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Abstract
One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control.

Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight

clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult

to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this

paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discrim-

inator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the

Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural

network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent

techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also

lower computational complexity.
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1 Introduction

Generative adversarial networks (GANs) [5] are hailed as

one of the most significant developments in machine

learning research of the past decade. Since its first intro-

duction, GANs have been applied to a wide range of

problems and numerous papers have been published. In a

nutshell, GANs are constructed around two functions

[4, 11]: the generator G, which maps a sample z to the data

distribution, and the discriminator D, which is trained to

distinguish real samples of a dataset from fake samples

produced by the generator. With the goal of reducing the

difference between the distributions of fake and real sam-

ples, a GAN training algorithm trains G and D in tandem.

A major challenge of GANs is that controlling the per-

formance of the discriminator is particularly difficult.

Kullback–Leibler (KL) divergence was originally used as

the loss function of the discriminator to determine the

difference between the model and target distributions [16].

However, KL divergence is potentially noncontinuous with

respect to the parameters of G, leading to the difficulty in

training [2, 23]. Specifically, when the support of the model

distribution and the support of the target distribution are

disjoint, there exists a discriminator that can perfectly

distinguish the model distribution from that of the target.

Once such a discriminator is found, zero gradients would

be backpropagated to G and the training of G would come

to a complete stop before obtaining the optimal results.

Such a phenomenon is referred to as the vanishing gradient

problem.

The conventional form of Lipschitz constraint is given

by: jjf ðx1Þ � f ðx2Þjj � k � jjx1 � x2jj. It is obvious that

Lipschitz constraint requires the continuity of the con-

strained function and guarantees the boundedness of the

gradient norm. Besides, it has been found that enforcing

Lipschitz constraint can provide provable robustness

against adversarial examples [21], improve generalization
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bounds [19], enable Wasserstein distance estimation [6],

and also alleviate the training difficulty in GANs. Thus, a

number of works have advocated the Lipschitz constraint.

To be specific, weight clipping was first introduced to

enforce the Lipschitz constraint [2]. However, it has been

found that weight clipping may lead to the capacity

underuse problem where training favors a discriminator

that uses only a few features [6]. To overcome the weak-

ness of weight clipping, regularization terms like gradient

penalty are added to the loss function to enforce Lipschitz

constraint on D [6, 12, 15]. More recently, Miyato et al.

[13] introduce spectral normalization to control the Lips-

chitz constraint of D by normalizing the weight matrix of

the layers, which is regarded as an improvement on

orthonormal regularization [18]. Using gradient penalty or

spectral normalization can stabilize the training and gain-

improved performance. However, it has been found that

gradient penalty suffers from the problem of not being able

to regularize the function at the points outside of the sup-

port of the current generative distribution [13]. In addition,

spectral normalization has been found to suffer from the

problem of gradient norm attenuation [1, 10], i.e., a layer

with a Lipschitz bound of 1 can reduce the norm of the

gradient during backpropagation, and each step of back-

prop gradually attenuates the gradient norm, resulting in a

much smaller Jacobian for the network’s function than is

theoretically allowed. Also as we will show in Sects. 3 and

4.3, these new methods have the capacity underuse prob-

lem (see Proposition 1 and Fig. 1). Therefore, despite

recent progress, it remains challenging to achieve practical

success as well as provably satisfying a Lipschitz

constraint.

In this paper, we introduce the boundedness and conti-

nuity (BC) conditions to enforce the Lipschitz constraint

and introduce a CNN-based implementation of GANs with

discriminators satisfying the BC conditions. We make the

following contributions:

(a) We prove that SN-GANs, one of the latest GAN

training algorithms that use spectral normalization,

will prevent the discriminator functions from obtain-

ing the optimal solution when applying Wasserstein

distance as the loss metric even though the Lipschitz

constraint is satisfied.

(b) We present BC conditions to enforce the Lipschitz

constraint for the GANs’ discriminator functions and

introduce a CNN-based implementation of GANs by

enforcing the BC conditions (BC-GANs). We show

that the performances of BC-GANs are competitive

to state-of-the-art algorithms such as SN-GAN and

WGAN-GP but having lower computational

complexity.

2 Related work

2.1 Generative adversarial networks (GANs)

Generative adversarial networks (GANs) are a special

generative model to learn a generator G to capture the data

distribution via an adversarial process. Specifically, a dis-

criminator D is introduced to distinguish the generated

images from the real ones, while the generator G is updated

to confuse the discriminator. The adversarial process is

formulated as a minimax game as:

min
G

max
D

VðG;DÞ ð1Þ

where min and max of G and D are taken over the set of the

generator and discriminator functions, respectively.

V(G, D) is to evaluate the difference in the two distribu-

tions of qx and qg, where qx is the data distribution, and qg
is the generated distribution. The conventional form of

V(G, D) is given by Kullback–Leibler (KL) divergence:

Ex� qx ½logDðxÞ� þ Ex0 � qg ½logð1� Dðx0ÞÞ� [16].

2.2 Methods to enforce Lipschitz constraint

Applying KL divergence as the implementation of

V(G, D) could lead to the training difficulty, e.g., the

vanishing gradient problem. Thus, numerous methods have

been introduced to solve this problem by enforcing the

Lipschitz constraint, including weight clipping [2], gradi-

ent penalty [4] and spectral normalization [13].

Weight clipping was introduced by Wasserstein GAN

(WGAN) [2], which used Wasserstein distance to measure

the differences between real and fake distributions instead

of KL divergence.

WðPr;PgÞ ¼ sup
f2Lip1

E
x�Pr

½f ðxÞ� � E
x�Pg

½f ðxÞ� ð2Þ

where WðPr;PgÞ represents the Wasserstein distance, Pr

and Pg are the real and fake distributions, respectively.

Weight clipping enforces the Lipschitz constraint by trun-

cating each element of the weight matrices. Wasserstein

distance shows superiority over KL divergence, because it

can effectively avoid the vanishing gradient problem

brought by KL divergence. In contrast to weight clipping,

gradient penalty [6] penalizes the gradient at sample points

to enforce Lipschitz constraint:

LD ¼ E½f ðGðzÞÞ� � E½f ðxÞ� þ aE½ðjjrf ðxÞjj � 1Þ2�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gradient penalty

ð3Þ

where LD is the loss objective for the discriminator, and a
is a hyperparameter.

Spectral normalization is a weight normalization

method, which controls the Lipschitz constraint of the

18272 Neural Computing and Applications (2020) 32:18271–18283

123



discriminator function by literally constraining the spectral

norm of each layer. The implementation of the spectral

normalization can be expressed as:

WSNðWÞ :¼ W=rðWÞ ð4Þ

where W represents the weight matrix in each network

layer, rðWÞ is the spectral norm of matrix W, which equals

to the largest singular value of the matrix W, and WSNðWÞ
represents the normalized weight matrix. To a certain

extent, spectral normalization has succeeded in facilitating

stable training and improving performance.

3 Existing problems

Although heuristic methods have been proposed to enforce

Lipschitz constraint, it is still difficult to achieve a solution

that is both practically effective and theoretically provably

satisfying the Lipschitz constraint. To be specific, weight

clipping was proven to be unsatisfactory in [4], and it can

lead to the capacity underuse problem where training

favors a discriminator that uses only a few features [6]. In

addition, gradient penalty suffers from the obvious problem

of not being able to regularize the function at the points

outside of the support of the current generative distribution.

In fact, the generative distribution and its support gradually

change in the course of the training, and this can destabilize

the effect of the regularization itself [13]. Moreover, it has

been found that spectral normalization suffers from the

Fig. 1 Value surface of the discriminators trained to optimality on toy

datasets. The yellow dots are data points, the lines are the value

surfaces of the discriminators. Left column: spectral normalization.

Middle column: gradient penalty. Right column: the proposed

method. The upper, middle and lower rows are trained on 8-Gaussian,

25-Gaussian and the Swiss roll distributions, respectively. The

generator is held fixed at real data plus unit-variance Gaussian noise.

It is seen that discriminators trained with gradient penalty as well as

spectral normalization have failed to capture the high moments of the

data distribution (color figure online)
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gradient norm attenuation problem [1, 10]. Furthermore,

we have found that applying spectral normalization pre-

vents the discriminator functions from obtaining the opti-

mal solutions when using Wasserstein distance as the loss

metric. To provide an explanation to this problem, we

present Proposition 1.

Let Pr and Pg be the distributions of real images and

generated images in X, a compact metric space. The dis-

criminator function f is constructed based on a neural

network of the following form with input x:

f ðx; hÞ ¼ WLþ1aLðWLðaL�1ð� � � a1ðW1xÞÞÞÞÞ ð5Þ

where h :¼ fW1;W2; :::;WLþ1g is the learning parameter

set, and al is an element-wise nonlinear activation function.

Spectral normalization is applied on f to guarantee the

Lipschitz constraint.

Proposition 1 When using Wasserstein distance as the loss

metric of f, the optimal solution to f is unreachable.

4 Enforcing boundedness and continuity
in CNN-based GANs

Finding a proper way to enforce the Lipschitz constraint

remains an open problem. Motivated by this, we search for

a better way to enforce the Lipschitz constraint.

4.1 BC Conditions

The purpose is to find the discriminator from the set of k-

Lipschitz continuous functions [7], which obeys the fol-

lowing condition:

jjf ðx1Þ � f ðx2Þjj � kjjx1 � x2jj ð6Þ

Equation (6) is referred to as the Lipschitz continuity or

Lipschitz constraint. If the discriminator function f satisfies

the following conditions, it is guaranteed to meet the

condition of Eq. (6):

(a) Boundedness: f is a bounded function.

(b) Continuity: f is a continuous function, and the

number of points where f is continuous but not

differentiable is finite. Besides, if f is differentiable at

point x, its derivative is finite.

Conditions (a) and (b) are referred to as the boundedness

and continuity (BC) conditions. A discriminator satisfying

the BC conditions is referred as a bounded discriminator,

and a GAN model with BC conditions enforced is referred

to as BC-GAN. Following Theorems 1 and 2 guarantee that

meeting the BC conditions is sufficient to enforce the

Lipschitz constraint of Eq. (6) (see Proofs in ‘‘Appendix’’)

Theorem 1 Let W be the set of all f : X ! R, where f is a

continuous function. In addition, the number of points

where f is continuous but not differentiable is finite.

Besides, if f is differentiable at point x, its derivative is

finite. Then, f in W satisfies Lipschitz constraint.

Theorem 2 Let Pr and Pg be the distributions of real

images and generated images in X, a compact metric

space. Let X be the set of all f : X ! R, where f is a

continuous and bounded function. And, the number of

points where f is continuous but not differentiable is finite.

Besides, if f is differentiable at point x, its derivative is

finite. The set X can be expressed as:

X : f jjjf ðxÞjj �m; if
of ðxÞ
ox

exists; jj of ðxÞ
ox

jj\1
� �

ð7Þ

where m represents the bound. Then, there must exist a k,

and we have a computable k �WðPr;PgÞ:

k �WðPr;PgÞ ¼ sup
f2X

E
x�Pr

½f ðxÞ� � E
x�Pg

½f ðxÞ� ð8Þ

where WðPr;PgÞ represents the Wasserstein distance

between Pr and Pg [5, 23].

According to Theorems 1 and 2, it is obvious that the BC

conditions are sufficient to enforce the Lipschitz constraint.

Furthermore, k �WðPr;PgÞ is bounded and computable and

can be obtained as:

k �WðPr;PgÞ ¼ max
f2X

E
x�Pr

½f ðxÞ� � E
z� pðzÞ

½f ðGðzÞÞ� ð9Þ

Then, k �WðPr;PgÞ can be applied as a new loss metric to

guide the training of D. Logically, the new objective for D

is:

LD ¼ min
f2X

Ez� pðzÞ½f ðGðzÞÞ� � Ex�Pr
½f ðxÞ� ð10Þ

Theorem 3 in [2] tells us that

rhkWðPr;PgÞ ¼ �Ez� pðzÞ½rhf ðGðzÞÞ� ð11Þ

where h is the parameters of G. Equation (11) indicates that

using gradient descent to update the parameters in G is a

principled method to train the network of G. Finally, the

new objective for G can be obtained:

LG ¼ min
h

�Ez� pðzÞ½f ðGðzÞÞ� ð12Þ

4.2 Implementation of BC conditions

In this paper, we introduce a simple but efficient imple-

mentation of BC conditions. When applying the BC con-

ditions to D, the training of D can be equivalently regarded
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as a conditional (constrained) optimization process. Then,

Eq. (10) can be updated as:

min
f2X

fEz� pðzÞ½f ðGðzÞÞ� � Ex�Pr
½f ðxÞ�g

s:t:jjf ðxÞjj �m; if
of ðxÞ
ox

exists; jj of ðxÞ
ox

jj\1
ð13Þ

Algorithm 1: BC-GAN
Require:
the number of D iteration per G iteration ncritic,
the batch size n, the bound m,
initial critic parameter w0,
initial generator parameters θ0
1: while θ has not converged do
2: Sample {x(i)}n

i=1 ∼ Pr

3: Sample {z(i)}n
i=1 ∼ Pz

4: for t=1,2,...,ncritic do
5: 1

n

∑n
i=1 f(xi)→Lr

6: 1
n

∑n
i=1 f(g(zi))→Lg

7: [Lg − Lr + β · max(‖f(x)‖ − m, 0)]→LD
8: Adam(�wLD)→w
9: end for
10: Adam(∇θ[− 1

n

∑n
i=1 f(g(zi))])→θ

11: end while

In this paper, the discriminator function f is imple-

mented by a deep neural network, which applies a series of

convolutional and nonlinear operations. Both convolutional

and nonlinear functions are continuous, which means that

D is a continuous function. Moreover, the gradients of the

output of D with respect to the input are always finite. As a

result, condition (b) is satisfied naturally. To guarantee

condition (a), the Lagrange multiplier method can be

applied here; then, the objective of D can be written as the

following equation:

LD ¼min
f
fEz� pðzÞ½f ðGðzÞÞ� � Ex�Pr

½f ðxÞ�g

þ b �maxðjj½f ðxÞ�jj � m; 0Þ
ð14Þ

where b is the hyperparameter and m represents the bound.

The term maxð f ðxÞk k � m; 0Þ plays the role of forcing D to

be a bounded function, while Ez� pðzÞ f ðGðzÞÞ½ � �
Ex� pðxÞ f ðxÞ½ � is used to determine k �WðPr;PgÞ. The pro-

cedure of training the BC-GAN is described in Algorithm

1.

4.3 Validity

In order to verify the validity of proposed BC conditions,

we use synthetic datasets as those presented in [15] to test

discriminator’s performance. Specifically, discriminators

are trained to distinguish the fake distribution from the real

one. The toy distributions hold the fake distribution Pg as

the real distribution Pr plus unit-variance Gaussian noise.

Theoretically, discriminator with good performance is

more likely to learn the high moments of the data distri-

butions and model the real distribution. Figure 1 illustrates

the value surfaces of the discriminator. It is clearly seen

that discriminator enforced by BC conditions has a good

performance on discriminating the real samples from the

fake ones, demonstrating the validity of proposed method.

4.4 Comparison with spectral normalization
and gradient penalty

Gradient penalty, spectral normalization and our proposed

method are inspired by different motivations to enforce the

Lipschitz constraint on D. Therefore, they differ in the way

of implementation and in principle. The first difference is

the way of implementation. Gradient penalty and our

method operate on the loss function directly, while spectral

normalization constrains the weight matrix instead of the

loss metric.

Secondly, they differ in principle. For BC-GAN, k �
WðPr;PgÞ is applied to evaluate the difference between the

fake and real distributions instead of WðPr;PgÞ, which is

used in WGAN-GP and WGAN. Moreover, WGAN-GP

and SN-GAN strictly constrain the Lipschitz constant to be

1 or a known constant, while BC-GAN eases the restriction

on the Lipschitz constant, and k is an unknown scalar

parameter which will have no influence on the training of

the network. Therefore, k �WðPr;PgÞ can be employed as a

new loss metric to guide the training of D.

To visualize the differences, we still use the synthetic

datasets to test discriminators’ performance. Figure 1

illustrates the value surfaces of the discriminators. It is

obvious that discriminators trained with gradient penalty as

well as spectral normalization have pathological value

surfaces even when optimization has completed, and they

have failed to capture the high moments of the data dis-

tributions and instead model very simple approximations to

the optimal functions. In contrast, BC-GANs have suc-

cessfully learned the higher moments of the data distribu-

tions, and the discriminator can distinguish the real

distribution from the fake one much better.

4.5 Convergence measure

One advantage of using Wasserstein distance as the metric

over KL divergence is the meaningful loss. The Wasser-

stein distance WðPr;PgÞ shows the property of conver-

gence [6]. If it stops decreasing, then the training of the

network can be terminated. This property is useful as one

does not have to stare at the generated samples to figure out

the failure modes. To obtain the convergence measure in

the proposed BC-GAN, a corresponding indicator of the

training stage is introduced:
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IGD ¼ 1

jjrxf ðxÞjj2
ð15Þ

To prove that proposed indicator IGD is capable of con-

vergence measure, Theorem 3 is introduced.

Theorem 3 Let Pr and Pg be the distributions of real and

generated images, x is the image located in Pr and Pg, and

f is the discriminator function, bounded by the BC condi-

tions. IGD in Eq. 15 is proportional to WðPr;PgÞ.

5 Experiments

5.1 Experimental setup

In order to assess the performance of BC-GAN, image

generation experiments are conducted on CIFAR-10 [20],

STL-10 [8] and CELEBA [25] datasets. Two widely used

GAN architectures, including the standard CNN and

ResNet-based CNN [6], are applied for image generation

task. For the architecture details, please see ‘‘Appendix’’.

Equations (12) and (14) are used as the loss metric of D and

G, respectively. IGD in Eq. (15) acts as the role of mea-

suring convergence. m and b in Eq. (14) are set as 0.5 and

2, respectively. For optimization, the Adam [9] is utilized

in all the experiments with a = 0.0002, b1 ¼ 0, b2 ¼ 0:9.

D updates 5 times per G update. To keep it identical to

previous GANs, we set the batch size as 64. Inception score

[17] and Fréchet inception distance [8] are utilized for

quantitative assessment of generated examples.

Although inception score and Fréchet inception distance

are widely used as an evaluation metric for GANs, Barratt

[3] suggests that it should be more systematic and careful

when evaluating and comparing generative models,

because inception score may not correlate well with the

image quality strictly. Recently, Catherine [14] proposes a

new method to evaluate the generative models, called skill

rating. Skill rating evaluates models by carrying out tour-

naments between the discriminators and generators. For

better evaluation, results assessed by skill rating are also

presented.

5.2 Results on image generation

Image generation tasks are carried out on the CIFAR-10

and STL-10 datasets. Based on the ResNet-based CNN

architecture, we obtain the average inception score of 8.40

and 9.15 for image generation on CIFAR-10 and STL-10,

respectively. We compare our algorithm against multiple

benchmark methods. In Table 1, we show the inception

score and Fréchet inception distance of different methods

with their corresponding optimal settings on CIFAR-10 and

STL-10 datasets. As illustrated in Table 1, BC-GAN has

comparable performances with the state-of-the-art GANs.

We also conduct image generation on CELEBA [25]

dataset. Examples of generated images are shown in Fig. 2

and 3.

Skill rating [14] is recently introduced to judge the GAN

model by matches between G and D. To determine the

outcome of a match between G and D, D judges two bat-

ches: one batch of samples from G and one batch of real

data. Every sample x that is not judged correctly by D (e.g.,

D(x)[0.5 for the generated data or D(x)\0.5 for the real

data) counts as a win for G and is used to compute its win

rate. Win rate tests the performance between D and G dy-

namically in the training process and judges whether D or

G dominates, while the other stops updating. If D domi-

nates and G stops updating, win rate for G decreases dra-

matically. We make some modifications, because we use

Wasserstein distance to determine the difference between

fake and real data instead of probability. As a result, we

show the loss of D instead of the win rate in Fig. 4. When

D in the latter iteration is used to distinguish the generated

images in the early iteration from real images, it outputs a

large loss, meaning that D can easily distinguish the gen-

erated images (fake images) from real images. And the

images generated in the latter iteration can also easily fool

D in the early iteration. Therefore, there is a healthy

training, and the performance of D and G is continuously

improved in the training process.

When applying KL divergence as the loss metric of D,

the training of GANs suffers from the vanishing gradient

Table 1 IS and FID of unsupervised image generation on CIFAR-10

and STL-10. IS is the inception score, and FID represents Fréchet

inception distance. For IS, higher is better, while lower is better for

FID

Method CIFAR-10 STL-10

IS FID IS FID

Real data 11.24 ± .12 7.8 26.08±.26 7.9

Standard CNN

DCGAN 6.64 ± .14 7.84±.07

WGAN-GP 6.53 ± .08 40.2 8.42±.13 55.1

SN-GAN 7.42 ± .06 29.3 8.28±.09 53.1

BC-GAN 7.48 ± .06 28.9 8.30 ±.12 54.5

ResNet

WGAN-GP 7.86 ± .13

SN-GAN 8.22 ± .05 21.7 9.10±.04 40.1

BC-GAN 8.40 ± .10 20.8 9.15±.17 39.9

LR-GAN [24] 7.17 ± .07

DFM [22] 7.72 ± .13 8.51±.12

Orthonormal [13] 7.40 ± .04 29 8.56±.09 46.7

Bold means our proposed model
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problem, i.e., zero gradient would backpropagate to G, and

the training would completely stop. As a comparison,

Fig. 4 shows a healthy training during the entire iterations,

further indicating the effectiveness of BC-GANs.

6 Analysis

6.1 Bound m

The parameter m in Eq. (14) represents the bound of D, and

it actually controls the gradient oLD/ox, where LD is the

loss of D, x is the image and oLD/ox is the gradient back-

propagated from D to G, which indeed affects the training

of G and further influences the model performance.

Explanation is as followed. The discriminator f is a boun-

ded function. Given enough iterations, fx�PrðxÞ would

always converge to m and fx�PgðxÞ would converge to �m.

And considering that f satisfies k-Lipschitz constraint, the

following condition is satisfied:

jjfxr �Pr
ðxrÞ � f

xg �Pg
ðxgÞjj � 2m� kjjxr � xgjj ð16Þ

2m

jjxr � xgjj
� k ð17Þ

k determines the upper bound of the gradient backpropa-

gated from D to G and is directly proportional to D.

Increasing m enhances the upper bound of the gradients

oLD=ox. This is verified by the experiment shown in

Fig. 5a. Moreover, the gradients are used to guide the

training of the generator and naturally affect the perfor-

mance of the model. Increasing m from 0.5 to 2 leads to

decreased performance (inception score drops from 8.40 to

7.56). Therefore, properly controlling the gradient is

important for improving the performance of GAN models.

And the bound m provides such a mechanism for control-

ling the gradient. m is recommended to be taken as 0.5 for

Fig. 2 Image generation on CIFAR-10 dataset using a SN-GAN, b WGAN-GP and c BC-GAN

Fig. 3 Image generation on CELEBA dataset using a SN-GAN, b WGAN-GP and c BC-GAN
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image generation task on CIFAR-10. One possible expla-

nation why a smaller m (hence smaller gradients back-

propagated) in the training leads to better performances is

that the error surfaces are highly nonlinear, the backprop-

agation is a gradient descent and greedy algorithm, small

gradients may help the optimization lead to a deeper local

minimum or indeed the global minimum of the error

surface.

We also monitor the variation of the gradient on

WGAN-GP and SN-GAN. It is found that the behavior of

the gradient variation varies on different models. The

gradient penalty term in WGAN-GP forces the gradient of

the output of D with respect to the input to be a fixed

number. Therefore, as shown in Fig. 5b, the gradient is

around 1 in the whole training process. For SN-GAN and

our BC-GAN in Fig. 5c, the variation of the gradient is

similar. With training process going on, the gradient tends

to increase until convergence is reached. The difference is

that the amplitude of the gradient in SN-GAN is larger than

that in BC-GAN. As mentioned above, the amplitude of the

gradient indeed affects the training of the generator.

However, SN-GAN provides no mechanism for controlling

the gradient, while the bound m in BC-GAN acts as the role

of controlling the gradient. Thus, at least in this perspec-

tive, BC-GAN has a better performance control over SN-

GAN.

6.2 Meaningful training stage indicator IGD

We introduce a new indicator IGD for monitoring the

training stage. Figure 6a shows the correlation of�IGD with

inception score during the training process. Because IGD
decreases with the iteration, we use �IGD instead. As we

can see, �IGD has a positive correlation with the inception

score. As it is easier to visualize the correlation between

IGD and image quality in higher-resolution images, we

perform image generation task on CELEBA [25] dataset

and show the variation of IGD with iterations in Fig. 6b . It

is clearly seen that IGD correlates well with image quality

during the training process.

6.3 Training time

It is worth noting that BC-GAN is computationally effi-

cient. We list the computational time for 100 generator

updates in Fig. 7. WGAN-GP requires more computational

time because it needs to calculate the gradient of the gra-

dient norm kOxDk2, which needs one whole round of

forward and backward propagation. And spectral normal-

ization needs to calculate the largest singular value of the

matrices in each layer. What is worse, for gradient penalty

Fig. 4 Matches between D and G. Wasserstein distance is utilized to

indicate the results instead of the win rate. With larger value of the

Wasserstein distance, D is more likely to distinguish the real images

from the fake ones. Lower value of the Wasserstein distance indicates

that G is more likely to fool D

Fig. 5 a Variation of the gradient oLD=ox with iterations in BC-GAN. Larger m leads to higher gradients. b Variation of the gradient with

iterations in WGAN-GP. c Comparison of the gradient variation of SN-GAN and BC-GAN, where SN represents SN-GAN, and BC is BC-GAN
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and spectral normalization, the extra computational costs

increase with the increase in layers. As for BC-GAN, there

is no matrix operation or gradient calculation in the

backpropagation. As a result, it has lower computational

cost.

7 Concluding remarks

In this paper, we have introduced a new generative

adversarial network training technique called BC-GAN

which utilizes bounded discriminator to enforce Lipschitz

constraint. In addition to provide theoretical background,

we have also presented practical implementation proce-

dures for training BC-GAN. Experiments on synthetical as

well as real data show that the new BC-GAN performs

better and has lower computational complexity than recent

techniques such as spectral normalization GAN (SN-GAN)

and Wasserstein GAN with gradient penalty (WGAN-GP).

We have also introduced a new training convergence

measure which correlates directly with the image quality of

the generator output and can be conveniently used to

monitor training progress and to decide when training is

completed.
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Appendix 1

Proofs

Let Pr and Pg be the distributions of real images and

generated images in X, a compact metric space. The dis-

criminator function f is constructed based on a neural

network of the following form with input x:

f ðx; hÞ ¼ WLþ1aLðWLðaL�1ð� � � a1ðW1xÞÞÞÞÞ ð18Þ

where h :¼ fW1;W2; :::;WLþ1g is the learning parameter

set, and al is an element-wise nonlinear activation function.

Fig. 6 a Correlation of -IGD with inception score on CIFAR10. b Variation of IGD with iteration for the training on CELEBA database. IGD
correlates well with the image quality, indicating that IGD can be regarded as the indicator of the training stage

Fig. 7 Computation time for 100 generator updates. GP for WGAN-

GP and SN for SN-GAN. We use standard CNN as the architecture.

Tests are based on Nvidia 1080Ti
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Spectral normalization is applied on f to guarantee the

Lipschitz constraint.

Proposition 1 When using Wasserstein distance as the

loss metric of f, the optimal solution to f is unreachable.

Proof Corollary 1 in [6] has proven that the optimal dis-

criminator f � has gradient norm 1 almost everywhere under

Pr and Pg when using Wasserstein distance as the loss

metric.

Suppose x can be expressed as ½x1; x2; � � � ; xn�, and WTW

has eigenvalues k ¼ ½k1; k2; � � � ; kn�:
k1 > k2 > � � � > kn > 0 ð19Þ

The eigenvectors of WTW can be expressed as

V ¼ ½v1; v2; . . .; vn�. Then, we have:

jjWxjj2 ¼ xTWTWx ¼ xTVTkVx ð20Þ

Supposing the transformation Vx ¼ ½y1; y2; . . .; yn�, and

using the relationship VTV ¼ I, we can have

xTVTkVx ¼ k1y
2
1 þ k2y

2
2 þ � � � þ kny

2
n

6 k1ðy21 þ y22 þ � � � þ y2nÞ

¼ k1ðxTVTVxÞ ¼ k1jjxjj2
ð21Þ

When spectral normalization is applied, k1 is normalized to

1. As a result:

jjWxjj2 6 jjxjj2 ð22Þ

We can see that applying spectral normalization can

guarantee W satisfies the Lipschitz constraint. The dis-

criminator function f is implemented by convolutional

neural networks, which is a combination of convolutional

and nonlinear operations (Eq. (18)). Therefore, the fol-

lowing inequality is applied to observe the bound on jjf jjLip
[13]:

jjf jjLip 6
Y
Lþ1

l¼1

rðWlÞ �
Y
Lþ1

l¼1

jjaljjLip ¼ 1 ð23Þ

where rðWÞ is the spectral norm of W.

When applying Wasserstein distance as the loss metric,

Corollary 1 in [6] has proven that the optimal solution to

the Lipschitz constrained discriminator has gradient norm 1

almost everywhere under Pr and Pg, which means jjf jjLip
needs to reach upper bound of 1. However, if jjf jjLip in

Eq. (23) needs to obtain the upper bound 1, the discrim-

inator function becomes a linear function. However, the

discriminator function is implemented by the combination

of convolutional operation and nonlinear operation. Taking

the Relu function as a representation of the nonlinear

operation al, alðxÞ ¼ xðx[ 0Þ or alðxÞ ¼ 0ðx 6 0Þ. In

another word, jjalðxÞjj ¼ jjxjjðx[ 0Þ, and

jjalðxÞjj ¼ 0\jjxjjðx 6 0Þ. If the discriminator function

needs to obtain the upper bound of the Lipschitz constraint,

all the nonlinear operations need to reach the upper bound

as well: jjalðxÞjj ¼ jjxjj. Then, all the nonlinear functions

are linear functions, and the discriminator function turns to

a linear function. Obviously, a linear discriminator is not

the optimal solution. Therefore, with the existence of

nonlinear operation, applying spectral normalization pre-

vents the discriminator functions from the optimal solution

when applying Wasserstein distance as the loss metric.

Theorem 1 Let W be the set of all f : X ! R, where f is a

continuous function. In addition, the number of points

where f is continuous but not differentiable is finite.

Besides, if f is differentiable at point x, its derivative is

finite. Then, f in W satisfies Lipschitz constraint.

Proof (i) Considering that f is derivable. According to

Lagrange’s mean value theorem,

f ðx1Þ � f ðx2Þ
x1 � x2

¼ of ðx0Þ
ox0

ðx0 2 ½x1; x2�Þ ð24Þ

Because of
ox is finite:

f ðx1Þ � f ðx2Þ
x1 � x2

¼ of ðx0Þ
ox0

6 k ð25Þ

where k is finite.

Moreover, we have:

jjf ðx1Þ � f ðx2Þjj 6 kjjx1 � x2jj ð26Þ

Then, f satisfies Lipschitz constraint.

(ii) Considering that f is not derivable, f is a continuous

function; then, there must be at least one point x0, at which

f is continuous but not derivable. We only consider that

there is only one such point. For multiple points, the

conclusion is the same. For any x1 and x2 (x1; x2\x0 or

x1; x2 [ x0), f should satisfy the following:

jjf ðx1Þ � f ðx2Þjj 6 kjjx1 � x2jj ð27Þ

because f is continuous and derivable in ½x1; x2�.
For x1 and x2 (x1\x0\x2), we have

jjf ðx1Þ � f ðx2Þjj ¼ jjf ðx1Þ � f ðx0Þ þ f ðx0Þ � f ðx2Þjj

6 jjf ðx1Þ � f ðx0Þjj þ jjf ðx0Þ � f ðx2Þjj
ð28Þ

Because f is continuous in ½x1; x0� and ½x0; x2�, and derivable
in ðx1; x0Þ and ðx0; x2Þ, we can obtain:

jjf ðx1Þ � f ðx0Þjj 6 k1jjx1 � x0jj ð29Þ

jjf ðx0Þ � f ðx2Þjj 6 k2jjx0 � x2jj ð30Þ

Then, we can have:
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jjf ðx1Þ � f ðx2Þjj 6 kðjjx1 � x0jj þ jjx0 � x2jjÞ ð31Þ

where k ¼ maxðk1; k2Þ. Considering the relationship that

x1\x0\x2, we can have:

jjf ðx1Þ � f ðx2Þjj 6 kðjjx1 � x2jjÞ ð32Þ

As we can see, even though f is not derivable at x0, for

any x1 and x2, f still satisfies:

jjf ðx1Þ � f ðx2Þjj 6 kðjjx1 � x2jjÞ.
To sum up, f always satisfies Lipschitz constraint at the

given conditions.

Theorem 2 Let Pr and Pg be the distributions of real

images and generated images in X, a compact metric

space. Let X be the set of all f : X ! R, where f is a

continuous and bounded function. And, the number of

points where f is continuous but not differentiable is finite.

Besides, if f is differentiable at point x, its derivative is

finite. The set X can be expressed as:

X : f jjjf ðxÞjj �m; if
of ðxÞ
ox

exists;jj of ðxÞ
ox

jj\1
� �

ð33Þ

where m represents the bound. Then, there must exist a k,

and we have a computable k �WðPr;PgÞ:

k �WðPr;PgÞ ¼ sup
f2X

E
x�Pr

½f ðxÞ� � E
x�Pg

½f ðxÞ� ð34Þ

where WðPr;PgÞ represents the Wasserstein distance

[5, 23] between Pr and Pg.

Proof According to Theorem 1, for f in X, there exists a k
to satisfy Eq. (32). Then, X is the set, which contains all the

k-Lipschitz constrained functions f. Kantorovich–Rubin-

stein duality [5, 23] tell us that the supremum over all the

functions in X is k �WðPr;PgÞ. As a result, we can obtain

Eq. (34). To guarantee the boundedness and computability

of k �WðPr;PgÞ, f is supposed to be a bounded function.

Because, even though k in Theorem 1 is a finite number, it

can be super large k ! 1, leading to the incomputability

of k �WðPr;PgÞ. Enforcing f to be a bounded function can

ensure the boundedness and computability of k �WðPr;PgÞ:
k �WðPr;PgÞ ¼ sup

f2X
E

x�Pr

½f ðxÞ� � E
x�Pg

½f ðxÞ� � 2m ð35Þ

Theorem 3 Let Pr and Pg be the distributions of real and

generated images, x is the image located in Pr and Pg, and

f is the discriminator function, bounded by the BC condi-

tions. IGD in Eq. 15 is proportional to WðPr;PgÞ.

Proof f is bounded by the BC conditions. Given enough

iterations, fx�Pr
ðxÞ would always converge to m and

fx�Pg
ðxÞ would converge to �m. As a result, k �WðPr;PgÞ

will always converge to 2m:

k �WðPr;PgÞ ¼ sup
f2X

E
x�Pr

½f ðxÞ� � E
x�Pg

½f ðxÞ� � 2m ð36Þ

It is clear that WðPr;PgÞ is proportional to E xr � xg
�

�

�

�

� �

,

because both of them evaluate the difference between Pr

and Pg. Then, we can use the following term GD to esti-

mate WðPr;PgÞ:

GD ¼
kfxr �Pr

ðxrÞ � f
xg �Pg

ðxgÞk
jjxr � xgjj

ð37Þ

where xr, xg are the real image and generated image,

respectively. As expressed above, the term jjfxr � pr ðxrÞ �
fxg � pgðxgÞjj would always converge to 2m, andWðPr;PgÞ is
proportional to E xr � xg

�

�

�

�

� �

. Therefore, GD is inversely

related to WðPr;PgÞ , and the reciprocal of GD can be used

to roughly estimate WðPr;PgÞ. h

According to Lagrange’s mean value theorem,

GD ¼
jjfxr �Pr

ðxrÞ � f
xg �Pg

ðxgÞjj
jjxr � xgjj

¼ jjrxf ðxÞjj2 ð38Þ

where x 2 xg; xr
� �

. For the convenience of calculation, x is

taken as x ¼ a � xr þ ð1� aÞ � xg, and a 2[0, 1]. Then,

Oxf ðxÞk k2 is inversely related to WðPr;PgÞ. Finally, IGD is

proportional to WðPr;PgÞ.

Appendix 2: Architecture

Discriminator in the toy model is listed in Table 2. Stan-

dard CNN architectures for CIFAR-10 and STL-10 are

listed in Tables3 and 4. ResNet-based CNN architectures

for CIFAR10 and STL-10 are listed in Tables 5 and 6.

Architectures for image generation on CELEBA dataset are

listed in Tables 7 and 8.

Table 2 Discriminator in the

toy model
Input points : x 2 R2

Dense, Relu ! 512	 2

Dense, Relu ! 512	 2

Dense, Relu ! 512	 2

Dense! 1
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