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Abstract
Face alignment (or facial landmarking) is an important task in many face-related applications, ranging from registration,

tracking, and animation to higher-level classification problems such as face, expression, or attribute recognition. While

several solutions have been presented in the literature for this task so far, reliably locating salient facial features across a

wide range of posses still remains challenging. To address this issue, we propose in this paper a novel method for automatic

facial landmark localization in 3D face data designed specifically to address appearance variability caused by significant

pose variations. Our method builds on recent cascaded regression-based methods to facial landmarking and uses a gating

mechanism to incorporate multiple linear cascaded regression models each trained for a limited range of poses into a single

powerful landmarking model capable of processing arbitrary-posed input data. We develop two distinct approaches around

the proposed gating mechanism: (1) the first uses a gated multiple ridge descent mechanism in conjunction with established

(hand-crafted) histogram of gradients features for face alignment and achieves state-of-the-art landmarking performance

across a wide range of facial poses and (2) the second simultaneously learns multiple-descent directions as well as binary

features that are optimal for the alignment tasks and in addition to competitive landmarking results also ensures extremely

rapid processing. We evaluate both approaches in rigorous experiments on several popular datasets of 3D face images, i.e.,

the FRGCv2 and Bosphorus 3D face datasets and image collections F and G from the University of Notre Dame. The

results of our evaluation show that both approaches compare favorably to the state-of-the-art, while exhibiting considerable

robustness to pose variations.
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1 Introduction

Face alignment or facial landmarking refers to the task of

locating salient facial features in facial images, which is of

paramount importance in various applications including

face registration and recognition [21, 41], expression

recognition [49], face tracking [37], normalization of

facial pose, size, and expressions [16], face synthesis from

morphable models and facial animation [23], to name a

few. In real-world scenarios where face images are often

acquired in uncontrolled conditions, one has to deal with

various unfavorable factors that adversely affect land-

marking performance including pose, expression, and

illumination variations as well as partial occlusions of the

facial areas. These factors influence the appearance of the

facial features in traditional 2D images, e.g., [12] but also

in 3D (or better said 2.5D) face data used in this work.1

Although some of the existing landmark localization pro-

cedures promise to be (at least partially) robust to some of

the factors mentioned above (e.g., [9, 25, 36]), reliable

localization of facial landmarks in the presence of highly

variable nuisance factors still remains a considerable

challenge.
& Janez Križaj
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With the advancement of 3D acquisition technology,

landmark localization on 3D facial data has recently been

researched extensively [13, 36]. Many of the 3D land-

marking techniques proposed in the literature in the last

few years rely on the so-called cascaded regression

framework, where facial landmarks are estimated by

regressing from facial features to landmark locations in a

cascaded (iterative) manner [2]. Techniques following this

framework made considerable advancements toward robust

facial landmarking, although they generally still use hand-

crafted features, such as the scale-invariant feature trans-

forms (SIFT) or histograms of oriented gradients

(HOG) [2, 3, 39]. Additionally, these methods typically

rely on a single regression model in each stage of the

cascade to estimate the facial landmarks regardless of the

facial characteristics. However, as facial appearance is a

complex function of various factors, such as facial shape,

pose, incident illumination, expression, and occlusion, a

single model is often not sufficient to capture the broad

range of variability commonly encountered with facial-

image data and to robustly estimate the location of the most

salient facial features.

To address this problem, we propose in this paper a

novel gating mechanism that incorporates multiple cas-

caded regression-based models each trained for a narrow

range of facial posses into a single (coherent) landmarking

model that is able to reliably estimate the location of salient

facial features from arbitrary-posed input face data. The

combination of simpler view-specific landmarking

approaches provides the combined gating-based model the

necessary expressive power to describe the considerable

appearance variability typically seen with 3D face data

captured under different facial poses and consequently

allows it to reliably estimate the landmark locations

regardless of the facial pose of the input image. The model

is partially motivated by the success of earlier methods

designed for 2D images that combine multiple landmarking

models trained for face alignment of different views,

e.g., [4, 15, 29, 47, 50], but unlike these early methods

does not rely on parametric appearance or shape models.

We develop two distinct facial landmarking approaches

around the proposed gating mechanism. The first relies on a

combination of the Gated multiple RIdge Descent (GRID)

mechanism and established HOG features and as illustrated

in Fig. 1 achieves remarkable landmarking performance

across a broad range of pose variation. Even for poses with

yaw rotations of up to ± 90�, the model is still able to

reliably estimate the location of salient facial features. The

second approach again relies on the introduced gating

mechanism, but in addition to the cascaded regression

models needed for face alignment of each group of poses, it

also learns a feature representation that is used with the

regression models for landmark estimation. Specifically,

the model Simultaneously learns MUltiple-descent direc-

tions as well as binary Features (SMUF) that are optimal

for the alignment task and due to their binary nature also

ensure extremely fast execution times. This second

approach follows recent trends in computer vision and aims

to learn the feature representation that is optimal for a

given tasks, but different from deep learning models that

are typically used for feature learning [40, 42], it uses a

computationally much simpler scheme, where binary fea-

tures are learned based on a learning objective that can be

solved using standard optimization procedures.

To evaluate the proposed landmarking approaches, we

conduct experiments on multiple datasets of 3D face ima-

ges, i.e., the Face Recognition Grand Challenge v2

(FRGCv2) [26], the Bosphorus 3D face dataset [31], and

the University of Notre Dame dataset (collections F and G,

hereinafter referred to as UND dataset) [46]. We present

extensive experiments and comparisons with state-of-the-

art methods from the literature. The results of our evalua-

tion show that the GRID ensures state-of-the-art perfor-

mance for facial landmark localization in 3D face data

across pose, while SMUF yields not only competitive

landmarking accuracy but is also extremely fast.

Our main contributions in this paper are as follows:

• We propose a gating mechanism for face alignment in

3D face data that allows us to combine multiple

alignment models and foster the combined power of the

combined models for face alignment across pose. The

use of multiple models adds to the overall localization

performance, since each model needs to account only

for a limited set of plausible facial variations. With this

approach, reliable landmarking is possible even under

large head rotations such as profile facial images, with

Fig. 1 Sample results of the landmarking GRID approach proposed in

this paper. Our model is able to reliably estimate the location of

salient facial features in 3D face data even in the presence of large

pose variations, i.e., with yaw angles up to ± 90�
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yaw rotations up to ± 90� (see Fig. 1), where many

competing methods fail.

• We develop two distinct landmarking approaches based

on the introduced gating mechanism, where one is

optimized for performance and the second one is

optimized for both performance and speed. We evaluate

both approaches in rigorous experiments on multiple

face datasets and report competitive performance in

comparison to competing methods from the literature.

• We study different configurations of the proposed

approaches and investigate their behavior when local-

izing specific facial landmarks.

The rest of the paper is organized as follows: In Sect. 2, we

describe prior work in the field of facial landmarking with

the goal of providing the necessary context for our con-

tributions. In Sect. 3, we present our gating mechanism and

the GRID and SMUF alignment techniques. We describe

experiments conducted to evaluate the performance of the

proposed methods in discuss results in Sect. 4. We con-

clude the paper with some final remarks and future research

challenges in Sect. 5.

2 Related work

Numerous methods have been proposed in the literature for

the task of automatic facial landmark localization over

recent years. In this section, we present a brief overview of

these methods with a focus on alignment techniques that

work on 3D images. These techniques can be categorized

in various ways, but here we chose to perform a catego-

rization as shown in Fig. 2. We classify existing techniques

into two groups: (1) techniques that are entirely dependent

on geometric information and derive prior knowledge

about the facial structure and location of facial landmarks

by defining a number of heuristic rules and (2) techniques

that rely on trained statistical models. The latter group of

techniques is further divided according to the type of the

model utilized into generative and discriminative methods.

A high-level comparison of the related works discussed in

this section is given in Table 1.

2.1 Geometric approaches

Geometric approaches to facial landmarking are generally

training free and depend solely on the geometric informa-

tion such as surface curvature or shape index values. A

number of rules and heuristics encodes the prior knowledge

about the relationships between adjacent landmarks (e.g.,

the nose tip lies on the face symmetry axis, eyes are located

above the nose tip, etc.). In most cases, the rules used to

define the location of facial landmarks require the face to

be in upright and near-frontal positions. Moreover, a

common downside of these methods is that the landmarks

are detected in sequence (commonly starting by detecting a

nose tip) and the success rate of finding the next landmark

in the sequence is dependent on successfully locating the

preceding landmark in the sequence. With these methods,

an incorrect detection of one landmark affects the detection

of all subsequent landmarks.

Exemplar geometric methods [1, 6, 11, 22, 33] start by

detecting the nose tip and use its location to constrain the

search space of the remaining landmarks. Landmark

detection can be grounded on the analysis of Gaussian

curvatures [11], profile curvatures [6], x and y coordinate

projections of the depth data [33], shape index values and

facial symmetry lines [1], or horizontal slices of range

images [22], to name a few.

2.2 Statistical approaches

Statistical landmarking approaches also exploit local shape

information around candidate landmark locations. Addi-

tionally, these methods derive some prior knowledge from

the training data about the location constraints and encode

the acquired knowledge into a statistical model. Thus, these

methods require a training set of facial images with

annotated landmarks. Unlike training-free geometric

approaches, statistics are utilized uniformly for all land-

marks, as there is no need for specific rules for each indi-

vidual landmark. Since all landmarks are handled

simultaneously approaches from this group are typically

more robust to local distortions, missing data, and occlu-

sions of individual landmarks. However, the fact that sta-

tistical methods generally address a complete set of

landmarks defined by the model could prove to be a

problem when a large number of landmarks is (self-)oc-

cluded or data are missing from the input images due to

Landmarking
methods

Geometric
approaches

(GA)

Statistical
approaches

(SA)

Generative
models

(SA-GM)

Discriminative
models

(SA-DM)

[3,24,25,36, 39]
[2, 7, 30,35,40,48]

[1, 6, 11,22,33]

[8, 9, 18,28,34]

Fig. 2 Taxonomy of 3D landmarking approaches as discussed in

‘‘Related work’’ section. Recent work is largely focusing on statistical

approaches, where landmarking is learned from annotated training

data using either generative or discriminative models
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acquisition errors. Recently, efforts have been made to

handle such problems, e.g., [36] use a flexible shape model

that works even with an incomplete set of landmarks.

In terms of the type statistical model used, approaches

from this group can be divided into techniques that rely

either on generative or on discriminative models. We dis-

cuss both types of techniques in the following two

subsections.

2.2.1 Generative approaches

Landmark locations can be modeled by generative models,

such as active appearance models, active shape mod-

els [8, 18, 34], or morphable models [9]. Techniques from

this group often learn face appearances (and/or shape) by

conducting principal component analysis (PCA) [38] on

manually annotated and aligned training data. Given a test

Table 1 Summary of the existing 3D facial landmark detection methods

Author Typea Procedure Learning algorithm Features

Mian et al. [22] GA Nose tip detection through the analysis of

horizontal slices

Training free Depth data

Faltemier et al. [6] GA Rotated profile signatures Training free Rightmost 3D profile lines

Gupta et al. [11] GA ICP coarse alignment, heuristic rules Training free Surface curvatures

Segundo et al. [33] GA Clustering-based face detection, heuristic rules Training free Depth relief curves, surface

curvatures

Alyüz et al. [1] GA Facial symmetry axis, heuristic rules Training free Shape index, Gaussian

curvature

Passalis et al. [24] SA-

DM

Candidate landmarks fitting to facial landmark

model

PCA Shape index, spin images

Zhao et al. [48] SA-

DM

3D statistical facial feature model PCA-based learning Range map, intensity map

Fanelli et al. [7] SA-

DM

Random forest-based voting approach Random forests Binary tests

Fanelli et al. [8] SA-

GM

Random forests-based regression, AAM Random forests Binary tests with trees in forest

Perakis et al. [25] SA-

DM

Candidate landmark fitting to facial landmark

model

PCA Shape index, spin images

Smolyanskiy et al.

[34]

SA-

GM

2D AMM and 3D morphable face model PCA RGBD values

Liu et al. [18] SA-

GM

Normalized cross correlation and depth-based

AAM

PCA Shape and depth values

Song et al. [35] SA-

GM

Local coordinate coding Coupled dict. learning Spin images, synthesized

features

Cao et al. [3] SA-

DM

Cascaded regression Linear regression Shape indexed and depth

features

Sukno et al. [36] SA-

DM

Combinatorial search constrained by a flexible

shape model

PCA APSC descriptors

Camgöz et al. [2] SA-

DM

Cascaded ridge regression Ridge regression Multi-scale HOG

Feng et al. [9] SA-

DM

Cascaded collaborative regression Weighted ridge

regression

Dynamic multi-scale HOG

Rai et al. [28] SA-

GM

3D constrained local models ICA, point dist. model LBP descriptors

Wang et al. [39] SA-

DM

Joint head pose and facial landmark regression Classif. guided casc.

regression

Random forest feature selection

Liu et al. [17] SA-

DM

Hidden Markov models (HMMs) HMM learning Spin image

Wang et al. [40] SA-

DM

CNN-based feature extraction and landmark

regression

Pre-trained CNN fine-

tuning

CNN-based global and local

features

aFor an explanation of the respective method types, see Fig. 2
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image, alignment/fitting is achieved by minimizing the

difference between the current estimate of the appearance

(and/or shape) and the test face. Generally, generative

approaches are often computationally expensive and may

perform poorly in the presence of occlusions, pose

expression, and illumination variations due to the involved

fitting procedure.

2.2.2 Discriminative approaches

More recent methods to face alignment focus mostly on

discriminative approaches that learn a mapping function

that predicts the shape, i.e., landmark locations, directly

from corresponding image features. Methods from this

category typically offer better landmark localization per-

formance when compared to generative models, especially

for faces with greater variability in appearance [2, 3, 9, 36].

These methods commonly incorporate shape constraints

into the models and use local descriptors that are more

robust to appearance variations than conventional depth/

intensity pixel values used with generative approaches.

Discriminative approaches include random forests [7],

graph matching [30], cascaded regression [2, 3, 9, 39],

specifically tailored shape models [24, 25, 36, 48], hidden

Markov models [17], and convolutional neural

networks [40].

The landmarking techniques proposed in this work fall

into the group of discriminative approaches. They build on

recent face alignment techniques that rely on cascaded

regression models that have proven highly successful for

landmark localization from 2D face images, e.g., [44, 45].

However, compared to these models, our solutions exhibit

unique features, such as the novel gating mechanism for

exploiting multiple pose-specific landmarking models and

the ability to incorporate task-specific binary features into

the landmarking procedure.

3 Methodology

In this section, we describe GRID and SMUF, two novel

facial landmarking approaches built around the gating

mechanism illustrated in Fig. 3. As can be seen, the gating

mechanism partitions the search space for the landmark

localization procedure into a number of sub-domains,

where each sub-domain encompasses a range of similar

facial poses. A separate landmarking model is then trained

for each of the sub-domains, and the gating mechanism is

used to select the most suitable landmarking model for the

given test image. Based on this overall framework, we

develop two distinct landmarking techniques, which are

described next.

3.1 GRID description

We design GRID (Gated Multiple Ridge Descent) in line

with the powerful cascaded regression framework to face

alignment, where landmark locations (or in other words, the

facial shape) are estimated by regressing from facial features

to landmark locations in a cascaded manner. In the first step

of this framework, features are extracted from some initial

landmark configuration (estimated from the training data)

and a regression model is applied on the extracted features to

predict landmark updates to better align the landmarks with

the actual test image. The update results in a new landmark

configuration that forms the basis for the next step in the

cascade. The entire procedure is then repeatedmultiple times

and, thus, sequentially refines the predicted locations of the

facial landmarks in the test image.

With GRID, we train multiple cascaded regression

models and integrate them into a gated approach that is

robust to pose variations. While different regression mod-

els and feature representation have been proposed in the

literature for facial landmarking, we built GRID around the

supervised descent method (SDM) from [44] that has not

proven successful only for facial landmark localization in

2D images [43], but also for alignment of 3D face images,

as we have shown in [2, 14].

3.1.1 Background

To train the regression models needed for landmarking,

SDM requires a number of facial images fIngNn¼1, where

Fig. 3 Schematic representation of the gating mechanism used in this

work. Multiple landmarking models (each containing a cascade of

regression models) are trained during the learning stage. At run time,

a gating function is used to select the landmarking model that best fits

the characteristics of the test data

Neural Computing and Applications (2020) 32:17909–17926 17913

123



each image I has L landmarks annotated in the form of a

shape vector x� 2 R2L�1. The landmark localization task is

then posed as a minimization problem over Dx:

argmin
Dx

hðI; x1 þ DxÞ � /�k k2, ð1Þ

where h is a feature extraction function, /� ¼ hðI; x�Þ are
features extracted around the ground truth landmarks x�, x1
is an initial landmark configuration, and Dx is a landmark

update (known for the training data).

Equation (1) represents a nonlinear least squares prob-

lem and, in general, has no closed-form solution. However,

it was shown in [43] that the problem can be solved

through a cascade of least squares regression problems.

Thus, for each step k in the cascade, the solution of the

least squares problem is given in the form of a regression

matrix Rk (also referred to as a descent map, DM) that can

be used to predict the update of the landmark locations

from the current image features. The learning algorithm is

formulated as a minimization of the loss between the true

shape updates x̂nk ¼ xnk � xn� and the expected updates over

all training images, i.e.,

argmin
Rk

X

n

x̂nk � Rk /n
k � /�

� ��� ��2, ð2Þ

where n is a training-image index and /� is an average

feature vector computed from the ground truth locations xn�
over all training images. Equation (2) now represents a

sequence of ordinary least squares regression problems that

can be solved in closed form.

During test time, the algorithm starts with some initial

landmark locations x1, for which the face shape (landmark

configuration) is defined by the average landmark locations

of training images and the position of the face shape is

determined by the face detection procedure2, and sequen-

tially updates the initial estimate to obtain the final land-

mark locations, i.e.,

xkþ1 ¼ xk þ Rk /k � /�
� �

, ð3Þ

so that the final shape xk converges to x� for all training

images. The number of steps K in the cascade, where k ¼
1; 2; . . .K commonly varies depending on the implemen-

tation, but usually values of K are between 3 and 10.

3.1.2 Ridge regression

The original SDM [43] formulation uses a least squares

solution of Eq. (2) to learn the DMs, i.e.,

Rk ¼ X̂kÛ
>
k ÛkÛ

>
k

� ��1

, ð4Þ

where X̂k is a shape matrix with nth column x̂nk and Ûk is a

feature matrix with nth column /n
k � /�. To solve Eq. (4),

one needs to compute the inverse of Û>
k Ûk, which, how-

ever, may be singular when the size of the feature vectors is

too large or when the features are correlated. To overcome

this issue, the original SDM applies PCA [38] to the image

features before inverting the matrix.

However, we have shown in [2] that better landmarking

performance is achieved if ridge regression is used in the

original feature space instead of least squares regression in

the PCA subspace. The optimization function in (2) in this

case can be written as

2 The average shape is always placed consistently with respect to the

detected facial region.

Fig. 4 Multiple landmark initializations fxz1gz¼f1:3g and the ground

truth landmarks x� superimposed on an example test image. The

gating mechanism used in this work determines the pose of the test

image (and consequently selects a landmarking cascade) by compar-

ing the features extracted from different shape initializations of the

test image to the average features extracted from the true landmark

locations of all images in the pose-specific training sets

Fig. 5 We use depth-difference vectors d as the basis for binary

feature calculation as proposed in [19, 20]. The example image above

shows how one such vector is computed for a selected landmark. The

local pixel neighborhood shown here is of size 3� 3 and is selected

only for illustration purposes. We use larger neighborhoods for the

actual SMUF implementation
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argmin
Rk

X

n

x̂nk � Rk /n
k � /�

� ��� ��2þck Rkk k2, ð5Þ

where ck denotes a regularization factor and the solution of

Eq. (5) is computed as

Rk ¼ X̂kÛ
>
k ÛkÛ

>
k þ ckI

� ��1

, ð6Þ

where I is an identity matrix. The regularization factor

ck � 0 controls the general instability of the least squares

estimate. Selecting a suitable value for ck avoids over-fit-

ting and helps to produce estimates of Rk that generalize

better to unseen data.

3.1.3 Gated multiple ridge descent

Experimental results in [2, 43, 45] have shown that the

original SDM achieves remarkable landmarking

performance on various 2D and 3D datasets. However, it

still tends to perform poorly when, for example, large head

rotations are present in the facial data [45]. Such rotations

cause complex facial appearance variations that are diffi-

cult to model and hard to account for when using only a

single DM in each step of the landmarking cascade.

To increase the robustness of the model to pose varia-

tions, we propose to exploit multiple DMs fRz
kgz¼f1:Zg such

that each of the Z DMs accounts for a specific range of

head rotations, as illustrated in Fig. 3. Toward this end, we

partition the available training images fIngNn¼1 into Z pose-

specific subsets and train separate regression cascades for

each subset in line with Eq. (6).

Once all Z cascades (series of DMs) are trained, a gating

function gz is used to select the most suitable DM (from the

Z DMs available in the first cascade stage) for a given test

image. The selection procedure begins by computing

Fig. 6 Overview of the training and testing stages of the GRID and

SMUF landmarking techniques. Both techniques use a similar

processing pipeline, but the SMUF approach also learns features

(marked by Wz
kÞ in each stage of the training procedure in addition to

the landmarking cascade (marked by Rz
k; k ¼ 1; 2; . . .;K) learned by

GRID

Table 2 Overview of the

datasets used for

experimentation

Database #images #subjects Variability

FRGCv2 [26] 4007 975 Expression

Bosphorus [31] 4666 105 Expression, occlusion, and orientation

UND [46] 1680 537 Orientation

The FRGCv2 dataset is among the most frequently used datasets of 3D face images, whereas the Bosphorus

and UND datasets contain challenging images with a high degree of variability in face orientations and are,

hence, well suited for our experiments

Neural Computing and Applications (2020) 32:17909–17926 17915
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features f/z
1gz¼f1:Zg from the initial landmark locations

fxz1gz¼f1:Zg in the test image. Here, the initial landmark

locations xz1 (see Fig. 4) are computed by averaging the

ground truth shapes over all training images from the zth

training subset:

xz1 ¼ fxn�gn2z. ð7Þ

The most fitting DM for the given test image is then

selected based on the output of the gating function gz:

gzð/z
1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
/z
1 � /�

� �>
R�1
� /z

1 � /�
� �

r
, ð8Þ

where m is the feature vector length (in the case of SIFT

m ¼ 128� L) and /� and R� are the average and the

covariance matrix of the ground truth features over the

subset z, respectively. We select the subset z�, for which
the gating function outputs the lowest value:

z� 2 f1; . . .; Zg : gz� ¼ min
z
ðgzÞ. ð9Þ

By doing so, we reliably choose the DM Rz�
1 that has been

trained on images with similar face orientations to the

orientation of the test face. For all the subsequent steps k,

we use the DMs Rz�
k that correspond to the z�th subset

selected in the first step k ¼ 1 and for efficiency reasons

due not change the regression cascade in subsequent steps.

Location updates on a given test image are thus computed

as

xkþ1 ¼ xk þ Rz�
k /z�

k�1 � /�
� �

: ð10Þ

The described procedure results in significantly improved

performance in the case of large head rotations as shown

later in Sect. 4.

It needs to be noted that we rely on HOG features to

implement the feature extraction function h in GRID. We

select HOG features because of their proven performance

in prior landmarking models, e.g., [2, 14].

3.2 SMUF description

The GRID landmarking approach presented in the previous

section relies on HOG features to encode the appearance of

the facial landmarks during face alignment. With SMUF

(Simultaneous MUlti-descent regression and binary Fea-

ture learning), we take a step further and try to learn facial

features that are optimal for face alignment. We choose to

learn binary features, due to their simplicity and most of all

computational simplicity. In the following subsection, we

first review the idea of binary feature learning and then

develop SMUF approach that jointly learns a landmarking

model as well as corresponding binary features that are

optimal for this task.

3.2.1 Binary feature learning

Hand-crafted binary features, such as local binary patterns

(LBPs) [27] represent powerful image descriptors that have

proven highly effective in various computer vision tasks.

These features typically rely on pixel comparisons within a

local neighborhood and heuristic rules to encode the pixel

comparisons into binary codes. As such, they may be

suboptimal and better features could potentially be con-

structed by learning binary features based on some dedi-

cated learning objective.

Gong et al. [10], for example, propose a learning

objective where binary features are learned from an initial

image representation d, such that the quantization error is

Table 3 Mean localization

errors (and standard deviations)

for the GRID and SMUF

methods on the Bosphorus

dataset

Variation Number of descent maps

1 DM 3 DMs 5 DMs

GRID SMUF GRID SMUF GRID SMUF

Frontal 3.0 ± 1.7 3.1 ± 1.8 3.0 ± 1.7 3.1 ± 1.8 3.0 ± 1.7 3.1 ± 1.8

Yaw � � 10	 3.1 ± 1.8 3.2 ± 1.9 3.1 ± 1.8 3.5 ± 3.0 3.1 ± 1.8 3.5 ± 3.0

Yaw � � 20	 3.2 ± 1.9 3.6 ± 2.5 3.3 ± 2.0 3.7 ± 2.9 3.3 ± 2.0 3.7 ± 2.9

Yaw � � 30	 3.5 ± 2.1 5.2 ± 5.1 3.4 ± 2.0 3.7 ± 2.7 3.4 ± 2.0 3.7 ± 2.7

Yaw � � 45	 5.2 ± 4.1 12.1 ± 11.4 3.4 ± 2.1 3.8 ± 2.6 3.4 ± 2.1 3.9 ± 3.1

Yaw � � 90	 9.6 ± 10.1 15.6 ± 13.1 5.2 ± 5.1 7.8 ± 8.5 3.5 ± 2.1 4.0 ± 3.3

Expressions 3.4 ± 2.0 3.6 ± 2.3 3.4 ± 2.0 3.6 ± 2.3 3.4 ± 2.0 3.6 ± 2.3

Occlusions 3.9 ± 2.5 3.9 ± 2.5 3.9 ± 2.5 3.9 ± 2.5 3.9 ± 2.5 3.9 ± 2.5

Results are reported for different variants of both landmarking techniques implemented with 1, 3, or 5

regression cascades. The best overall performance is achieved with 5 cascades for both techniques. The

results also show that the gating function always selects the correct cascade—observe results for frontal

images across the different landmarking variants
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minimized. Since binary features / (containing only 0s and

1s) can be computed from d as

/ ¼ 0:5ð sgn ðW>dÞ þ 1Þ, ð11Þ

where W is a matrix of hash functions that defines the

length of the binary code and sgn ð:Þ stands for the signum
function. The learning objective Lq that needs to be mini-

mized over W on some training data can be written as

Lq ¼ /� 0:5�W>d
�� ��2. ð12Þ

It was shown by Lu et al. [19, 20] that descriptive binary

image features can be computed based on the above

quantization scheme if pixel (or depth in our case) differ-

ence values are used as input d for binarization. For SMUF,

we follow this approach and compute one depth-difference

vector d for each considered landmark, as illustrated in

Fig. 5.

3.2.2 Simultaneous DM and feature learning

The learning objective presented in the previous section is

focused on representational power, as the binary features

are computed in a manner that minimizes a quantization

loss. To make the features useful for landmarking, we now

formulate a joint optimization function that allows us to

simultaneously learn a regression cascade and corre-

sponding binary features that are optimal for the land-

marking task.

Let Dk ¼ ½d1k ; . . .; dLNk 
 be a set of depth-difference

vectors extracted from patches centered at the facial

landmarks Xk ¼ ½x1k ; . . .; xLNk 
 and k stands for the cascade

stage, k ¼ 1; 2; . . .;K. The depth-difference-vector matrix

Dk is mapped to a binary feature matrix Uk as follows:

Uk ¼ 0:5ð sgn ðW>
k DkÞ þ 1Þ, ð13Þ

where Wk is a feature projection matrix and sgn ð:Þ is again
the signum function. To learn Wk, we formulate the fol-

lowing optimization problem by rewriting (5) into matrix

form and extending it with the additional constraint C2:

argmin
Rk ;Wk

C ¼ C1 þ kC2

¼ X̂k � Rk
~Uk

�� ��2þc Rkk k2

þ k Rkð ~Uk � 0:5�W>
k D̂kÞ

�� ��2,

ð14Þ

where

~Uk ¼ 0:5ð sgn ðW>
k D̂kÞ þ 1Þ ð15Þ

and D̂k ¼ Dk � D�, where D� are the depth-difference

values of the ground truth landmark locations. As already

emphasized above, the objective of C2 is to minimize the

quantization loss between the original depth-difference

values and the binarized features, so that most of the depth-

difference energy can be preserved in the learned binary

features.

We find optimal values for Rk and Wk by an iterative

optimization procedure, where Wk is initialized to a ran-

dom orthogonal matrix. If we assume a fixed Wk and

compute a partial derivative of C in (14) with respect to Rk

and set the derivative to zero, we obtain the following

solution for Rk:

Rk ¼X̂k
~U>
k

~Uk
~U>
k þ ckI

�

þ kð ~Uk � 0:5�W>
k D̂kÞð ~Uk � 0:5�W>

k D̂kÞ>
i�1

.

ð16Þ

In the next step, we aim to learn Wk with a fixed Rk and,

hence, rewrite (14) as follows:

argmin
Wk

C ¼ X̂k � RkW
>
k D̂k

�� ��2þc Rkk k2

þ k Rkð ~Uk � 0:5�W>
k D̂kÞ

�� ��2.
ð17Þ

If we differentiate (17) with respect to Wk and set the

derivative to zero, we obtain the following update rule for

Wk:

Wk ¼ ðR�1
k X̂k þ kð ~Uk � 0:5ÞÞD̂k

� 	>
=ð1þ cþ kÞ. ð18Þ

The two optimization steps from (16) to (18) are then

repeated until both Rk and Wk converge.

Once a stable version of Rk and Wk are obtained, we

compute the shape update in accordance with

Xkþ1 ¼ Xk þ Rk
~Uk ð19Þ

and repeat the entire procedure for the next stage in the

cascade. Note that because ~Uk is binary, location updates

can be computed extremely quickly by simply summing up

(specific) rows from Rk.

Finally, we compute separate regression cascades and

projection matrices for each of the Z training subsets, that

is, for each considered group of poses, and integrate the

computed cascades into the overall SMUF approach using

the same gating mechanism as described above for the

GRID approach.

3.3 Training and testing of GRID and SMUF

The overall processing pipeline for the SMUF landmarking

approach is shown in Fig. 6. The procedure for GRID is

identical, except for the fact that no features are learned

during training.

The training stage for both methods begins by prepro-

cessing all N training images fIngn¼1:N where a depth

component of the surface normal is computed in each pixel

Neural Computing and Applications (2020) 32:17909–17926 17917

123



instead of using original depth values. In each image, the

face is detected using a simple clustering procedure [32]

and initial landmark locations xn1 are set based on the

detected facial area. To capture the variance of the face

detection procedure and to enlarge the amount of training

data, we define additional initial landmark locations for

each training image by randomly sampling scale and dis-

placement parameters for the detected area from a normal

distribution. Starting from the initial locations matrix X1

along with the ground truth locations X�, a number of DMs

Rz
k (and for SMUF also projection matrices Wz

k) are

learned. The updates (16) and (18) are iteratively recom-

puted till convergence (we empirically estimated that 4

steps are sufficient) for each shape update step k and each

of the Z training subsets.

When a test image is presented to the landmarking

procedure, it goes through the same face detection, pre-

processing, and feature extraction steps as the training

images. DMs and feature projections are then selected as

described in Sect. 3.1.3 and the final landmark locations

are computed based on (10). The pseudocode of the GRID

method is summarized in Algorithm 1, while the steps for

the SMUF method are outlined in Algorithm 2.

4 Experiments

In this section, we evaluate the proposed GRID and SMUF

landmarking approaches and compare them to the state-of-

the-art. We report landmarking performance in accordance

with the standard methodology used in this area [32] for all

experiments. Specifically, we use the localization error,

i.e., the Euclidean distance in mm between the location of

the detected landmark and the manually annotated ground

truth landmark, for performance reporting. Additionally,

we also compute the mean localization error over all

landmarks of each test face for some of the experiments.

4.1 Experimental datasets

We conduct experiments with three popular datasets of 3D

face images: the FRGCv2 dataset, the Bosphorus 3D face

dataset, and the UND dataset. We chose these datasets

Algorithm 1: GRID
procedure Training()

Input : Training images [I1, · · · , IN ] with
annotated landmarks
X∗ = [x1∗, · · · ,xN∗ ] and initial
locations X1 = [x1

1, · · · ,xN
1 ].

Output: Descent maps Rz
k.

for z = 1 : Z do
Select z-th training subset.
for k = 1 : K do

Extract HOG features Φz
k.

Update Rz
k using (6).

Update shape Xz
k using (3).

procedure Evaluation()
Input : Test image I, initial landmark

locations computed by (7), descent
maps Rz

k.
Output: Final landmark locations.
for k = 1 : K do

if k == 1 then
for z = 1 : Z do

Extract HOG features Φz
1 .

Compute gating function using (8).
Select corresponding sub-domain z∗
according to (9).

Extract HOG features Φz∗
k .

Update shape in accordance with (10).

Algorithm 2: SMUF
procedure Training()

Input : Training images [I1, · · · , IN ] with
annotated landmarks
X∗ = [x1∗, · · · ,xN∗ ] and initial
locations X1 = [x1

1, · · · ,xN
1 ].

Output: Descent maps Rz
k, feature projections

W z
k .

for z = 1 : Z do
Select z-th training subset.
for k = 1 : K do

Initialize W z
k to a random orthogonal

matrix.
for u = 1 : U do

Extract features Φ̃z
k according

to (15).
Update Rz

k with fixed W z
k

using (16).
Update W z

k with fixed Rz
k

using (18).
Update shape Xz

k according to (19).

procedure Evaluation()
Input : Test image I, initial landmark

locations computed by (7), descent
maps Rz

k, feature projections W z
k .

Output: Final landmark locations.
for k = 1 : K do

if k == 1 then
for z = 1 : Z do

Extract features Φ̃z
1 according

to (15).
Compute gating function value
using (8).

Select corresponding sub-domain z∗
according to (9).

Extract features Φ̂z∗
k using (15).

Update landmark locations in accordance
with (10).
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because they are among the most frequently used 3D face

datasets and because they contain challenging 3D images

with a high degree of variability in face orientations and

are, therefore, well suited for assessing the robustness to

such variations. The main characteristics of the datasets are

summarized in Table 2.

The FRGCv2 dataset contains 4007 3D face images of

466 individuals. Images of the dataset were acquired with a

laser-based Konica Minolta Vivid 910 scanner. Subjects

exhibit minor pose variations and various facial expres-

sions. We utilize the ground truth landmarks (8 landmarks

per face) from [25], which were manually annotated on a

subset of 975 images from 149 subjects.

The Bosphorus dataset consists of 4666 face samples

from 105 subjects. Each sample includes a 2D color image,

a 3D point cloud, and 24 manually annotated landmarks (in

our experiments, we exclude ear dimple landmarks and use

the remaining 22 landmarks). Next to expression and

occlusion variations, images in the dataset also exhibit

large variations in pose. Images from the dataset were

captured using a structured-light-based Inspeck Mega

Capturor II Digitizer.

The UND dataset contains 1680 semi-profile and profile

3D face images of 537 subjects. For our experiments, we

use a subset of 236 images with yaw rotations of �45	 and
174 images with yaw rotations of �60	 along with the

manual annotations (8 landmarks for frontal faces and 5 for

non-frontal faces) also provided by [25]. Images from this

dataset were captured by the same acquisition device as

used with FRGCv2.

4.2 Performance evaluation on the Bosphorus
dataset

In the first series of experiments, we evaluate the perfor-

mance of GRID and SMUF on the Bosphorus dataset

which is particularly suitable to assess the robustness to

large pose variations. We perform experiments using a

twofold cross validation setup using half of the images for

training and the other half for testing. To increase the size

of training data, we extend the training set by horizontally

flipping each of the available training images. We form test

sets with respect to the yaw rotation angle or the presence

of expressions/occlusions. We implement both methods

with K ¼ 7 cascade stages and use this setup also for all the

following assessments.

The results of this series of experiments are summarized

in Table 3. For both GRID and SMUF, we train three

landmarking variants, each with a different number of

DMs. The first column in Table 3 marked 1 DM corre-

sponds to the variant that uses only one DM that was

trained on images with 22 annotated landmarks (these are

generally images of near-frontal faces, since large rotations

lead to self-occlusions and fewer annotations). The second

column represents the GRID and SMUF variants with 3

DMs: one DM is computed in the same way as in the

variants in column 1, while the second and the third DMs

are computed using images with the head rotations up to

45	 to the left and right, respectively. The variants in the

third column correspond to the setup in Fig. 3 and contain

an additional two DMs corresponding to head rotations in

the ranges of ½45	; 90	
 and ½�45	;�90	
. The DMs of the

near-frontal images are trained using 22 landmarks per face

image, while the DMs of rotated images are trained using

14 landmarks per face as some of the landmarks in these

images are typically self-occluded.

As expected, we can observe that the robustness to face

rotations is significantly increased when more DMs are

utilized. With the GRID and SMUF variants with 5 DMs,

we achieve reliable landmark localization even on profile

face images with yaw rotations up to � 90	. It can also be

seen from the last two rows in Table 3 that the same

localization errors are obtained for all three variants when

evaluated on the frontal face images with expression and

occlusion variations. This indicates that the expressions

and occlusions do not affect the DM selection process since

in all cases the frontal DM is correctly chosen by the gating

function.

When comparing the performance of SMUF and GRID,

we can see that, in general, GRID ensures slightly better

localization results than SMUF for all implemented vari-

ants. However, while there is an evident trend toward lower

average localization errors for GRID, it is clear from

Table 3 that the performance differences are statistically

not significant. Thus, we can conclude that for the

Bosphorus dataset, both techniques perform more or less

equal.

4.3 Evaluation on the FRGCv2 and UND datasets

In the second series of experiments, we evaluate GRID and

SMUF on the joint FRGCv2 and UND datasets. Contrary

Fig. 7 Illustration of the face detection procedure used on the

FRGCv2 and UND datasets. The procedure uses a simple k-means

clustering approach (with k ¼ 3) and selects the cluster with the

lowest mean depth as the face region. The figure shows Input image

(left), color coded clusters (middle), and cropped and smoothed face

image (right)
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to the Bosphorus dataset, where images contain solely the

head regions and, therefore, using a face detector is not

required; images from the FRGCv2 and UND datasets may

also contain parts of the upper body, and thus, face

detection is needed to initialize the landmark locations. In

this series of experiments, we, hence, employ a simple face

detector that relies on k-means clustering similar to the one

presented in [32]. Setting the number of clusters to k ¼ 3

and including several heuristic conditions, this detector

divides a 3D image into three regions that most likely

correspond to the background, body, and head/face regions.

The face region candidate is then selected as the cluster

with the lowest mean depth value (yellow region in Fig. 7).

By doing so, a few other minor parts of the image may be

selected besides the face region that is later reliably

discarded by retaining only the largest connected area

(right image in Fig. 7).

The face detector introduces additional variability into

the facial regions, since the detected face may still include

smaller parts of the upper body, neck, and hair. For that

reason, we also report face mis-detection rates and selec-

tion rates for this experiment. Face mis-detection rate is

defined as the percentage of images with the discrepancy

between the location of face detection box and the loca-

tions of ground truth landmarks. The selection rate is

defined as the percentage of images where the correct DM

has been selected by the gating function, where we define a

DM as incorrect if the DM has been trained on right profile

face images while the corresponding test image is facing

left or vice versa. The localization errors are then computed

Table 5 Localization errors of GRID and SMUF in comparison to the

state-of-the-art on non-frontal facial datasets for 10 common facial

landmarks. GRID and SMUF significantly outperform competing

methods on all experimental datasets. When comparing the learned

binary features from SMUF to hand-crafted LBP features, we observe

better performance for the learned binary features. GRID and SMUF

again perform similarly for all landmarks

Landmarks Method and database

Sukno et al.

[36]

Creusot et al.

[5]

Passalis et al.

[24]

Perakis et al.

[25]

LBP GRID SMUF

Bosphorus Bosphorus FRGC ?UND FRGC

?UND

Bosphorus FRGC

?UND

Bosphorus FRGC

?UND

Bosphorus

Inner eye

c.

2.9 ± 2.0 4.1 ± 2.6 6.4 ± 3.0 4.8 ± 2.7 2.8 ± 3.4 2.7 ± 1.5 2.0 ± 1.1 3.2 ± 2.1 2.4 ± 1.9

Outer eye

c.

5.1 ± 3.7 6.3 ± 4.0 6.6 ± 3.7 5.7 ± 3.9 3.5 ± 3.8 2.8 ± 1.9 2.5 ± 1.4 3.4 ± 2.3 2.9 ± 2.8

Nose tip 2.3 ± 1.8 4.3 ± 2.6 4.6 ± 3.0 4.4 ± 2.7 4.9 ± 6.3 3.5 ± 2.8 3.7 ± 2.8 4.8 ± 4.4 3.9 ± 3.5

Nose c. 3.0 ± 1.9 4.2 ± 2.4 n/a n/a 4.0 ± 4.7 n/a 3.0 ± 2.0 n/a 3.5 ± 2.9

Mouth c. 6.1 ± 5.1 8.0 ± 5.4 5.8 ± 3.9 5.0 ± 2.9 3.4 ± 4.3 2.9 ± 2.0 2.5 ± 1.6 3.4 ± 2.5 2.7 ± 2.1

Chin tip 7.6 ± 6.7 15.4 ± 10.5 6.6 ± 3.5 4.8 ± 3.5 5.5 ± 4.8 4.8 ± 2.1 4.8 ± 3.4 6.2 ± 3.7 5.1 ± 3.5

Table 4 Mean localization

errors (and corresponding

standard deviations) on the

FRGCv2 and UND datasets

Dataset Detection rate Selection rate Localization error

GRID SMUF Perakis [25]

DB00F 99.6 100.0 3.2 ± 1.7 3.4 ± 2.2 5.0 ± 1.9

DB00F-neut. 99.6 100.0 3.0 ± 1.6 3.2 ± 1.8 4.5 ± 1.5

DB00F-mild 99.7 100.0 3.3 ± 1.6 3.5 ± 1.9 5.0 ± 1.5

DB00F-extr. 99.4 100.0 4.0 ± 2.1 4.2 ± 3.0 6.3 ± 2.6

DB00F45RL 98.3 99.1 3.3 ± 2.0 4.0 ± 2.9 5.0 ± 1.9

DB45R 99.1 97.4 3.2 ± 2.1 3.7 ± 2.6 5.0 ± 1.9

DB45L 98.3 99.1 3.8 ± 2.1 4.1 ± 2.7 4.8 ± 1.9

DB60R 98.9 96.6 3.7 ± 1.6 4.2 ± 2.5 5.0 ± 1.8

DB60L 98.9 95.4 4.2 ± 1.9 5.1 ± 4.0 5.3 ± 2.5

Results are reported for specific subsets in accordance with the protocol from [25]. The subsets feature

images with different levels of expression variations (DB00F), and yaw rotations of 45	 and 60	 to the right
(R), the left (L), or in both directions (RL). The results show that both GRID and SMUF offer favorable

performance when compared to the method of Perakis et al. [25]
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exclusively on the images with correct face detections and

DM selections. This type of reporting is adapted from [25],

which we use for baseline comparison in this experiment.

The results of the experiments are presented in Table 4.

For details on the dataset abbreviations in the first column,

please refer to [25], since the experimental setup and the

landmark annotations are adopted from there. In short,

however, DB00F denotes an image subset with varying

facial expressions, which is further partitioned into neutral

(neut.), mild, and extreme (extr.) facial expressions. The

remaining image subsets contain faces with 45	 or 60	 yaw
rotations either to the right (R), the left (L), or both (RL).

As the GRID and SMUF methods require non-frontal

images to train some of the DMs, our experimental setup

differs from [25] only in the construction of training set

where we also employ images from the Bosphorus dataset.

Detection and selection rates are consistently above 95%

for all subsets as it can be observed from the first two

columns in Table 4. Localization errors of our two land-

marking approaches are compared to Perakis et al. [25]

(last column) which, to the best of our knowledge, achieves

the highest performance in the literature on these datasets.

The results show the robustness of our methods to both

expression variations and to rotations. The mean localiza-

tion error is under 6 mm on all tested subsets for both

GRID and SMUF. Since the training data is taken from the

Bosphorus dataset (acquired with a different 3D camera),

the results also imply good generalization to data from

different sensors. All experiments from this section were

performed using 5 DMs, as we observed earlier in Sect. 4.2

that this setting is the most robust to rotation variations.

4.4 Comparison to the state-of-the-art

In the next series of experiments, we compare the perfor-

mance of GRID and SMUF to the performance of state-of-

the-art landmarking methods from the literature. Specifi-

cally, we select the method of Sukno et al. [36], the tech-

nique of Creusot et al. [5], and the landmarking approaches

of Passalis et al. [24] and Perakis et al. [25] for our com-

parison. To the best of our knowledge, these landmarking

methods are the only ones that were evaluated on both

frontal as well as rotated 3D facial images. Following the

experimental protocols of other authors, we used the

DB00F45RL subset when performing experiments on the

FRGCv2?UND database and used the entire database for

experimentation on the Bosphorus dataset. Additionally,

we also implement our gated landmarking approach with

hand-crafted binary features, that is, with LBPs (uniform,

neighborhood size of 8 and radius of 1) to capitalize on the

usefulness of learning binary features instead of using off-

the-shelf binary feature extractors.

The results of the comparison are shown in Table 5. We

observe that on the Bosphorus dataset both GRID and

SMUF significantly outperform the competing methods

from the literature and achieve not only lower average

localization errors, but also significantly smaller standard

deviations on these errors. The only exception here are the

nose tip and corners, where the method of Sukno performs

similarly or slightly better. We also see similar results for

the FRGC-UND dataset, where both GRID and SMUF

achieve a considerable reduction in the localization errors

for all considered landmarks compared to the state-of-the-

art.

When comparing the learned binary features used in

SMUF to the hand-crafted LBP features, we also see an

obvious performance improvement in the learned features,

re-enforcing our assumption that learning binary features is

beneficial for face alignment. The comparison between

GRID and SMUF shows a similar picture as in the previous

series of experiments, where GRID was found to perform

slightly better than SMUF, but not significantly so.

4.5 Landmark analysis

In this section, we evaluate how the overall localization

performance varies across the individual landmarks for

both GRID and SMUF. Figure 8 illustrates the mean

localization errors achieved for the individual landmarks—

the size of the circles is proportional to the errors. It can be

observed that the landmarks corresponding to the nose tip

and eye and mouth corners exhibit low localization errors.

This is expected as these landmarks correspond to well-

pronounced facial parts with distinctive ‘‘corner-like’’

shapes. Contrarily, landmarks relating to nose saddle

points, the chin tip, and eyebrow points correspond to

(a) GRID, FRGC/UND (b) SMUF, Bosphorus

Fig. 8 Mean localization errors achieved by GRID and SMUF for

individual landmarks of the FRGCv2?UND and Bosphorus datasets.

The size of the circles corresponds to the localization errors. The

numbering of the landmarks as shown here is also used in Figs. 9 and

10. The lowest errors are achieved on distinct landmarks with corner-

like properties, e.g., the mouth corners
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indistinctive ‘‘edge-like’’ local shapes and, therefore, result

in high localization errors. This observation is also sup-

ported by the box plots in Figs. 9 and 10 that show local-

ization errors of individual landmarks on the Bosphorus

and the FRGCv2?UND databases. The presented behavior

is consistent for both evaluated methods. Note that the

number of landmarks in Figs. 9 and 10 depends on the

employed dataset and not on the chosen landmarking

method.

To further analyze the landmarking performance of

GRID and SMUF and their generalization ability, we also

performed a cross-database experiment, where we built the

test set with images from the FRGCv2?UND dataset,

while the training set was generated using images from the

Bosphorus dataset. Results relating to the cross-database

experiment are illustrated by the green box plots in Fig. 10.

When compared to the experiment where both training and

test sets are from the FRGCv2?UND dataset, we observe a

slight increase in localization errors for most of the

Fig. 9 Localization errors in the form of box and whiskers plots for

the Bosphorus dataset achieved with the GRID and SMUF landmark-

ing techniques. The results show that the lowest localization errors

with both methods are achieved on distinct landmarks with corner-like

characteristics, such as the eye or mouth corners or the nose tip. The

figure is best viewed in color

GRID SMUF

Fig. 10 Localization errors in the form of box and whiskers plots

achieved on the FRGCv2?UND dataset with the GRID and SMUF

landmarking techniques. Results are also presented for a cross-dataset

experiment, where the landmarkers are trained on the Bosphorus

datasets and are evaluated on the FRGV2?UND dataset. Lower

errors are again achieved on distinct landmarks. The methods

generalize well to novel datasets with the median errors for the

cross-dataset experiment being only slightly larger than for the

within-dataset experiments for the majority of landmarks. The

figure is best viewed in color
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landmarks, except the chin tip where the difference

between mean errors is larger. We presume that the high

mean error for the chin tip comes from the increased

appearance variability caused by the face detection pro-

cedure needed for the FRGCv2?UND data. (see Fig. 12g).

Since such variability is not present in the training set from

the Bosphorus dataset, the landmarking procedures cannot

learn to accommodate for the inaccuracies of the face

detector. In terms of comparison of GRID and SMUF, we

see no significant difference in their performance in these

experiments.

4.6 Qualitative evaluation

In this section, we qualitatively assess the landmarking per-

formance of the proposed landmarking methods. Figures 11

and 12 show exemplar face images from the Bosphorus and

UND datasets with localized landmarks marked by red dots.

The top rows of both figures contain samples with typical

localization performance, where we can see that the method

possesses stable performance in the presenceof different types

ofvariability, suchas expressions, partial occlusions, andhead

rotations.However, there are some caseswhere landmarks are

poorly localized. Such samples with large localization errors

are exposed in the second rows of Figs. 11 and 12, e.g., large

occlusions of face areas (Fig. 11k, l) can cause increased

localization errors of visible landmarks. Some of the local-

ization errors originate frompoor face detection and cropping,

where an image can contain also non-head regions (Fig. 12e,

g) or parts of the face area are cropped out (Fig. 12f). Mis-

selected descent maps can also be the cause of landmark

localization errors (Fig. 11o, p, h).

4.7 Computational cost

In the last series of the experiments, we evaluate the time

needed by the GRID and SMUF methods to localize

landmarks on a single test image on average. We compute

the average processing time over 100 randomly selected

test images from the Bosphorus dataset. The size of the

input images is 250� 200 and we compute the locations of

all 22 landmarks during the benchmark. A PC with the

following specifications is used for the assessment: Intel

Xeon CPU 2.67 GHz with 12 GB RAM. Both landmarking

techniques are implemented using Matlab, run entirely on

(a) GRID (b) SMUF (c) GRID (d) SMUF

(e) GRID (f) SMUF (g) GRID (h) SMUF

Fig. 12 Exemplar landmark detection results on the UND and

FRGCv2 datasets: the first row depicts test images with typical

localization performance, while images from the second row are

selected among the worst samples measured by the localization error

(a) GRID (b) SMUF (c) GRID (d) SMUF (e) GRID (f) SMUF (g) GRID (h) SMUF

(i) GRID (j) SMUF (k) GRID (l) SMUF (m) GRID (n) SMUF (o) GRID (p) SMUF

Fig. 11 Exemplar landmark detection results on the Bosphorus

database: the first row depicts randomly chosen test samples (a–h),
while the second row includes samples with high localization errors

due to expressions (i, j), occlusions (k, l), head rotations (m, n), and
incorrectly selected descent maps (o, p)
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CPU and could be further sped up if implemented with a

compiled language such as C/C??. We start from detected

and localized face regions and measure the time for feature

extraction, DM selection, and location updates, which take

less than 3� 10�2 s for SMUF (see Fig. 13) and little less

than 8� 10�2 s for GRID. When compared to hand-crafted

features, the learned binary features can be extracted

almost 3 times faster than HOG features and 15 times faster

than LBP features.

5 Conclusion and future work

We have presented two approaches to facial landmark

localization from 3D face images, GRID, and SMUF, that

are robust to rotations, facial expressions, and partially also

to occlusions. We proposed a gating mechanism that

allowed us to incorporate multiple pose-specific land-

marking models (based on HOG features) into the align-

ment procedure and also developed a simultaneous descent

map and binary feature learning algorithm around the

proposed gating mechanism. To assess performance, we

evaluated the developed landmarking techniques on three

challenging datasets, containing 3D face images with large

head rotations. Our results showed that the proposed

solutions exhibit high robustness to different types of

appearance variations and display competitive performance

when compared to the state-of-the-art. Both of the pro-

posed approaches need only a fraction of second to com-

pute the landmarks on a given face image and could run in

real time in combination with a suitable 3D sensor. Both

methods exhibit a comparable performance, with a slight,

although not statistically significant, advantage of GRID

over SMUF. Therefore, in the case when fast processing

times are required, it is preferable to use SMUF.

As a part of our future work, we plan to combine the

proposed landmarking methods with face frontalization (or

pose correction) procedures and incorporate all developed

methods into pose-invariant 3D face recognition systems.
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