 data set. Each

column displays three examples of the grey scale images generated

using mask R-CNN and their corresponding raw images. Each grey

shade represents a different class prediction for the region of pixels it

covers in the raw image

Fig. 9 An overview of the

second stream
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order to create a new input modality. In particular, applying

these inputs to a separate VGG19 network allows this

second stream to better represent various actions (e.g.

JumpRope, JugglingBalls, PizzaTossing, and SkateBoard-

ing) for recognition in human–object interaction. In addi-

tion, EnvPSO is used to identify optimal settings of the

learning rate, batch size, and layer strip-back hyper-pa-

rameters, with respect to the transfer learning process for

this stream.

3.2.3 Stream 3—A fusion of streams 1 and 2

As indicated in Fig. 10, the last stream fuses two VGG19

networks using raw images and segmented masks extracted

by mask R-CNN as inputs, respectively. It adds a flattening

layer after the final convolutional layer of each network,

and concatenates them to form an end-to-end trainable

CNN. Its inputs are both raw images as used in Stream 1

and pre-processed saliency maps as adopted in Stream 2.

These two types of input images are simultaneously used

for training.

The EnvPSO algorithm is used to optimise the learning

rate, batch size, and layer strip-back hyper-parameters of

this third stream in the transfer learning process. Based on

optimised Streams 1, 2, and 3, we construct an ensemble

model to overcome bias and variance of single stream to

further enhance performance.

3.2.4 Stream ensemble model

As discussed earlier, each constituent stream is optimised

independently using EnvPSO to identify the optimal

learning rate, batch size, and layer strip-back settings.

Specifically, during the training stage, the target stream is

trained for three epochs at each EnvPSO iteration. Then, it

is evaluated based on a validation set to yield the class

predictions. The MAP indicator is used as the fitness score

pertaining to the particle’s position in the search space.

Once the optimisation process is completed, the optimal

hyper-parameters are used to train the corresponding CNN

stream for 100 epochs. After training, the CNN models are

evaluated using the test set, giving the final class predic-

tions. Once all the streams are evaluated, their outputs are

combined by taking the average of predictions. Specifi-

cally, the class predictions generated by the optimised

CNN streams are summed and divided by the number of

streams to produce an average prediction for each input

image. We repeat this procedure for 10 trials and take the

average results, in order to avoid randomness in CNN

training. The mean MAP result over 10 runs is used for

performance comparison, as indicated in Fig. 11. This

multi-stream EnvPSO-optimised ensemble model is illus-

trated in Algorithm 3. Such an ensemble strategy is not

only able to embed distinctive transfer learning strategies

in different streams to increase diversity, but also to

strengthen weak base learners and overcome bias and

Fig. 10 An overview of the

third stream
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variance of optimised base networks for performance

enhancement.

Moreover, for the aforementioned ensemble model,

there is only one pre-processing step required, i.e. semantic

segmentation mask generation using Mask R-CNN. As

indicated in Section 3.2.2, Mask R-CNN is used to extract

semantic segmentation masks from raw images. The

extracted saliency maps are used as the inputs to CNNs in

Streams 2 and 3, as indicated in Figs. 9, 10. These seg-

mented masks provide a new type of inputs in comparison

with raw image inputs used in other CNNs, in order to

increase model diversity. In particular, they are used to

better represent actions with respect to human–object

interaction.

4 Evaluation of the ensemble model
with HAR data sets

In this section, we evaluate the proposed three-stream

ensemble model with EnvPSO-optimised hyper-parameters

using two HAR data sets, i.e. the Willow7 [17] and BU101

[68] data sets. To better understand the impact of additional

contributions to original PSO, we evaluate each proposed

strategy separately. Specifically, we compare the MAP

scores of CNN models trained with hyper-parameters

optimised by PSO and EnvPSO using static, linear and

nonlinear search coefficients in each individual CNN

stream as well as the ensemble model of every possible

permutation of the streams. Streams with default hyper-

parameter settings instead of optimised ones are also pro-

vided to highlight the performance of the optimised

streams and ensemble models. In addition, we compare the

MAP results with those from other state-of-the-art existing

methods.

The following settings are followed, in order to ensure

consistency in experiments. Every CNN stream is trained

with a stochastic gradient descent optimiser using a cate-

gorical cross-entropy loss function, as well as a Nesterov

momentum of 0.01 and a decreasing learning rate that

reduces by 1/5 when the validation loss does not improve

over three consecutive epochs. The settings of static, linear,

Fig. 11 Construction of the ensemble model, where the class

predictions of each stream are combined using the mean average
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and exponential search coefficients used in PSO and

EnvPSO are shown in Table 2. The identified optimal

configurations by PSO and EnvPSO are used to train cor-

responding CNN ensemble models on each data set. The

trained ensemble models are subsequently evaluated on the

unseen test set. We adopt the following settings throughout

the experiments, i.e. population=10, maximum number of

iterations=30, and dimension=3. In addition, a total of 10

runs are performed to construct 10 optimised stream

ensemble models. The mean results of the 10 stream

ensemble models are used for performance comparison. In

addition, the default networks without any optimisation

process purely re-train the last three layers using the new

data set, instead of using the dynamic number of layers

recommended by the layer strip-back parameter. Such

default networks employ a default learning rate of 0.001

and a default batch size of 32. The mean result of the

default ensemble model over 10 runs is computed for

performance comparison based on each data set.

As mentioned earlier, for multi-stream ensemble models

with both optimised and default parameter settings, there is

only one pre-processing step required, i.e. semantic seg-

mentation mask generation using mask R-CNN. Specifi-

cally, mask R-CNN is used to extract semantic

segmentation masks from raw images. These extracted

saliency maps are then used as the inputs for CNNs in

Streams 2 and 3, as indicated in Figs. 9, 10. Except for the

aforementioned segmentation mask generation, there is no

other pre-processing step required. These segmented masks

create a new input type in comparison with raw image

inputs used in other CNNs to increase model diversity.

4.1 Data sets

We use the following two key data sets that have been used

in several related studies.

4.1.1 Willow7

The Willow7 data set [17] consists of 7 classes containing

968 images extracted from Flickr. The classes are, ‘Inter-

acting with Computer’, ‘Photographing’, ‘Playing Instru-

ment’, ‘Riding Bike’, ‘Riding Horse’, ‘Running’, and

‘Walking’. We employ the official train, validation, and

test data splits for each class category in our experiments.

4.1.2 BU101

The BU101 data set [68] comprises 23.8K manually fil-

tered web images pertaining to actions from 101 classes.

These action classes are divided into five categories, i.e.

human–object interaction, body-motion only, human–hu-

man interaction, playing musical instruments, and sports.

The action classes in BU101 have a 1-1 correspondence

with those of the UCF101 video action data set. Some

example classes are, ‘MoppingFloor’, ‘PullUps’, ‘Knit-

ting’, ‘SkateBoarding’, and ‘Typing’. In addition, a total of

2769 images are taken from Stanford40, which share the

same class categories (e.g. ‘PlayingViolin’ and ‘Rowing’)

as those in UCF101. Each class in the BU101 data set

contains 100-300 images extracted from the above sources.

This data set does not have an official train/test data split.

We use a train/validation/test split of 70/10/20, as adopted

in other existing studies [61]. Specifically, we apply the

above split to each class so that we obtain the same ratio of

class samples to form train/validation/test sets.

4.2 Results

The MAP metric is computed to determine the effective-

ness of the EnvPSO-optimised CNN ensemble model. The

mean results of 10 separate runs using the Willow7 and

BU101 data sets are shown in Tables 3 and 4, respectively.

The numbers in the first row of these tables refer to which

streams are being ensembled to obtain the final predictions.

Static, linear, and nonlinear refer to constant, linear, and

nonlinear (exponential) search coefficients, respectively.

In Tables 3 and 4, Streams 1, 2 and 3 represent opti-

mised VGG19 with raw images as inputs, optimised

VGG19 with extracted mask R-CNN salient features as

inputs, and fusion of both Streams 1 and 2, respectively. As

illustrated in Tables 3 and 4, ensemble models with default

and optimised settings combining Stream 1/Stream 2 with

Stream 3 achieve enhanced performances, indicating that

additional diversity introduced by Stream 3 offers signifi-

cant advantage over those individual streams. In addition,

ensemble models of Streams 1 and 3 typically achieve the

best performance with both data sets for nearly all search

methods. The most effective configuration for both data

Table 2 EnvPSO and PSO settings

Method Value

Static Cognitive acceleration coefficient c1 ¼ 2:5

Social acceleration coefficient c2 ¼ 2:5

Inertia weight w ¼ 0:1

Linear Linear cognitive and social search coefficients generated

using Equations 3 and 4 with cmax ¼ 2:5 and cmin ¼ 0:5,

Inertia weight w ¼ 0:1

Nonlinear Nonlinear exponential cognitive and social search

coefficients generated using Equations 5 and 6

with cmax ¼ 2:5 and cmin ¼ 0:5,

Inertia weight w ¼ 0:1
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sets is the ensemble model of Streams 1 and 3 optimised by

EnvPSO with nonlinear adaptive coefficients, where the

proposed strategies such as Gaussian fitness surface pre-

diction and adaptive exponential coefficients work coop-

eratively to enhance local and global search capabilities, as

compared with the original PSO algorithm.

Notably, the networks of Stream 2 with optimised and

default settings show poor performance in comparison with

those of Streams 1 and 3. This could be owing to a

reduction of available information in the segmented mask

image features, since many aspects of original images are

removed including colour and local pixel information

within the segmented areas and backgrounds. Despite this

missing information, the networks still manage to classify

over 50% of the class instances correctly using this method

alone in most test cases. This suggests that processing raw

images with mask R-CNN is able to produce salient fea-

tures that benefit the classification tasks. Stream 3, how-

ever, does not suffer from this problem as both inputs (i.e.

mask R-CNN extracted salient features and raw images)

are combined through the two fused VGG19 networks,

allowing the resulting networks to access more informa-

tion. This is reflected in the results for optimised networks

of Stream 3 revealing the second highest stream average

results of 69.70% and 87.33% for the Willow7 and BU101

data sets, respectively. The ensemble models constructed

by optimised Streams 1 and 3 produce scores similar to or

better than those of Stream 3, as indicated by the stream

average results of 71.15% and 87.82% for Willow7 and

BU101, respectively; the highest of all the stream average

Table 3 The mean MAP results over 10 runs for the CNN stream ensemble models with optimised and default hyper-parameter settings using the

Willow7 data set. (The ‘?’ symbol indicates the streams that have been ensembled.)

Stream Optimised Non-optimised

PSO EnvPSO Default(%)

Static (%) Linear (%) Nonlinear (%) Static (%) Linear (%) Nonlinear (%) Stream Avg. (%)

1 64.6 66.0 68.4 69.2 72.8 76.2 69.53 61.5

2 49.3 58.1 59.0 60.7 63.0 72.4 60.42 39.7

3 62.2 61.0 67.3 75.5 75.7 76.5 69.70 62.1

1?2 62.4 65.9 66.5 66.0 74.7 71.4 67.82 60.4

1?3 64.9 66.0 69.4 73.6 76.2 76.8 71.15 63.4

2?3 59.2 64.0 64.3 70.1 71.4 75.5 67.42 64.0

1?2?3 63.5 65.1 67.5 70.3 76.0 73.3 69.28 63.4

MAP Avg. 60.87 63.73 66.06 69.34 72.83 74.59 67.90 59.21

Total Avg 63.55 72.25

Bold indicates the best results

Table 4 The mean MAP results over 10 runs for the CNN stream ensemble models with optimised and default hyper-parameter settings using the

BU101 data set. (The ‘?’ symbol indicates the streams that have been ensembled.)

Stream Optimised Non-optimised

PSO EnvPSO Default(%)

Static (%) Linear (%) Nonlinear (%) Static (%) Linear (%) Nonlinear (%) Stream Avg. (%)

1 83.6 84.6 85.6 88.8 89.1 88.9 85.80 72.5

2 61.8 66.0 66.1 72.0 62.2 70.6 65.47 29.9

3 85.7 86.6 86.8 88.8 88.5 89.6 87.33 74.1

1?2 82.3 84.1 82.7 88.0 87.1 88.2 84.52 71.0

1?3 86.6 87.1 87.5 89.6 89.5 89.7 87.82 76.4

2?3 82.4 84.6 85.7 88.2 86.2 88.6 85.53 71.4

1?2?3 85.5 86.3 86.4 89.6 88.8 89.5 87.15 76.0

MAP Avg. 81.21 82.76 82.97 82.46 84.49 86.44 83.37 67.33

Total Avg 82.31 84.46

Bold indicates the best results
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results. In other words, by ensembling optimised Streams 1

and 3, a consistent enhancement in performance with

respect to both data sets is achieved. A similar observation

has also been obtained for the ensemble models with

default settings incorporating Streams 1 and 3.

Analysing the average results of static, linear, and

nonlinear coefficients for both original and proposed PSO

algorithms reveals that the proposed nonlinear exponential

formulae for search coefficient generation contribute

towards a more optimal configuration in exploration and

exploitation pertaining to hyper-parameter search. In other

words, the results of both PSO and EnvPSO using adaptive

exponential search coefficients show consistent enhance-

ment in most test cases.

The average results for all EnvPSO-optimised streams

are 72.25% and 84.46% for Willow7 and BU101, respec-

tively. In contrast, the corresponding mean results of all the

PSO-optimised streams are inferior, i.e. 63.55% and

82.31%, for Willow7 and BU101, respectively. The dif-

ferences between these EnvPSO and PSO results are

therefore 8.7% for Willow7 and 2.15% for BU101. These

differences highlight the overall superiority of the EnvPSO

optimised streams over those optimised by the baseline

PSO method. Owing to adoption of the Gaussian surface

prediction function, the search process of EnvPSO is better

guided and is capable of exploring and exploiting optimal

regions more thoroughly with better chances of attaining

global optimality. In addition, Gaussian surface prediction

in conjunction with adaptive exponential search coeffi-

cients further diversifies the search process with more

balanced local and global search operations for hyper-pa-

rameter search, while accelerating convergence. Our

resulting hyper-parameters show greater efficiency in re-

training VGG19 networks for undertaking HAR problems.

Moreover, a marked improvement in MAP scores is

observed by comparing the EnvPSO or PSO optimised

streams with those from default settings without any opti-

misation process for both Willow7 and BU101 data sets.

Specifically, as indicated in Tables 3 and 4, the average

results of all EnvPSO and PSO optimised streams are

67.9% and 83.37% for Willow7 and BU101 data sets,

respectively. The corresponding mean results of the default

streams are 59.21% and 67.33%, respectively. As such, the

differences between the optimised and default results are

8.69% for Willow7 and 16.04% for BU101. This indicates

that the optimisation process improves the network effi-

ciency, producing better generalised solutions. This is

owing to the fact that in the default networks, the transfer

learning process purely focuses on re-training the last three

layers. In contrast, a dynamic number of layers is recom-

mended by the optimisation process to enhance feature

learning capabilities and better adapt the yielded networks

to a new domain. Moreover, in comparison with EnvPSO

and PSO devised ensemble networks with diverse base

model configurations, the default ensemble networks

employ fixed base model settings, i.e. a fixed number (3) of

re-trained layers in combination with a fixed learning rate

(0.001) and a fixed batch size (32), which constrain

ensemble diversity, therefore limiting their performance.

4.2.1 Hyper-parameter selection

We analyse the identified mean optimal hyper-parameters

for Stream 1 CNN models as an example case study to

indicate efficiency of the proposed EnvPSO model.

Tables 5 and 6 show the selected mean hyper-parameters

for Stream 1 CNN models over 10 runs for each search

method on the Willow7 and BU101 data sets, respectively.

Referring to Table 5 for the Willow7 results, comparing

EnvPSO and PSO in static, linear, and nonlinear coefficient

settings reveals that the average layer strip-back configu-

rations identified by EnvPSO are consistently higher. Such

higher layer strip-back settings from EnvPSO offer better

capabilities for re-training the network on the new data sets

without interfering with the useful filter configurations in

earlier layers. In comparison with larger and smaller

learning rates yielded by PSO with constant and adaptive

coefficients, EnvPSO produces moderate learning rates,

leading to a better trade-off between performance and

convergence speed. These optimal settings, i.e. larger layer

strip-back configurations and moderate learning rates,

account for the better MAP results from Stream 1 CNN

models from EnvPSO, as illustrated in Table 5.

The best configuration is EnvPSO with nonlinear

adaptive coefficients, producing a moderate mean learning

rate and the highest layer strip-back setting amongst all

Table 5 Average hyper-

parameters identified by each

search method for Stream 1

CNN models over 10 runs on

the Willow7 data set

Variant Batch size Learning rate Layer strip-back MAP (%)

EnvPSO stat 34.50 0.0051 4.7 69.2

EnvPSO lin 35.40 0.0056 5.9 72.8

EnvPSO nonlin 35.20 0.0053 6.1 76.2

PSO stat 39.40 0.0059 4.6 64.6

PSO lin 39.90 0.0036 4.6 66.0

PSO nonlin 36.90 0.0043 4.4 68.4
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methods. In contrast, the worst configuration is PSO with

static coefficients, which yields a smaller mean layer strip-

back setting with the largest average learning rate. Such

settings result in a fast convergence to sub-optimal solu-

tions as well as poor acquisition of new domain knowledge

and discriminative characteristics, as indicated by the

lower MAP results in Table 5.

Next we analyse the identified average hyper-parameters

of each search method for the Stream 1 CNNs with respect

to BU101 in Table 6. Again, the EnvPSO models with both

static and adaptive coefficients produce larger layer strip-

back settings than those from PSO. This further indicates

that EnvPSO consistently identifies a stronger correlation

between enhanced results and comparatively more re-

training of network layers in the transfer learning process.

The best configuration is EnvPSO with linear coefficients,

which extracts the highest mean layer strip-back and batch-

size settings, as well as a moderate average learning rate.

Such optimal settings enable better re-training of network

using the new data set as well as better efficiency in

extracting spatial patterns in each batch of this compara-

tively larger and more complex data set. On the contrary,

PSO with static coefficients yields the smallest layer strip-

back and batch-size settings, therefore the lowest perfor-

mance amongst all methods. Since the training set of

BU101 is larger than that of Willow7, there are larger

numbers of batches in the BU101 training set than those in

the Willow7 training set. Therefore, comparatively smaller

Table 6 Average hyper-

parameters identified by each

search method for Stream 1

CNN models over 10 runs on

the BU101 data set

Variant Batch size Learning rate Layer strip-back MAP (%)

EnvPSO stat 14.5000 0.0084 4.2 88.8

EnvPSO lin 15.1000 0.0082 5.6 89.1

EnvPSO nonlin 13.3000 0.0070 4.5 88.9

PSO stat 8.7000 0.0069 3.2 83.6

PSO lin 9.8000 0.0076 3.5 84.6

PSO nonlin 11.9000 0.0064 3.6 85.6

Table 7 HAR methods on Willow7

Studies Methodology MAP

Zhang et al. [59] MAE 75.31%

Yu et al. [63] Deep ensemble learning voting strategy (DELVS3) using tuning weight voting on 6 deep learning models 73.69%

Yu et al. [63] DELVS2 using tuning weight voting on 3 deep learning models, i.e. VGG16_NCNN, VGG19_NCNN, and

ResNet50_NCNN

71.89%

Delaitre et al. [10] A locally order-less spatial pyramid bag-of-features model using action-specific body parts and object interaction

representations

71.70%

Safaei and

Foroosh [69]

Ranked saliency map and predicted optical flow ? STCNN 71.60%

Safaei and

Foroosh [69]

STCNN ? intermediate feature space tensor Q 66%

Sharma et al.[58] EPM with additional context (EPM ? context) 67.60%

Sharma et al.[58] EPM without context of 1.5x extension of bounding boxes 66.00%

Sharma et al.[70] Discriminative spatial saliency with max margin classifier 65.90%

Wang and Wang

[60]

Sum-product network (SPN) with classification by the most probable explanation (MPE) method. 48.70%

Wang and Wang

[60]

Flat spatial SPN (FS-SPN). 65.30%

Wang and Wang

[60]

Individual learning hierarchical spatial SPN (IHS-SPN). 71.30%

Wang and Wang

[60]

Joint learning hierarchical spatial SPN (JHS-SPN). This method is the same as IHS-SPN except that it learns the

weights of the shared edges and images between SPNs from two different classes.

71.70%

Wang and Wang

[60]

Spatial pyramid matching as proposed by Lazebnik et al. [71] 63.70%

Ours Multi-stream ensemble with EnvPSO-based hyper-parameter optimisation 76.80%
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batch sizes are identified by both EnvPSO and PSO for

BU101 than those of Willow7.

In short, under both static and adaptive coefficient set-

tings, EnvPSO selects higher layer strip-back configura-

tions on average as compared with those yielded by PSO in

both data sets for Stream 1 CNN models. These findings

indicate that EnvPSO is capable of optimising the layer

strip-back parameters to fine-tune more CNN layers during

re-training. Combined with moderate and higher average

learning rates, EnvPSO is able to conduct better re-training

of CNN streams and extract better new domain knowledge

from the data samples, while providing better generalisa-

tion in dealing with unseen test samples without suc-

cumbing to over-fitting or under-fitting issues. Similar

characteristics of identified hyper-parameters are obtained

for optimisation of VGG19 networks in Streams 2 and 3,

where EnvPSO yields larger layer strip-back and moderate

learning rate configurations.

In comparison with the optimal settings identified by

EnvPSO and PSO, the networks with default settings adopt

a comparatively smaller number (i.e. 3) of re-trained layers

in combination with a smaller learning rate (i.e. 0.001),

which extract limited domain knowledge and discrimina-

tive characteristics, therefore compromising the model

performance.

We now compare the devised CNN stream ensemble

model using EnvPSO with adaptive exponential coeffi-

cients against state-of-the-art methods on both Willow7

and BU101 data sets, as shown in Tables 7 and 8,

respectively.

Table 7 illustrates the comparison for the Willow7 data

set. Each existing study shown in Table 7 employs the

overall data set for evaluation. As illustrated in Table 7, our

devised CNN stream ensemble model achieves an MAP

score of 76:8%, outperforming all existing methods on the

Willow7 data set. Our optimised three CNN streams

illustrate significant diversity, as evidenced by the identi-

fied different layer strip-back and learning configurations.

Such distinctive model settings enable the extraction of

different internal feature representations, providing com-

plementary properties to enhance ensemble model perfor-

mance. In addition, the best baseline method is the MAE

model [59], with an MAP result of 75:31%. This MAE

model uses various techniques (such as Markov random

field) to extract a contextual segmentation mask that links a

person and the object being interacted with, in order to

enhance classification performance. In our approach, we

use a similar saliency extraction method based on mask

R-CNN, where the segmented regional images provide

context for the person and related objects. Besides the

above, other strategies such as adoption of multiple types

of inputs, hyper-parameter fine-tuning of stream CNNs and

ensembling mechanisms are able to enhance performance.

Therefore, our approach leads to better robustness than

those of [59].

The second-best baseline method is DELVS [63], where

six base methods are embedded to yield 73:69% of mean

MAP. The model proposes a tuning weight voting

ensemble method to integrate the results of the following

six base methods, i.e. VGG16, VGG19, ResNet50,

VGG16_NCNN, VGG19_NCNN, and ResNet50_NCNN.

Table 8 HAR methods on BU101

Studies Methodology MAP

Li et al. [61] ResNet101 pre-trained on ImageNet 88.30%

Safaei and

Foroosh [69]

STCNN 70.06%

Safaei et al. [72] a two-stream spatio-temporal network (TSSTN) 72.8%

Alraimi [73] VGG11 ? visual word embedding. 81.70%

Alraimi [73] VGG13 ? visual word embedding. This configuration is the same as the VGG11 ? visual word embedding with

a different backbone network (VGG13).

77.80%

Alraimi [73] VGG11 pre-trained on ImageNet 73.40%

Alraimi [73] VGG16 ? visual word embedding. This configuration is the same as the VGG11 ? visual word embedding with

a different backbone network (VGG16).

58.10%

Alraimi [73] VGG16 pre-trained on ImageNet 56.60%

Safaei [62] STCNN with prior knowledge 72.30%

Safaei [62] ZTD with prior knowledge 71.16%

Safaei [62] VGG13 pre-trained on ImageNet 70.02%

Safaei [62] ZTD without prior knowledge 68.24%

Ours Multi-stream ensemble with EnvPSO-based hyper-parameter optimisation 89.70%
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The ensemble method achieves promising performance by

taking advantage of diverse deep networks and their

potential to produce different internal representations with

respect to training data. In comparison, our ensemble

model achieves better diversification using both backbone

networks and input data. EnvPSO is first used to devise

optimal network and learning settings for each stream CNN

model. Besides using original input images, saliency maps

yielded by mask R-CNN are exploited as inputs in our

CNN streams. In this way, our ensemble model incorpo-

rates distinctive base networks with different learning

behaviours as well as diverse input channels for tackling

HAR tasks.

We subsequently compare our optimised CNN stream

ensemble model with existing studies in Table 8 for

BU101. Since there is no official test/train split for the

BU101 data set, Table 8 shows an estimated indication of

model performance. EnvPSO-optimised CNN stream

ensemble model achieves a mean MAP score of 89:7%
indicating superior performance against those from exist-

ing methods. Owing to the optimised transfer learning

process using EnvPSO supported by the layer strip-back

parameter, our approach is able to fine-tune different

numbers of re-trainable layers to better extract discrimi-

native features and distinguish subtle variations of different

action classes. Furthermore, we adopt a stream ensemble

model incorporating diverse optimised base networks with

both raw images and segmented salient regional proposals

as inputs to diversify the ensemble operation. Our yielded

CNN stream ensemble models therefore possess better

robustness and diversity, as compared with those from the

existing methods. In addition, Li et al. [61] and Alraimi

[73] employed ResNet101 and VGG11/13 models with

embedding strategies and obtained promising perfor-

mances. However, these models (and most of existing

methods) employ a standard transfer learning process

without applying any adaptive re-training mechanism to

dynamically adjust the number of re-trainable layers. In

addition, the use of automatic hyper-parameter fine-tuning

and/or salient regional features as additional input is not

available in [61] and [73]. These models also do not per-

form ensemble of distinctive optimised networks equipped

with diverse learning options and different input contexts,

therefore limiting the performance.

We present a theoretical analysis between EnvPSO and

PSO, as follows. EnvPSO incorporates a new environ-

mental term embedding a Gaussian fitness estimation sur-

face as well as exponential adaptive coefficients to balance

the search process and accelerate convergence. Specifi-

cally, the environmental term yielded from the gradient

information of Gaussian fitness estimation surface adjusts

the velocity of particles towards more promising search

regions, leading to optimal discovery of hyper-parameter

configurations. As such, it produces streams with better

generalisation capabilities. By implementing exponential

adaptive coefficients, EnvPSO illustrates a greater ability to

tailor its exploration and exploitation to overcome local

optima traps, leading to efficient CNN streams with

effective network and learning settings. Furthermore, the

introduction of layer strip-back parameter provides a

unique way to optimise the number of layers to be fine-

tuned. These proposed mechanisms work cooperatively to

mitigate premature convergence and account for superior

performance of our proposed ensemble model. In contrast,

standard PSO employs a single leader-based search pro-

cess. Without the fitness estimation surface as additional

guidance, it is more likely to become stagnant, leading to

sub-optimal hyper-parameters. Such settings of compara-

tively less efficient layer strip-back configurations fail to

train a sufficient number of CNN layers to form a better

generalised representation of training data. As a result, it

extracts limited domain knowledge, which in turn affects

the performance of the resulting stream ensemble model.

On the other hand, using mask R-CNN to generate class

segmented images as a pre-processing step yields salient

information for training VGG19 networks. Combining

these pre-processed regional images and raw images as a

‘multi-modal’ input for CNN streams enriches spatial

feature representations and better represents subtle varia-

tions between different action classes. Furthermore,

incorporating multiple unique streams into an ensemble

model enhances the overall performance by leveraging

differences between the underlying learned representations

present within different streams.

Table 9 Benchmark Functions
Name Range

Ackley [-15, 30]

Dixon-Price [-10, 10]

Griewank [-600, 600]

Rastrigin [-5.12, 5.12]

Rothyp [-65, 65]

Rosenbrock [-5, 10]

Sphere [5.12, 5.12]

Sumpow [-1, 1]

Zakharov [-5, 10]

Sumsqu [-5.12, 5.12]

Powell [-4, 5]
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5 Evaluation using benchmark test
functions

To further examine the performance of EnvPSO, we pre-

sent another evaluation using eleven benchmark functions

[74–77], as shown in Table 9. Each benchmark function

produces a unique shape that presents a challenging task to

attain the global minima. In particular, we use seven uni-

modal functions of Sum Squares (Sumsqu), Zakharov, Sum

of Different Powers (Sumpow), Sphere, Rosenbrock,

Rotated Hyper-Elipsoid (Rothyp), and Dixon-Price, as well

as four multi-modal functions of Powell, Rastrigin, Grie-

wank, and Ackley.

From Table 3 and Table 4, the superior results of the

proposed EnvPSO model in tackling HAR tasks indicate

the benefits of adding a Gaussian Fitness Surface and

nonlinear adaptive coefficients. To re-confirm the obser-

vation, we compare this version of EnvPSO with a number

of classical search methods and PSO variants using the

aforementioned benchmark functions. In addition to orig-

inal PSO, the following methods are used for comparison,

i.e. a modified PSO (MPSO) [78], Enhanced Leader PSO

(ELPSO) [79], Dynamic Neighbourhood Learning PSO

(DNLPSO) [80], Genetic PSO (GPSO) [81], Dragonfly

Algorithm (DA) [82] and Ant Lion Optimisation (ALO)

[83]. The settings of these methods are extracted from their

original publications shown in Table 10.

Each search method terminates according to the total

number of function evaluations, as defined by Evalmax ¼
population� itermax with population ¼ 50 and

itermax ¼ 500, while dimension ¼ 30 is adopted in the

experiment. To reduce the effect of random errors and

other biases, we repeat each experimental run 30 times.

Table 11 illustrates the mean, minimum, maximum, and

standard deviation results over a set of 30 runs for all the

test functions. As shown in Table 11, EnvPSO outperforms

all the methods and achieves the best global minima in all

the benchmark functions. The Wilcoxon rank sum test is

conducted to evaluate the performance outcome statisti-

cally. As shown in Table 12, all the p-values except for two

are lower than 0.05, ascertaining the statistically better

performance of EnvPSO as compared with those of com-

pared methods. The exceptions are for both Ackley and

Rosenbrock landscapes, where the results of EnvPSO are

statistically similar to those of DNLPSO and PSO,

respectively.

6 Conclusion

In this research, we have proposed a multi-stream CNN

ensemble model for undertaking human action recognition.

A new PSO variant, denoted as EnvPSO, has been designed

to perform automatic optimal hyper-parameter selection. It

incorporates a Gaussian fitness surface estimation method

and exponential adaptive coefficients to search for global

optimality. Specifically, the time-varying exponential

coefficients optimally calibrate the contribution of both

social and cognitive components during each iteration,

while gradient information yielded by the Gaussian fitness

estimation surface is used to guide the search agents

towards promising search regions. A new layer strip-back

optimisation parameter is also proposed for determining

the number of re-trainable layers of a stream CNN model at

the fine-tuning stage.

A multi-stream ensemble model integrating three opti-

mised CNN streams using EnvPSO is subsequently con-

structed for action classification. The ensemble diversity is

not only enhanced by diverse learned representations of

differing CNN networks with optimised distinctive transfer

learning configurations, but also enriched by various input

channels using raw images and mask R-CNN segmented

salient features. The empirical results indicate that EnvPSO

yields better efficiency in hyper-parameter selection for

optimising each CNN stream in the ensemble model.

Evaluated with two still image human action data sets, i.e.

Table 10 Experimental settings of the additional baseline methods

Name Parameter settings

MPSO [78] Time-varying acceleration coefficients and an adaptive inertia weight factor.

ELPSO [79] c1 ¼ c2 ¼ 2, Standard deviation of Gaussian mutation=1, scale parameter of Cauchy mutation=2, scale factor of DE-based

mutation=1.2, and an adaptive inertia weight factor.

DNLPSO

[80]

c1 ¼ c2 ¼ 1:49445, Refreshing gap=3, regrouping period=5, and an adaptive inertia weight factor.

GPSO [81] Maximum velocity=0.6, inertia weight=0.9, acceleration constants c1 ¼ 2:6; c2 ¼ 1:5, Crossover probability = 0.7, mutation

probability = 0.3.

DA [82] Alignment factor=0.1, separation factor=0.1, enemy factor=1, cohesion factor=0.7, food factor=1, and an adaptive inertia weight

factor.

ALO [83] Using adaptive parameter settings.
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BU-101 and Willow7, the proposed multi-stream CNN

ensemble model with EnvPSO hyper-parameter

optimisation outperforms the counterparts with default and

optimised settings identified by PSO and other state-of-the-

Table 11 Evaluation results for the benchmark functions with dimension=30

EnvPSO PSO DA ALO MPSO DNLPSO ELPSO GPSO

Ackley mean 2.10E100 6.18E?00 7.55E?00 1.90E?01 1.72E?01 2.58E?00 1.49E?01 1.72E?01

min 1.16E?00 3.04E?00 4.27E?00 1.90E?01 1.51E?01 8.83E-03 1.11E?01 1.58E?01

max 3.09E100 9.70E?00 1.19E?01 1.90E?01 1.87E?01 1.14E?01 1.60E?01 1.81E?01

std 4.94E-01 1.85E?00 1.79E?00 9.12E-03 8.10E-01 2.38E?00 9.82E-01 5.57E-01

Dixon-Price mean 8.92E-01 9.80E?00 1.31E?03 1.75E?06 7.92E?05 3.78E?02 1.43E?05 5.02E?05

min 6.67E-01 6.78E-01 1.98E?01 1.07E?06 3.59E?04 6.68E-01 3.57E?04 1.56E?05

max 4.35E100 9.58E?01 1.14E?04 2.37E?06 1.61E?06 8.65E?03 2.44E?05 7.79E?05

std 7.74E-01 2.65E?01 2.25E?03 2.77E?05 4.61E?05 1.58E?03 5.61E?04 1.46E?05

Griewank mean 2.16E-02 3.59E-01 8.60E?00 5.85E?02 2.90E?02 4.05E?00 1.38E?02 2.87E?02

min 1.31E-05 2.35E-02 1.90E?00 4.01E?02 1.52E?02 1.28E-07 6.44E?01 2.11E?02

max 1.00E-01 1.43E?00 2.44E?01 6.89E?02 4.49E?02 7.61E?01 1.96E?02 3.73E?02

std 2.94E-02 4.42E-01 5.79E?00 6.83E?01 7.19E?01 1.40E?01 2.71E?01 4.25E?01

Rastrigin mean 4.20E101 6.52E?01 1.18E?02 4.29E?02 3.37E?02 9.78E?01 2.71E?02 3.48E?02

min 1.89E101 3.09E?01 2.90E?01 3.81E?02 2.50E?02 2.99E?01 2.27E?02 3.10E?02

max 8.56E101 1.01E?02 2.51E?02 4.78E?02 4.26E?02 1.96E?02 3.20E?02 3.86E?02

std 1.46E101 1.71E?01 4.68E?01 2.16E?01 4.64E?01 4.49E?01 2.08E?01 1.86E?01

Rothyp mean 6.27E-05 3.05E?00 5.74E?03 3.84E?05 1.89E?05 2.59E?03 9.60E?04 1.75E?05

min 1.09E-05 8.67E-03 4.16E?02 3.00E?05 8.30E?04 3.92E-07 7.81E?04 1.32E?05

max 1.77E-04 8.50E?01 2.08E?04 4.87E?05 3.76E?05 4.37E?04 1.21E?05 2.11E?05

std 3.73E-05 1.55E?01 4.86E?03 4.41E?04 7.30E?04 8.74E?03 1.05E?04 1.98E?04

Rosenbrock mean 4.71E101 9.75E?01 3.52E?03 1.49E?06 3.37E?05 1.34E?02 1.07E?05 3.45E?05

min 6.25E-01 1.59E?01 1.84E?02 5.76E?05 1.37E?05 2.71E?01 1.98E?04 1.26E?05

max 9.23E101 1.07E?03 1.87E?04 2.07E?06 6.38E?05 8.44E?02 2.26E?05 4.94E?05

std 3.32E101 1.88E?02 4.73E?03 3.74E?05 1.33E?05 1.51E?02 4.76E?04 9.16E?04

Sphere mean 1.28E-05 2.66E-02 1.72E?00 1.70E?02 7.87E?01 1.36E?00 4.04E?01 8.97E?01

min 2.18E-06 5.64E-03 1.97E-01 1.31E?02 2.37E?01 4.08E-07 2.11E?01 5.67E?01

max 4.84E-05 8.12E-02 3.78E?00 1.96E?02 1.69E?02 1.92E?01 5.77E?01 1.27E?02

std 1.17E-05 1.80E-02 1.16E?00 1.88E?01 3.36E?01 4.66E?00 8.27E?00 1.71E?01

Sumpow mean 3.17E-12 1.05E-05 2.80E-05 6.65E-01 5.92E-01 1.18E-07 1.34E-02 1.38E-01

min 3.71E-18 5.66E-07 1.05E-51 2.47E-01 3.80E-04 1.71E-21 3.22E-03 1.70E-02

max 4.44E-11 3.49E-05 2.23E-04 1.10E?00 2.00E?00 2.68E-06 3.98E-02 5.32E-01

std 8.49E-12 8.53E-06 5.44E-05 2.08E-01 5.79E-01 4.92E-07 9.32E-03 1.14E-01

Zakharov mean 5.30E101 1.35E?02 1.67E?02 6.98E?02 3.80E?02 1.16E?02 3.50E?02 4.44E?02

min 3.09E101 8.46E?01 5.77E?01 5.82E?02 2.61E?02 5.97E?01 2.94E?02 3.79E?02

max 7.36E101 1.98E?02 2.76E?02 7.50E?02 4.85E?02 2.71E?02 3.85E?02 4.79E?02

std 1.16E101 3.14E?01 5.62E?01 4.74E?01 4.42E?01 5.08E?01 2.02E?01 2.36E?01

Sumsqu mean 3.15E-05 7.76E-02 3.69E?01 2.40E?03 1.19E?03 7.95E?00 5.55E?02 1.19E?03

min 6.09E-07 6.33E-03 2.18E?00 1.49E?03 3.43E?02 3.10E-08 2.72E?02 7.62E?02

max 1.92E-04 3.81E-01 1.10E?02 2.82E?03 2.20E?03 1.16E?02 8.34E?02 1.54E?03

std 4.24E-05 9.17E-02 2.57E?01 2.94E?02 5.27E?02 2.49E?01 1.15E?02 2.09E?02

Powell mean 1.05E-03 1.13E-01 1.12E?02 1.19E?04 6.10E?03 1.60E?01 1.46E?03 3.72E?03

min 3.08E-04 7.34E-03 4.55E?00 6.51E?03 6.50E?02 2.27E-03 7.97E?02 2.26E?03

max 2.32E-03 4.83E-01 4.35E?02 1.53E?04 1.52E?04 3.02E?02 2.43E?03 5.89E?03

std 5.29E-04 1.24E-01 1.14E?02 2.91E?03 4.32E?03 5.47E?01 4.34E?02 9.82E?02

Bold indicates the best results
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art methods. Therefore, it is evident that the proposed

search strategies, which include Gaussian fitness surface

estimation and exponential coefficients, account for better

efficiency of our devised ensemble model with better

generalised internal representations of diverse action clas-

ses. Our model also outperforms a number of classical and

advanced search methods statistically significantly for

solving diverse unimodal and multi-modal benchmark

functions, as confirmed by statistical test results.

For future work, we will focus on optimising elements

(such as the CNN blocks) of the stream architectures and

further fine-tuning their configurations. We will also

investigate an entire new deep architecture generated using

EnvPSO for each stream in the ensemble model, in order to

increase feature extraction diversity. Other surface esti-

mation techniques (such as n-dimensional interpolation

methods) will be studied to further improve fitness surface

estimation with respect to environmental components. We

also aim to evaluate the proposed model for hyper-pa-

rameter fine-tuning in complex and dynamic computer

vision tasks such as video action recognition, object

detection, and visual question generation.
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