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Abstract The effective modelling of high-dimensional data
with hundreds to thousands of features remains a challenging
task in the field of machine learning. This process is a manu-
ally intensive task and requires skilled data scientists to apply
exploratory data analysis techniques and statistical methods in
pre-processing datasets for meaningful analysis with machine
learning methods. However, the massive growth of data has
brought about the need for fully automated data analysis
methods. One of the key challenges is the accurate selection
of a set of relevant features, which can be buried in high-
dimensional data along with irrelevant noisy features, by
choosing a subset of the complete set of input features that
predicts the output with higher accuracy comparable to the
performance of the complete input set. Kohonen’s self-
organising neural network map has been utilised in various
ways for this task, such as with the weighted self-organising
map (WSOM) approach and this method is reviewed for its
efficacy. The study demonstrates that the WSOM approach
can result in different results on different runs on a given
dataset due to the inappropriate use of the steepest descent
optimisation method to minimise the weighted SOM’s cost
function. An alternative feature weighting approach based
on analysis of the SOM after training is presented; the pro-
posed approach allows the SOM to converge before analysing
the input relevance, unlike the WSOM that aims to apply
weighting to the inputs during the training which distorts the
SOM’s cost function, resulting in multiple local minimums
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meaning the SOM does not consistently converge to the same
state. We demonstrate the superiority of the proposed method
over the WSOM and a standard SOM in feature selection with
improved clustering analysis.

Keywords Clustering - Self-organising neural network map -
Feature selection - Automation

1 Introduction

Clustering is one of the most widely used data analysis
methods for numerous practical applications in emerging
areas [1]. Clustering entails the process of organising ob-
jects into natural groups by finding the class of objects
such that the objects in a class are similar to one another
and dissimilar from the objects in another class [2]. A
clustering algorithm usually considers all input parameters
in an attempt to learn as much as possible about the given
objects.

The self-organising neural network map (SOM) by
Kohonen [3] has been widely used as one of the most suc-
cessful clustering methods with strong data exploration and
visualisation capabilities [4]. The SOM’s mapping preserves
a topological relation by maintaining neighbourhood relations
such that patterns that are close in the input space are mapped
to neurons that are close in the output space and vice-versa.

One of the biggest drawbacks of the SOM algorithm is
its inability to automatically identify the features that are
relevant for analysis and discard the irrelevant inputs that
negatively distort the analysis result [5]. In an attempt to
resolve this, researchers [6—8] have worked on the im-
provement of the algorithm by a feature weighting meth-
od during training with the application of the steepest
descent optimisation method for the identification of
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important inputs for clustering (WSOM, weighted self-
organising map). The core of the weighted method lies
in attempting to describe the contribution of each feature
in the clustering algorithm in order to improve the clus-
tering result.

This paper investigates the application of an existing
weighted method approach (WSOM) and proposes an alter-
native approach for identifying the key features in a number of
artificially produced datasets and the real world dataset used in
the original WSOM study [6—8]. The study demonstrates how
information on what the learning algorithm has learnt can be
used to identify what is important for the learning, and there-
fore applied to improve the algorithm’s ability to correctly
classify and identify patterns in the data.

2 Neural network clustering methods
2.1 Self-organising neural network map

The self-organising neural network map (SOM) is an unsu-
pervised artificial neural network learning method trained to
produce a low-dimensional representation of high-
dimensional input samples [4].

A typical SOM consists of the computational layer (map)
and the input layers as shown in Fig. 1.

The input layer comprises of the source nodes representing
the sample’s features/attributes. There are as many weights for
each node as there are number of features (dimensions) in the
input layer, represented in the form of an input vector, i.e.
x= [x,»l, xiz, ,x,»d] for an input sample where d denotes
sample dimensions and i the sample number and »n denoting
the total number of samples.

The computational layer (map) consists of neurons placed
in nodes of a 2-dimensional grid (lattice); each neuron is iden-
tified by its index position, i.e. j, on the map and associated
with a weight vector, i.e. Wy={w;;:j=1, ...,mi=1, ...,
d} , the size of which is equal to the dimension of the input
vector. The set of weights W parameters are determined by
iteratively minimising the cost function below;

W ’

N 2
R(C, W) = ; et P | (1)

=1

At every nth training step, the Gaussian neighbourhood
function is calculated for the map; this is expressed as:

5.
Ky ) = a(n)e 9 Je (a) )
et ) ( 20(n)2> (2)

Where
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Fig. 1 A 2-dimensional self-organising map architecture

* Kjc () (n) 1s the neighbourhood function between each
unit (j) on the map and the winning unit ¢ (x;) at the nth
training step

*  Jjc (x) is the distance (Euclidean) from the position of unit
(7) to the winning unit ¢ (x;) on the map.

* o(n)istheeffective width ofthe topological neighbourhood
at the nth training step; this serves as the moderator of the
learning step during training iterations. The size of the ef-
fective width shrinks with time to facilitate the convergence
ofthe map.

* «(n) is the learning rate that depends on the number of
iterations (7); this is initialised to a value of around 0.1
which decreases from o, t0 Qpin.

It is possible to use the results of a trained SOM in order to
estimate the relevance of feature variables (weights). This is
achieved by the use of the quantization error method [9] which
is used to analyse the final result of the standard SOM for the
identification of the features that were relevant during training.

3 Related work

Irrelevant input features are one of the major factors that
distort the ability of learning algorithms for pattern recog-
nition in data, as investigated by [10-13]. Numerous re-
searchers have proposed feature selection methods for
identifying and selecting the most important inputs in a
data that best maximises the performance of learning al-
gorithms [14—16] and can be categorised into filter, wrap-
per and embedded methods.

Filter methods aim to use statistical approaches to iden-
tify what inputs are important and are independent of the
classifier, usually applied in the data pre-processing stage
prior to training. Some of the commonly used filter
methods include the RELIEF algorithm [17], correlation-
based feature selection (CFS) [18], fast correlated-based
filter (FCBF) [19] and the INTERACT [20] methods.
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These are further discussed and compared by [21]. Other
filter methods include mutual information [22] and
Pearson’s correlation coefficient scores [23]. Recently, hy-
brid methods are introduced; these combine the filter
methods with a wrapper method for feature selection; some
examples of such methods are presented by [24, 25].

Wrapper methods unlike filter methods aim to identify
important inputs by searching for the best subset of fea-
tures that produce the highest model classification accu-
racy. Commonly used wrapper methods include the recur-
sive feature elimination method (RFE) [26] and exhaus-
tive search and greedy forward search methods discussed
in [27, 28]. Improvements to the above-discussed methods
are reviewed and discussed by [29]. Recently emerged
wrapper methods include polygon-based cross-validation
(CV) with SVM method [30] and competitive swarm op-
timizer (CSO) [31].

The embedded methods learn about the importance of
inputs from the model’s training process and one of the
examples of this method is the weighted self-organising
map (WSOM) [8] that is investigated in this study. Other
methods include hold out SVM (HO-SVM) and kernel-
penalized SVM (KP-SVM) reviewed and discussed in [32].

4 Methodology

Most of the above methods require manual experimenta-
tion that consumes the bulk of the effort invested in the
entire clustering analysis, with the exception of the em-
bedded methods that identify important inputs from what
the model has learnt. These latter methods are the area of
focus in this study which aims to achieve the goal of a
fully automated clustering process. We are particularly
interested in the use of the self-organising map for auto-
mated feature selection due to its powerful topology pres-
ervation property, with the neighbourhood function
(Eq. 2) that enables the SOM to not only group the data
but also illustrates the underlying structure of the data for
visualisation. As discussed in [33], the SOM has been
widely applied especially for complex and high-
dimensional datasets where traditional clustering methods
are insufficient.

4.1 SOM weights analysis with quantization error method

On completion of SOM training which is achieved using
the batch training method [3], the node weights values are
expected to be the representation of their matching input
samples, and also relatively close to the input samples
mapped to their neighbouring nodes and relatively far
from the input samples mapped to distant nodes.

Let M; be set of the training samples x; mapped to node ,
and the quantization error for node j is calculated after SOM
training as follows:

E; = Sy |w | 3)

The weight features with the lowest quantization error
are expected to be the features whose corresponding input
sample features are most relevant when comparing the
samples against their winning nodes. A further analysis
was carried out on the quantization error values for all
the node weights in order to automatically separate the
group of the relevant inputs from the irrelevant inputs, a
parametric statistical test with median split was carried
out on the quantization error values to differentiate the
group of high values (as irrelevant features) from the
group of low values (as relevant features). Since there is
no reliance on a hard-coded threshold value to determine
irrelevant and relevant features, this means that this step
could be used for any amount of data features and results
in a fully automated step for this aspect of the process.

4.2 Weighted self-organising neural network map

The weighted SOM (WSOM) function proposed by [8] is
another method designed to compute the relevance of fea-
ture variables (weights) automatically during the training
process. This approach entails the use of additional ran-
dom weights that are multiplied by the input weights as a
metric for measuring the relevance of the observations
during training, and since the comparison is done one
sample at a time, the updating method for the WSOM is
incremental rather than batch as in the standard SOM.

Let RY be the Euclidean data space and E={ x;i=1,

..., N} a set of observations, where each observation x; = (x-

Lox? . x) s avectorin R4

Each node j has prototype weights w;=(w,', w?, ...,
w,d), and a single random weight is assigned to for each input
attribute such that; 7;= (7, 75, ... 7).

This method attempts to find the relevance of all the
weights of a single vector which are applied against the
whole set of input weights but is not able to determine the
relevance of an individual weight of each node j in a
trained SOM.

The set of weights W and 7 parameters are determined by
iteratively minimising the cost function as follows:

/v
Rowo(C, W, ) = 3

et [ ma®xi—w|’ (4)
i=1 j=

The cost function R,,,, ( W, 7) is as described in Eq . 4. The
algorithm is optimised by finding the min W, 7 Rgy ( W, 7).
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The process begins by initially starting with some random values
for W, w then these values are modified in order to
reduce R,,,, ( W, 7), until the minimum of the cost function is
reached.

The method uses the steepest descent algorithm in order to
optimise its cost function;

{

0
R; = R‘,—aﬁRng(W, m) (For j=W and j=m) (5)
J

}

The gradient descent minimization of the function can be
implemented as;

win+1):

= w; (1) =(n)=a(1) K c() (1) () (W~ @)
(6)

me(n+1):

= g (n)=(n)=c(n)Kj o) (M) o) Xi(Te®Xi~W))

(7)

The steepest descent algorithm which is utilised by the
WSOM method searches for the minimum of a function
by computing the gradient of the function, starting at a
random point Py, and moving from P; to P;,; in the
direction of the local downhill gradient —VAP;) for each
iteration of line minimization.

The steepest descent method is guaranteed to find a
solution for quadratic functions, which are convex-
shaped functions with a single minimum that is equal to
the global minimum [34] (as illustrated in Fig. 2). For
problems beyond quadratic functions with multiple local
minimums (such as Schwefel function, Fig. 3), the gradi-
ent descent finds the solution of a function based on the
first identified local minimum and ignores other local
minimums, and does not necessarily and cannot be guar-
anteed to find the global minimum of the given function.
It is therefore important to confirm that the cost function
for the WSOM method results in a single global minimum
that can be found by the steepest descent approach.

For a full description of the WSOM process, the reader
is directed to [7, 8]. In the WSOM approach, the rele-
vance of an input vector is indicated by the global weights
with irrelevant vectors having global weights close to 0
and relevant vectors having global weights different from
0. The relevance of an input vector can be measured by
this method only if the given data features are normalised
to the same scale.
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Fig. 2 Steepest decent method for a quadratic functions

5 Experiment
5.1 Synthetic datasets

In order to assess the efficacy of the WSOM method against a
standard SOM implementation, a number of synthetic datasets
were developed which had different features, starting with a
simple dataset with a small number of attributes and moving
to datasets with a larger number of inputs and additional noise.
All data sets had equal class distribution (i.e. same number of
samples for each class), and normalised, with the exception of
Synthetic Data04 and Synthetic Data05. These datasets are
discussed more fully in the tables. The use of synthetic data
rather than real data sets of this type is very important as it
allows a full assessment of how well the techniques work and
what type of problems they can solve, and where they may
encounter difficulties if any.

In addition, the dataset used in the original WSOM paper
was obtained which is a real world dataset of waveform data
and is also described in Table 1.

5.2 Experiment design

As both methods rely on a random process, the performance
of'the algorithms was measured based on results of 10 runs for
each of the methods on the synthetic datasets, and the results
of these runs are shown in Tables 2, 3, 4, 5, 6 and 7.

However, in order to check whether the weighted SOM
cost function (Eq. 4) for Synthetic Data01 is a quadratic func-
tion, to be suitable for the steepest descent optimization ap-
proach, the cost function was optimised with the simulated
annealing algorithm on Synthetic Data01; a stochastic search
method that aims to expose all possible minimums of the
function by random search in space, with initial
temperature (7,)=10.0 , cooling rate () =0.99 and maxi-
mum iteration (Maxtime) = 1000.
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Fig. 3 Problems beyond
quadratic functions, Schwefel
function [35]

If a cost function has a single global minimum, the best
combination of weight values for different runs of the algo-
rithm will be expected to be within the same region and to
have a positive linear correlation when compared against each
other. Otherwise, if the cost function has multiple local mini-
mums, then the best combination of weight values would be in
different regions for different runs of the algorithm and will
not be correlated.

The normalised correlation matrix of the final weights from
the simulated annealing algorithm was computed to show the
similarity of the weights produced from six runs of the algo-
rithm against each other; the same experiment was carried out
on the standard SOM cost function for comparison.

When undertaking the correlation analysis for the WSOM
method, the raw SOM weights cannot be used directly but
must be divided by the corresponding global weights 7. This
step is required since the global weights and WSOM node
weights are linked as described in the cost function, and it is
possible due to the random nature of the process that different
values could be arrived at for these variables whilst still map-
ping against similar input samples and the node weights could
therefore be different from one run to the next.

In addition, the problem with direct comparison of weights
at the same index for the six different simulated annealing runs
is that nodes are not necessarily localised to a specific index.
In a single run, a node might appear in the first index, whilst in
a separate run, the same node might appear in a different
index. As such, direct comparison of the weights infers the
comparison of random unrelated nodes, which are most likely
to be not correlated at all times.

To overcome this problem, the indexes of all the nodes
weights was re-arranged to correspond to the best matching
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positions for all the nodes from the six different simulated
annealing runs before carrying out the correlation test on the
weights.

Let E be set of weight values for a given SOM run
(wWisn=1,...N ), were N is the total number of weights and
Wis set of weight values for other SOM runs to total a number
of SOM runs R. The index position / of a node in a given SOM
when compared against the SOM with weight values E is
computed as Eq. 8. For completeness, this was executed for
all the SOM runs.

e .4
1= Zl 21 min |‘vvj1—w{n’|2 (8)

A null hypothesis test Ho : p=0 was conducted with 0.5
significance level to investigate the relationship between the
final node weights (i.e. to see if they are correlated or not).
Nodes are correlated if their correlation coefficient is different
from zero, and therefore means there is linear relationship
between the nodes. There is no correlation for nodes with
correlation coefficients close to zero.

6 Results

The analysis of the correlation results can be seen in Figs. 4
and 5 where the bars in the plot represent the correlation co-
efficients values p for a given run of the self-organising pro-
cess compared against another on Synthetic Data01. The red
line on the plots at 0.5 and —0.5 indicate the respective
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Table 1  Synthetic and real datasets definition

Dataset name Samples

Input features Classes

Synthetic_Data01 100
(Normalised)

4 5

All classes defined by first 4 related features.

This is a simple dataset with no irrelevant inputs and outliers,
created mainly for exploring the cost functions of the two

self-organising algorithms.
Synthetic_Data02 1220
(Normalised)

Irrelevant features: 5, 6, 7

7 5

All classes defined by first 4 related features.

Irrelevant inputs are clearly separated from the relevant
inputs for easy identification by the algorithms.

Synthetic_Data03 1220
(Normalised)

10 5

Classes defined by features independently with equal distribution.

Classl =1,2,& 3,Class2=4,5,& 6,Class3=2,3,4 &5,
Class4 =6, 7, & 8, Class5 = 1, 4, & 8. Noise features;

features 9 & 10

In addition to Synthetic Data02, the definition of classes
was distributed among variables, to identify the
self-organising method’s ability to identify the degree
of relevance of the input features for classification.

Synthetic_Data04 1220
(Normalised)

9 5

Classes defined by features independently with unequal distribution.

Class1 (550 samples) = 1,2, & 3, Class2 (300 samples) = 1, 2, & 3,
Class3 (200 samples) = 2, 4, & 5, Class4 (100 samples) =
1, 3,5, & 6, Class5 (70 samples) = 1,3,4, & 7, Noise features;

features 8 & 9

Synthetic_Data05 1220
(Unnormalised)

Irrelevant features: 5, 6, 7

7 5

All classes defined by first 4 related features.

This dataset was created to evaluate the self-organising system’s
performance in identifying irrelevant inputs from
unnormalised datasets having features of unequal variance.

WaveForm dataset 5000
(Normalised)

40 3

As described by [36] the first 21 inputs of the waveform data

describe the classes, the latter 19 are completely irrelevant noise
features with mean 0 and variance 1. More details can be
found from the UCI repository online. No information is
provided on which inputs out of the first 21 describe each class.

boundaries for positive and negative correlations, with no cor-
relation shown at or around 0.

The bars above the red line indicate the pairs of node
weights with correlations significantly different from 0,
which implies that there is a significant linear relationship
between the weights of the various runs (i.e. the SOM
weights are broadly equivalent and the values can be said
to be the same). On the other hand, the bars below the line
indicate the pairs of node weights with a correlation co-
efficient that is not significantly different from 0, which
implies that there is no significant linear relationship be-
tween the weights (i.e. the SOM weights are not the same
and contain different values).

The correlation matrix for the standard SOM (Fig. 4)
weights shows that almost all pairs of weights (4 out of 6)

@ Springer

have correlations significantly different from zero which
proves positive correlation among weights. On the other
hand, the correlation matrix for the weighted SOM
(Fig. 5) shows that only two out of the six weights are
correlated, which indicates that this method has resulted
in different solutions being found.

In summary, it can be concluded that the simulated
annealing algorithm with the standard SOM cost function
finds similar solutions in the majority of the different
runs. On the other hand, the algorithm with the weighted
SOM cost function finds different solutions for most of
the runs, which is most likely to be as a result of multiple
local minimums in the cost function.

The results given in Tables 2, 3, 4, 5 and 6 for the five
synthetic datasets and the real world waveform dataset
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Table 2 Performance of

clustering methods on Synthetic Clustering Synthetic_Data01

Data0l
Training Map dimension, 3 x 3 rectangular grid topology
parameters Training epochs, 1000

Learning rate, 0.1

Weighted SOM Standard SOM
RUNS Identified  Correct Correct Identified  Correct Correct

important  classes classes important  classes classes

inputs found found attributes  fyng found

(all inputs) (selected (all inputs) (selected
inputs) inputs)

Run 1 1/4 1/5 0/5 4/4 5/5 5/5
Run 2 1/4 1/5 0/5 4/4 5/5 4/5
Run 3 1/4 1/5 1/5 4/4 5/5 5/5
Run 4 1/4 2/5 1/5 4/4 5/5 5/5
Run 5 2/4 1/5 2/5 4/4 4/5 5/5
Run 6 1/4 0/5 0/5 4/4 5/5 5/5
Run 7 1/4 1/5 0/5 4/4 5/5 5/5
Run 8 1/4 0/5 1/5 4/4 5/5 5/5
Run 9 1/4 2/5 1/5 4/4 5/5 5/5
Run 10 1/4 0/5 0/5 4/4 4/5 5/5

show the performance of the two methods in identifying  parameters used. On completion of the classification after
the important attributes and whether classes were correct-  training with all inputs, the inputs identified by the re-
ly classified. The tables also give details of the training  spective feature selection method was applied to the

Table 3 Performance of

clustering methods on Synthetic ~ Clustering Synthetic_Data02

Data02
Training Map dimension, 3 x 3 rectangular grid topology
parameters Training epochs, 1000

Learning rate, 0.1

Weighted SOM Standard SOM
RUNS Identified  Correct Correct Identified  Correct Correct
important  classes classes important  classes classes
inputs found found attributes  goung found
(all (selected (all (selected
inputs) inputs) inputs) inputs)
Run 1 1/4 0/5 0/5 4/4 2/5 5/5
Run 2 0/4 0/5 - 4/4 1/5 5/5
Run 3 2/4 1/5 2/5 4/4 2/5 5/5
Run 4 1/4 0/5 1/5 3/4 1/5 4/5
Run 5 2/4 0/5 1/5 4/4 1/5 5/5
Run 6 3/4 1/5 1/5 4/4 2/5 5/5
Run 7 1/4 1/5 1/5 4/4 3/5 5/5
Run 8 2/4 0/5 2/5 4/4 2/5 5/5
Run 9 0/4 0/5 - 4/4 3/5 5/5
Run 10 1/4 0/5 1/5 4/4 2/5 5/5
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Table 4 Performance of

clustering methods on Synthetic Clustering Synthetic_Data03

Data03
Training Map dimension, 3 x 3 rectangular grid topology
parameters Training epochs, 1000

Learning rate, 0.1

Weighted SOM Standard SOM
RUNS Identified  Correct Correct Identified  Correct Correct
important  classes classes important  classes classes
inputs found found attributes  foyng found
(all (selected (all (selected
inputs) inputs) inputs) inputs)
Run 1 0/8 0/5 - 2/8 3/5 2/5
Run 2 0/8 0/5 - 4/8 1/5 3/5
Run 3 1/8 1/5 0/5 2/8 1/5 2/5
Run 4 0/8 0/5 - 3/8 0/5 2/5
Run 5 1/8 0/5 0/5 1/8 1/5 1/5
Run 6 2/8 0/5 1/5 1/8 0/5 1/5
Run 7 1/8 1/5 1/5 5/8 1/5 4/5
Run 8 1/8 0/5 0/5 1/8 2/5 2/5
Run 9 0/8 0/5 - 2/8 1/5 2/5
Run 10 1/8 0/5 0/5 2/8 1/5 2/5

dataset so that input samples were remapped to the trained  been identified correctly, then it is assumed that the clas-
weights with only the selected inputs. If the features have  sification of the samples would remain the same. The

Table 5 Performance of

clustering methods on Synthetic Clustering Synthetic_Data04

Data04
Training Map dimension, 3 x 3 rectangular grid topology
parameters Training epochs, 1000

Learning rate, 0.1

Weighted SOM Standard SOM
RUNS Identified  Correct Correct Identified  Correct Correct
important  classes classes important  classes classes
inputs found found attributes  foyng found
(all (selected (all (selected
inputs) inputs) inputs) inputs)
Run 1 2/7 1/5 1/5 4/7 3/5 2/5
Run 2 1/7 1/5 0/5 4/7 2/5 3/5
Run 3 177 1/5 0/5 2/7 1/5 1/5
Run 4 1/7 1/5 0/5 4/7 4/5 2/5
Run 5 177 1/5 0/5 317 2/5 2/5
Run 6 0/7 0/5 - 4/7 2/5 3/5
Run 7 2/7 1/5 1/5 4/7 2/5 3/5
Run 8 1/7 1/5 0/5 2/7 1/5 1/5
Run 9 1/7 1/5 0/5 2/7 1/5 1/5
Run 10 1/7 1/5 0/5 4/7 2/5 3/5
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Table 6 Performance of

clustering methods on Synthetic Clustering Synthetic_Data05

Data05
Training Map dimension, 3 x 3 rectangular grid topology
parameters

Training epochs, 1000

Learning rate, 0.1

Weighted SOM Standard SOM
RUNS Identified Correct Correct Identified  Correct Correct
important classes classes important  classes classes
inputs found found attributes  fong found
(all (selected (all (selected
inputs) inputs) inputs) inputs)
Run 1 2/4 0/5 1/5 3/4 3/5 5/5
Run 2 0/4 0/5 - 4/4 2/5 5/5
Run 3 1/4 1/5 2/5 4/4 2/5 5/5
Run 4 1/4 0/5 1/5 4/4 2/5 5/5
Run 5 1/4 0/5 2/5 4/4 2/5 5/5
Run 6 0/4 1/5 - 4/4 2/5 5/5
Run 7 2/4 1/5 0/5 4/4 2/5 5/5
Run 8 1/4 1/5 1/5 4/4 2/5 5/5
Run 9 0/4 1/5 - 4/4 3/5 5/5
Run 10 1/4 1/5 0/5 3/4 2/5 5/5

remapping of input samples was achieved by only  weights. Classes are identified if at least 60% of class
recalculating the best matching units (BMUs) [3] for the = samples from the input samples belonging to the same
selected features against their corresponding node  class are mapped to the same node.

Table 7 Performance of -
clustering methods for waveform Clustering waveform data
data

Training parameters Map dimension, 26 x 14 rectangular grid topology
Training epochs, 1000

Learning rate, 0.1

Weighted SOM Standard SOM
RUNS Identified Correct Identified Correct Correct
important classes important classes classes
inputs found attributes found found
(selected (all (selected
inputs) inputs) inputs)
Run 1 2/20 1/3 18/20 1/3 2/3
Run 2 9/20 1/3 18/20 1/3 3/3
Run 3 19/20 2/3 15/20 2/3 2/3
Run 4 11/20 1/3 18/20 1/3 3/3
Run 5 5/20 1/3 18/20 1/3 3/3
Run 6 19/20 2/3 18/20 2/3 2/3
Run 7 15/20 2/3 19/20 1/3 3/3
Run 8 2/20 1/3 18/20 1/3 2/3
Run 9 16/20 2/3 17/20 1/3 2/3
Run 10 11/20 1/3 18/20 1/3 3/3
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Fig. 4 Correlation matrix for
multiple runs of standard SOM on

Run 1 against others
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7 Discussion and conclusions

As seen in Table 2, the standard SOM was able to correctly
identify all the classes in most of the runs for simple data with
no irrelevant inputs and was also able to identify all inputs as
important due to low quantization error between weights to
their mapped input samples. Unlike the standard SOM, the
weighted SOM failed to identify the classes for the same sim-
ple data set with no irrelevant inputs. The weighted SOM
method also performed poorly by failing to correctly identify
clusters and differentiate the relevant input vectors from the
irrelevant input vectors on the Synthetic Data02. However,
the standard SOM with quantization error method after train-
ing clearly identified the relevant vectors for the training on
this dataset. Both methods performed poorly in correctly iden-
tifying the clusters in the data as the result of the influence of
the irrelevant inputs during the training.

For the more complicated dataset with overlapping class
definition (Synthetic Data03 and Synthetic Data04), the
analysis of the standard SOM’s training result with the quan-
tization error also failed to identify what was important for the
training, as presented in Tables 4 and 5.

As discussed in Section 4.2, the steepest descent algorithm
is guaranteed to find the local minimum for quadratic func-
tions with a single global minimum, whereas for functions

@ Springer
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with multiple local minimums, the gradient descent finds the
solution of the function based on the first identified local min-
imum ignoring other local minimums, and therefore is not
suitable for the proposed WSOM cost function as our results
clearly demonstrate that multiple minimums exist in the solu-
tion space defined by the WSOM cost function.

As seen from the performance of methods on
Synthetic_Data03 and Synthetic Data04, identifying feature
relevance based on classification results of the SOM does not
provide good results when the SOM has not classified the
samples correctly. The results also show that complete remov-
al of the identified irrelevant input features produces worse
class identification as shown in runs 1 and 4 in Table 5. This
demonstrates the importance of identifying feature relevance
based on class or at node level rather than a global SOM
analysis and suggests the use of techniques that reduce the
importance of identified irrelevant inputs rather than
completely removing them.

A further experiment on the WSOM method with the
WaveForm data that was used in the original WSOM paper
has revealed that the method is able to group the dataset oc-
casionally (i.e. at some random iteration) during multiple runs,
but that other runs show a different set of weightings with a
different solution. This provides further evidence to support
the conclusion reached of multiple local minimums in the
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Fig. 5 Correlation matrix for
multiple runs of weighted SOM
on Synthetic Data01

Run 1 against others
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method’s cost function. The same SOM size of 26 X 14 as
used by [8] was used for comparison. These results indicate
that the WSOM method should be used with caution and that
multiple runs may be required depending on the underlying
data set in order to ensure that the optimal results are found. In
practice, it may be difficult to know when these have been
obtained making the use of this method problematic.

The quantization error between the weight values and their
matched classified input samples shows more potential for
identifying important features; however, these results show
that this approach will only work for certain types of data.
One of the limitations of the proposed method is its inability
to correctly identify irrelevant inputs for a SOM with inappro-
priate topology size and having highly misdiagnosed classes
(i.e. multiple classes mapped to a single node). This implies
the requirement for an incremental system with the ability to
automatically adjust the SOM’s topology size during training,
to allow the spread of class samples across nodes for more
accurate input relevance analysis. It is also interesting to note
for some of the synthetic datasets that the quantization method
correctly identifies the important features despite not being
able to correctly classify the groupings in the data. This sug-
gests the need for an additional layer that uses the relevance

2

A
3 4 6 1 2 3 4 5

Runs of weightedSOM

information from the feature selection method to prune or
suppress the irrelevant features and guide the remapping of a
self-organising system with the relevant features for a higher
clustering performance to achieve a fully automated clustering
process, and this will be the subject of future work.

Compliance with ethical standards

Contflict of interest
interest.

The authors declare that they have no conflict of

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Tajunisha S, Saravanan V (2010) Performance analysis of k-means
with different initialization methods for high dimensional data 1:44-52

2. Aggarwal CC, Reddy CK (2013) Data clustering: algorithms and
applications. CRC Press

@ Springer



328

Neural Comput & Applic (2018) 29:317-328

11.

12.

14.

15.

16.

18.

19.

20.

Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464—
1480

Yin H (2008) The self-organizing maps: background, theories, ex-
tensions and applications. In: Anonymous Computational intelli-
gence: A compendium, Springer, pp 715-762

Shafreen Banu A, Ganesh SH (2015) A study of feature selection
approaches for classification: 1-4

De Carvalho, FAT, Bertrand P, Simdes EC (2015) Batch SOM
algorithms for interval-valued data with automatic weighting of
the variables. Neurocomputing

Mesghouni N, Temanni M (2011) Unsupervised double local
weighting for feature selection 1:413-417

Grozavu N, Bennani Y, Lebbah M (2009) From variable weighting
to cluster characterization in topographic unsupervised learning
1005-1010

De Bodt E, Cottrell M, Verleysen M (2002) Statistical tools to
assess the reliability of self-organizing maps. Neural Netw 15:
967-978

Liu H, Yu L (2005) Toward integrating feature selection algorithms
for classification and clustering. IEEE Trans Knowled Data Eng 17:
491-502

Dash M, Liu H (1997) Feature selection for classification 1:131—
156

Hua J, Tembe WD, Dougherty ER (2009) Performance of feature-
selection methods in the classification of high-dimension data.
Pattern Recogn 42:409-424

Kaushik A, Gupta H, Latwal DS (2016) Impact of feature selection
and engineering in the classification of handwritten text 2598-2601
VegaR, Sajed T, Mathewson KW, Khare K, Pilarski PM, Greiner R,
Sanchez-Ante G, Antelis JM (2016) Assessment of feature selec-
tion and classification methods for recognizing motor imagery tasks
from electroencephalographic signals 6:p37

Jiménez F, Jodar R, Martin MDP, Sanchez G, Sciavicco G (2016)
Unsupervised feature selection for interpretable classification in
behavioral assessment of children. Exp Syst

Kwak N, Choi C (2002) Input feature selection for classification
problems. IEEE Trans Neural Netw 13:143-159

Kira K, Rendell LA (1992) A practical approach to feature selection
249-256

Hall MA (1999) Correlation-based feature selection for machine
learning. Dissertation, The University of Waikato

Yu L, Liu H (2003) Feature selection for high-dimensional data: a
fast correlation-based filter solution 3:856-863

Zhao Z, Liu H (2007) Searching for interacting features. 7:1156—
1161

@ Springer

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Sanchez-Marofo N, Alonso-Betanzos A, Tombilla-Sanroman M
(2007) Filter methods for feature selection—a comparative study
178-187

Amiri F, Yousefi MR, Lucas C, Shakery A, Yazdani N (2011)
Mutual information-based feature selection for intrusion detection
systems 34:1184—1199

Guyon I, Elisseeff A (2003) An introduction to variable and feature
selection 3:1157-1182

Chuang LY, Ke CH, Yang CH (2016) A hybrid both filter and
wrapper feature selection method for microarray classification.
arXiv preprint arXiv:1612.08669. Dec 27

Apolloni J, Leguizamén G, Alba E (2016) Two hybrid wrapper-
filter feature selection algorithms applied to high-dimensional mi-
croarray experiments. Appl Soft Comput 38:922-932

Granitto PM, Furlanello C, Biasioli F, Gasperi F (2006) Recursive
feature elimination with random forest for PTR-MS analysis of
agroindustrial products. Chemometrics Intellig Lab Syst 83:83-90
Chandrashekar G, Sahin F (2014) A survey on feature selection
methods. Comput Electr Eng 40:16-28

Tang J, Alelyani S, Liu H (2014) Feature selection for classification:
a review 37

Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H
(2016) Feature selection: a data perspective

MalL, LiM, Gao Y, Chen T, Ma X, Qu L (2017) A novel wrapper
approach for feature selection in object-based image classification
using polygon-based cross-validation. IEEE Geosci Remote Sens
Lett 14(3):409-413

Gu S, Cheng R, Jin Y (2016) Feature selection for high-
dimensional classification using a competitive swarm optimizer.
Soft Computing pp 1-12

Maldonado S, Weber R (2011) Embedded feature selection for sup-
port vector machines: state-of-the-art and future challenges 304—
311

Tasdemir K, Merényi E (2009) Exploiting data topology in visual-
ization and clustering of self-organizing maps. IEEE Trans Neural
Netw 20:549-562

Gonzaga CC, Schneider RM (2015) On the steepest descent algo-
rithm for quadratic functions 1-20

Schwefel H (1977) Numerische optimierung von computer-
modellen mittels der evolutionsstrategie. Birkhduser, Basel
Switzerland

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees, the Wadsworth statistics and
probability series, Wadsworth international group, Belmont
California (pp 356)



	Application of feature selection methods for automated clustering analysis: a review on synthetic datasets
	Abstract
	Introduction
	Neural network clustering methods
	Self-organising neural network map

	Related work
	Methodology
	SOM weights analysis with quantization error method
	Weighted self-organising neural network map

	Experiment
	Synthetic datasets
	Experiment design

	Results
	Discussion and conclusions
	References




