
ORIGINAL ARTICLE

A CMAC-based scheme for determining membership
with classification of text strings

Heng Ma1 • Ying-Chih Tseng2 • Lu-I. Chen2

Received: 27 November 2012 / Accepted: 1 July 2015 / Published online: 10 July 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Membership determination of text strings has

been an important procedure for analyzing textual data of a

tremendous amount, especially when time is a crucial

factor. Bloom filter has been a well-known approach for

dealing with such a problem because of its succinct

structure and simple determination procedure. As deter-

mination of membership with classification is becoming

increasingly desirable, parallel Bloom filters are often

implemented for facilitating the additional classification

requirement. The parallel Bloom filters, however, tend to

produce additional false-positive errors since membership

determination must be performed on each of the parallel

layers. We propose a scheme based on CMAC, a neural

network mapping, which only requires a single-layer cal-

culation to simultaneously obtain information of both the

membership and classification. A hash function specifically

designed for text strings is also proposed. The proposed

scheme could effectively reduce false-positive errors by

converging the range of membership acceptance to the

minimum for each class during the neural network map-

ping. Simulation results show that the proposed scheme

committed significantly less errors than the benchmark,

parallel Bloom filters, with limited and identical memory

usage at different classification levels.

Keywords Membership determination � Classification �
Text string � Neural network

1 Introduction

Text strings are widely used as identifiers in our daily lives,

such as Internet access accounts and passwords, email

addresses, car license plates and credit cards, which are

also employed for coding parts, processes and products in

manufacturing systems as well as service industries. Such

identifiers are inevitably of great amounts since they are

used for the identification purpose and therefore identical

codes are not allowed. When a group of identifiers is

associated with a certain characteristic, it becomes imper-

ative to find out whether a random identifier belongs to this

group for some applications. For example, it is often

imminent to determine whether a car license plate is

actually a stolen car or whether an email address is a source

of commercial advertisements. In this paper, membership

refers to the status of whether a random identifier exists in a

group with a certain characteristic. Membership determi-

nation is an important procedure when a text string iden-

tifier is required to be a legitimate member of the

characteristic group, also referred to as the payload. The

procedure, however, could be a time-intensive task as the

payload is growing larger and larger, which is especially

significant when exact string matching methods [1] are

utilized, since they usually require a great deal of primary

memory space for storing the payload in a certain fashion

[2] or constructing auxiliary indexing mechanisms [3] for

the searching purposes. Therefore, it is considered as an

& Heng Ma

hengma@chu.edu.tw

Ying-Chih Tseng

d09903002@chu.edu.tw

Lu-I. Chen

d10303010@chu.edu.tw

1 Department of Industrial Management, Chung Hua

University, No. 707, Sec.2, WuFu Rd., Hsinchu, Taiwan

2 Ph.D. Program of Technology Management, Chung Hua

University, Hsinchu, Taiwan

123

Neural Comput & Applic (2016) 27:1959–1967

DOI 10.1007/s00521-015-1989-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1989-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1989-6&domain=pdf

impractical means to perform string matching for checking

membership because the computational complexity still

depends on the size of payload.

Bloom filter [4] has been successful in applications

requiring membership checking [5, 6] because a nearly

constant processing time could be achieved regardless of

the size of payload. The Bloom filter approach involves a

hashing process for transforming input strings into

addresses on a bit array, also referred to as the program-

ming phase, and a simple determination rule for checking

membership (i.e., the checking phase). In the programming

phase, all bits in the array are initially set to 0 and all the

bits addressed by the hashing process for all the strings in

the payload are turned to 1. The bit value remains 1 when it

is addressed by several strings. With such a process, it can

be realized that there are no false-negative errors in the

checking phase after the programming phase is completed

because a string is only considered as a member when all

the bits addressed by the string are 1. Figure 1 shows the

illustration with pseudocodes for both phases of Bloom

filter. False positives, however, are possible because a non-

member string could address to all the bits whose values

are 1. Such a situation is particularly significant when the

size of the bit array is insufficient, resulting in a high ratio

of ‘‘1’’ bits in the array, and thus, false positives could

often occur.

During the past decade, determination of membership

with classification or attribute has drawn researchers’

attention [7, 8] since it becomes increasingly desirable

when membership could accompany with class information

simultaneously. Normally, the class could represent a

number of basic attributes or features associated with that

string identifier, such as a car’s build, make and color with

the license plate numbers and someone’s usage history

with his/her email addresses. The classes could be in an

integer form for one particular attribute or a combination of

multiple attributes. Membership with class determination

could greatly reduce additional procedures and bandwidth

for accessing database on the service machine for retriev-

ing those attributes of interest once the membership is

identified as positive. In the literature, parallel Bloom fil-

ters (PBFs) were often implemented to deal with this

problem [9, 10], where each layer represents a different

class and membership checking must be performed on all

the parallel layers. When only one layer is identified as

positive membership, the associated attributes assigned to

that layer are also recognized. However, since the Bloom

filters are inherently accompanied with a certain rate of

false-positive errors, as analyzed in [11], the rate could be

multiplied with the parallel architecture because a query

string must pass through all the layers for checking its

membership. In [12], the hierarchical Bloom filters (HBFs)

were developed for characterizing payload attribution in

network environments. In a sense, the HBF structure is

composed of a number of blocked Bloom filters that could

provide probabilistic answers to membership queries on the

excerpts of payloads; nevertheless, multilayer calculations

for membership decision are still required.

More recently, efforts have been made in an attempt to

optimize key performance criteria of Bloom filter, such as

query overhead, memory usage and false-positive ratio, by

using alternatives of the bit array or designing specific data

structures. For example, the binary bits were extended to

state symbols for implementing a state machine for

dynamic flows in networking [16]. Besides state symbols,

multi-bit words were also employed as an auxiliary array,

where membership could be determined in only a small

number of memory accesses [21]. Taking reducing mem-

ory access into account, a collision-free hashing scheme

was developed on discriminative Bloom filters to speed up

the lookup process [20]. A combinatorial Bloom filter was

proposed using multiple sets of hash functions to code an

input element into a binary array as the group identity of

the element. This approach, utilizing only a single-bit

array, is capable of achieving membership determination

with classification by using a considerable amount of hash

For each x in payload

BitArr[h(x)] 1

x h()

1
0
0

0
0
0

0
0
0

0
0

0
0

1

1

1

If existed BitArr[h(y)]=0 return false

else return true

y h()

1

0

0
0
0

0
0
0

0

0

1

1

1

1

1

1

False

(a) (b)Fig. 1 Illustration of Bloom

filter with pseudocodes.

a Programming phase,

b checking phase

1960 Neural Comput & Applic (2016) 27:1959–1967

123

functions [19]. Classification is so important in network

applications; in [17], multiple Bloom filters were imple-

mented as a packet classifier, where a multitier configura-

tion was proposed to increase the throughput. As far as

lowering false positives is concerned, it has been recog-

nized as a trade-off between the size of the bit array and the

false-positive ratio. A locality-sensitive Bloom filter was

proposed, where the hashing functions were configured

accordingly for improving the false-positive ratio of

approximate membership query [18]. An architecture for

reducing the false-positive rate was proposed in [22],

where a great number of false positives on the main Bloom

filter in a reasonable size can be recognized by the

implementation of the cross-checking Bloom filters.

To avoid multilayer membership checking for deter-

mining membership with classification and meet the per-

formance criteria, we propose a scheme based on a neural

network mapping known as the cerebellar model articula-

tion controller (CMAC) [13], which can provide member-

ship and classification information with a single-layer

calculation. CMAC was first developed for controlling

robotic manipulators, which was later recognized as a

neural network paradigm due to its capabilities of learning

and generalization. This particular type of neural network

mapping comprises an associative array of real numbers,

while the Bloom filter is composed of bit values in a similar

layer. Because of the real numbers, different target values

could be assigned as class identification for the member-

ship-checking purpose. CMAC has been successfully

applied on a variety of fields, such as control, signal pro-

cessing and networking [14]. The generalization capability

of CMAC was originally achieved by a so-called con-

catenation method, which replaces the prefixes of strings

by sequential alphabetic characters for coding into the

addresses in the associative array. In our implementation,

the concatenation method is disregarded because the gen-

eralization is no longer required as far as membership

determination is concerned. We employ a mapping process

similar to the Bloom filters, where a hash function is

specifically designed for text strings. The proposed hash

function is used for simulations of both the PBFs and the

proposed CMAC-based scheme throughout this paper.

2 Hash function for text string

In the original form of the Bloom filter, multiple hash

functions were incorporated for mapping input elements to

the associative array, each of which is responsible for

addressing one cell in the array. Such a mapping agenda

works well; however, there are no rules for deciding the

number and type of the hash functions utilized. Further-

more, multiple hash functions also cause additional

computational overhead. As pointed out in [9], a single

hash function could also be suitable for the mapping pur-

pose as long as the uniformity of cell addressing in the

associative layer is sustained. To develop a suitable hash

function for text strings, we propose that each character in

a text string addresses one cell in the associative layer. The

uniformity could be achieved by taking advantage of the

character’s designated code and its position in the string

identifier. We adopt the logarithm function as proposed in

[15], where the randomness is achieved by discarding the

integral part and the first few digits of the decimal part of

the outcome from the logarithm function as in (1).

h xð Þ ¼ D log xð Þ � 10cð Þ ð1Þ

In (1), h(x) is the hash function of a positive number x,

D(�) is the decimal part of the content, c is the number of

digits to be discarded in the decimal part after the loga-

rithm function is applied. We used c = 4 in this paper.

There are two steps in the proposed hash function: cal-

culating the starting position in the associative layer for an

input string as in (2) and sequentially finding the address

for each character of the input string as in (3). The notation

used in this paper is as follows: s designates an arbitrary

string, s(k) is the kth character of s, si is the ith string in the

payload, si(k) is the kth character of si.

p sð Þ ¼ I h
Xl sð Þ

k¼1

s kð Þ � k

 !
�M

 !
þ 1 ð2Þ

a s kð Þð Þ ¼ p sð Þþ I h
Xk

j¼1

s jð Þ� j

 ! !
%Mþ1 k¼ 1� l sð Þ

ð3Þ

In (2), p(s) is the starting position of the associative

layer for string s, l(s) is the length of s, s(k) is the kth

character of s, M is the size of the associative layer. We

used ASCII codes for s(k) in this paper. The address index

of the cells in the associative layer is 1 to M. In (3), a(s(k))

is the address of s(k) in the associate layer, I(�) denotes the
integral part, % is the operator for calculating the

remainder divided by M. In a sense, (2) is to avoid the

situation where only a portion of the associative layer is

addressed because sometimes there is a high similarity of

the text strings in the payload. To differentiate a character’s

designated code and its position in the string, we multiple

each character by its position number in a cumulated

fashion as in (3). We employed the v2 test to examine the

uniformity of addressed cells in the associative layer for the

proposed hash function. The test data were randomly

generated and composed of legitimate characters with an

ACSII code. As a result, there was no significant evidence

to deny the uniformity at the 5 % confidence level. The

proposed hash function for text strings is convenient and

Neural Comput & Applic (2016) 27:1959–1967 1961

123

easy to use because only the logarithm function is required.

The uniformity is achieved by taking advantage of each

character’s designated code and position in the string.

3 Parallel Bloom filters versus proposed scheme

In a way, PBFs and the proposed scheme are very similar in

their two-phase operations, i.e., a set of text strings must be

transformed to a vector of associative array before they can

be used as a checking mechanism for membership and

classification. For PBF, such transformation is referred to

as ‘‘programming,’’ while ‘‘learning’’ is used for the pro-

posed scheme since it requires a number of iterations of

payload presentation for adjusting the array vector. In this

paper, we use ‘‘programming’’ for both schemes. The

second phase, referred to as ‘‘checking,’’ is responsible for

determining membership and classification of a query

string using the associative arrays resulted from the first

phase. Normally, the programming or learning phase is

performed in an off-line mode for obtaining a suitable array

vector, while the checking phase is an on-line operation

that takes query strings and then provides prompt

responses.

3.1 The parallel Bloom filters

In the programming phase of PBF, several transformations

must be made depending on the number of classes or

subsets in the payload as in (4). Initially, all cells of the

parallel layers are set to 0. Each text string in a subset is

sequentially presented to the hash function, whose out-

comes would turn all the addressed cells of the corre-

sponding layer to 1. The phase stops when all the strings in

the payload are presented to the transformation process.

PLf gi! Ai i ¼ 1� n ð4Þ

where PLf gi is the ith subset of the payload, Ai is the ith

array vector, n is the number of subsets in the payload.

In the checking phase, a positive membership is

responded when all the cells addressed by a query string

are 1 on a certain layer, while a negative membership

indicates that there is at least one 0 in those addressed cells.

A query string must go through all the parallel layers for

checking its membership and corresponding class. Conse-

quently, there are three types of result after the checking

phase is completed, i.e., (a) no layer, (b) exactly one layer

and (c) multiple layers are responded to the query string as

positive membership. Situation (a) indicates that the query

string is not a member of the payload at all. Since there is

no false-negative error for PBF, the query string is defi-

nitely not a member. Situation (b) concludes that the query

string is a member with a class of whatever the corre-

sponding layer designates. However, such a situation could

also be induced by non-member strings, which are referred

to as false-positive errors. Situation (c) represents confu-

sion, which could be caused by either a member or non-

member.

3.2 The proposed scheme

The CMAC paradigm was originally proposed for con-

trolling robotic manipulators, which was later recognized

as a neural network mapping because the paradigm also

requires a weight-adjusting process by iteratively learn-

ing from a great amount of known data. We adopted the

paradigm with modifications because of the following

motivations: (1) the structure of CMAC, with hashing and

a one-dimensional weight array, is very similar to Bloom

filter, so the computational complexity for a query string

is constant, (2) the learning process, although relatively

time-consuming, is considerably faster than other neural

network paradigms due to the locally weight-adjusting

protocol, and (3) the paradigm could achieve substan-

tially less errors than Bloom filter once the learning

process is in order. Therefore, our modifications to the

paradigm include: (1) a method referred to as ‘‘concate-

nation’’ in the original paradigm for the generalization

purpose is disregarded because we only require the

memorization capability and (2) a number of designated

values in the output layer could be specified instead of

one for the classification purpose with acceptance

boundary of class membership in an attempt to reduce

false-positive errors.

Since the proposed scheme comprises a single associa-

tive layer with cells of real numbers, classification could be

achieved by assigning a different class code to a subset of

the payload. The class codes are also referred to as targets

in the scheme, representing the goal to achieve when

adjusting the cell contents according to a string’s outcome

resulted from the associative layer. Therefore, the learning

phase is responsible for moving the outcomes of strings

from the same subset toward its corresponding target. Like

other neural network models, such a learning process is

accomplished by modifying the cell values, also referred to

as weights, in an iterative fashion according to the differ-

ence between outcome and target. Let si be the ith string in

the payload, and the outcome of si could be described as in

(5). Let T(si) be the target value of si, where T(si) belongs to

the set {Tj, j = 1 * n} and n is the number of subsets or

classes in the payload; modification of the cell values is

described as in (6). The learning process, as depicted in

Fig. 2, terminates when there is no significant cell value

change within a number of iterations.

1962 Neural Comput & Applic (2016) 27:1959–1967

123

Oi ¼
Xl sið Þ

k¼1

wðaðsi kð ÞÞÞ ð5Þ

w a sið Þð Þ ¼ w a sið Þð Þ þ g� T sið Þ � Oið Þ ð6Þ

where Oi is the outcome of si, w is the cell value and

indexed by w(k) or wk, a(si) is the set of cells addressed by

si, g is the fraction of difference between target and out-

come, also referred to as learning rate.

The learning rate is a positive fractional number, rep-

resenting the portion of error to be compensated back to the

associative layer for the purpose of cell value adjustments.

When g ¼ 1=l sið Þ; the error is fully and evenly reflected to

each of a(si), which often causes an unstable learning

process since normally each cell is addressed by a number

of strings. In this paper, a smaller learning rate g ¼
0:1=l sið Þ is used to avoid such a situation. After the

learning phase is completed, another payload presentation

is performed without cell value adjustments to store nec-

essary information for the checking phase. There are two

steps in this non-learning presentation: first, the number of

memory bits to economically store each cell value must be

decided for modifying all the weights in the associative

layer. For example, when a 16-bit number is used for each

cell, the cell values could be described as in (7) and (8).

dw ¼ wmax � wminð Þ= 2b � 1
� �

ð7Þ

wi ¼ wmin þ round
wi � wmin

dw

� �
� dw ð8Þ

where dw is the weight increment when b bits of memory

are used for each cell, wmax and wmin are the maximal and

minimal weights after the learning phase is completed.

Second, boundaries of membership must be established

for each target, which is accomplished by calculating the

minimal and maximal outcomes for each subset of the

payload, designated by T�
i and Tþ

i , i = 1 - n. Figure 3a

shows the establishment for boundaries of membership.

The boundaries of membership for all targets are also

stored and passed to the checking phase for the on-line

determination purpose. As shown in Fig. 3b, if the outcome

of a query string is within the boundaries of any target, the

string is a member with the corresponding class of that

target; otherwise, the string is a non-member. It is clear that

the results of the checking phase would not result in con-

fusion error when there are no overlaps among the target

boundaries, but false positives are still possible. The

boundary overlap situation indicates that the outcomes of

strings in the payload do not converge to their corre-

sponding targets, which is normally caused by insufficient

memory usage for the associative layer.

4 Experimental results

To examine performances of the proposed scheme, we

employed data of two simulation cases, including the car

license plates in Taiwan and general-form email addresses.

The former represents strings of the same length (seven

characters including a separator), while the latter contains

strings of varied lengths of between 10 and 25 characters.

Table 1 shows string data examples for both simulation

cases. The proposed hash function described in Sect. 2 was

utilized as the sole hash function for both schemes, which

produced the same number of bits as the length of the input

string on the associative layer. Therefore, there were seven

cells addressed by each string of the first case, while that of

the second case differs from 10 to 25. We randomly gen-

erated 400,000 strings for each simulation case, in which

300,000 strings were used as the programming set, while

The ith string in the payload si

h()

The learning process

w2w1 w3 w4 w5 w6 w7
wM

TnT1 T2 T(si)Oi

ei = T(si) - Oi

The associative layer

The proposed hash function

.w8 w9 w10

Fig. 2 Learning process of the CMAC-based scheme

Outcomes of the ith subset Outcome of a query string

Member w/ class 1 Member w/ class 2

Non-member

(a) (b)Fig. 3 a Establishing

boundaries of target,

b determination results of the

checking phase

Neural Comput & Applic (2016) 27:1959–1967 1963

123

the remaining 100,000 strings were utilized as the checking

set.

The programming sets were engaged in the first phase of

both the PBF and the proposed scheme. Ideally, all the

string data in the programming sets should be recognized

as positive membership with a certain class after the first

phase is completed; however, membership with multiple

classes (i.e., confusion) could happen because of insuffi-

cient memory usage for the associative layer(s) in both

schemes. Therefore, we conducted several experiments

using varied memory usages in the first phase. Figure 4

shows the numbers of confusion in the programming sets

after the first phase is completed, by which several obser-

vations could be obtained. First, as the memory usage

increases from 500 to 900 KB, the number of confusion of

PBF steadily decreases, while that of the proposed scheme

reduces abruptly from almost the entire programming set to

zero between 600 and 700 KB. This situation indicates that

the boundaries of targets in the first phase of the proposed

scheme mutually exclude one another when the memory

space reaches 700 KB. Second, the number of confusion

for PBF increases as the number of classes increases. This

situation suggests that confusion of PBF is, to some

degrees, related to the number of the associative layers,

while that of the proposed scheme solely depends on

whether there are overlapped sections among the bound-

aries of targets.

As seen in Fig. 4, after the neural network mapping

using the proposed scheme, the string identifiers still with

confusion accounted for almost the entire programming set

for all the 20-, 30- and 40-class simulations. Such a situ-

ation was caused by insufficient memory utilized on the

associative layer, i.e.,\700 KB in our cases. The memory

insufficiency usually leads to a deadlock condition where

too many class targets compete one another in the same

cells on the associative layer. Consequently, the target

boundaries could not successfully converge to a mutually

exclusive outcome. In other words, the majority of cells on

the associative layer were addressed by a great amount of

strings in the programming set, resulting in the weight

values being unable to stabilize. However, as the memory

usage reached 700 KB, all the target boundaries became

mutually exclusive and there was no confusion whatsoever

in the programming set.

The previous investigation concerning the number of

confusion existed in the programming sets shows that when

700 KB of memory space was used, the ratio of confusion

was zero for the proposed scheme or nearly zero (ap-

proximately 1 %) for PBF with both simulation cases.

Therefore, we further investigated the number of errors in

the checking sets committed by both schemes using the

memory space starting with 700 KB for the associative

layer. Since the checking sets are exclusive of the pro-

gramming sets, there are two types of error using PBF,

namely confusion and false positive, while only false-

positive errors are possible using the proposed scheme

since all the class boundaries do not overlap one another.

The memory usage in the programming phase and the

number of classes were the control variables in the

experiments. The memory usage is a crucial factor when a

scheme is used as a core component for real-time appli-

cations, which usually claims a good portion of the primary

memory on the service machine. As far as PBF is con-

cerned, the number of cells for each layer is the same, and

so is the number of strings for each class in the program-

ming sets. Consequently, when 700 KB of memory and 20

classes are specified, there are 700,000 bytes 9 8/

20 = 280,000 cells in each layer of PBF and 300,000/

20 = 15,000 strings for each class in the programming

sets. Table 2 presents the error numbers of both types, i.e.,

confusion and false positive, committed by PBF and the

proposed scheme using different combinations of memory

usage and number of classes.

As shown in Table 2, the number of errors decreases as

the memory usage increases for both PBF and proposed

scheme. Furthermore, the larger number the classes, the

less the errors. The proposed scheme committed far less

errors, approximately one twentieth, than the benchmark

PBF with any combination of the two control variables,

i.e., the memory usage and number of classes. The con-

fusion errors of PBF account for approximately three-

fourth of the total errors, which is the main cause of such

results. Not only the proposed scheme committed no con-

fusion error because of the non-overlapped boundaries

among classes, but it became error-free when the memory

usage reached 1.1 MB for the programming phase. That is

to say, with a sufficient amount of memory space for the

associative layer, the chance of a non-member string fal-

sely passes through any membership boundaries for all

classes is very rare.

In summary, there are two types of error, i.e., confusion

and false positive, when dealing with the addressed prob-

lem. In the programming phase, the proposed scheme

Table 1 String examples of both simulation cases

Car license plate Email address

OF-8543 k6tlh@wt.com

8753-3E pia0@d55zg400djk.net

E5-4100 ngc2l@sia.org

6430-PE xj5g@v7suzzme9au0.com

3879-UN 20x99@ouqh7qgg.org

2827-DM ldqlk@58f.net

3228-OP rc6nh@pi5y5woaf2y.com

9225-BA tk6@th5iqeakorph.net

1964 Neural Comput & Applic (2016) 27:1959–1967

123

commits no confusion error when the memory is sufficient,

while the benchmark still reports such errors with the same

memory space. However, the proposed scheme could

hardly recognize any membership when memory is inad-

equate, while the benchmark could still recall roughly

80–90 % of membership depending on the size of memory.

Fig. 4 Numbers of confusion in

the programming sets with

varied memory usages

Neural Comput & Applic (2016) 27:1959–1967 1965

123

In the checking phase, the error rates of both types com-

mitted by the proposed scheme were much less than the

benchmark. As far as time is concerned, the proposed

scheme requires inevitably more time because of the neural

network mapping, approximately 2000 presentations of the

dataset, in the programming phase, while the benchmark

only needs one presentation. In the check phase, the time

required for processing a query string is instant for both

schemes since they have the identical computational

complexity for one pass.

5 Conclusion

We present a scheme employing a neural network mapping

for simultaneously determining the membership and clas-

sification for string identifiers. The objective of the pro-

posed scheme is to achieve prompt responses, indicating

membership of a query string and its associative attributes

at the same time. Furthermore, the memory usage at the run

time must be as economical as possible because it normally

occupies the primary memory of the service machine. Such

a requirement becomes crucial when the number of strings

in the payload is tremendous, which is often conceivable as

the Internet is being expanded at a very fast speed. The

experimental results show that the proposed scheme out-

performed the benchmark, the PBFs, as far as the numbers

of error committed are concerned with the same combi-

nations of control variables. The results are based on sev-

eral scales of the control variables including the memory

usage and number of classes in the payload. As a result, the

proposed scheme committed less number of misjudgments

than the benchmark in any combination of the control

variables.

The results suggested that the proposed scheme seems to

be a promising approach when economical memory and

accuracy in checking membership with classification are of

concern. Although the proposed scheme is associated with

a cost that certain amounts of computational time are

required in the learning phase. In our experiments, how-

ever, no more than 2000 iterations of payload presentation

were performed for all the combinations of control vari-

ables. Such a cost could become small when on-line

checking speed and memory usage are critical measures of

performance, since the learning phase usually takes place

in an off-line mode. As far as the test results are concerned,

the benchmark still committed a fairly large number of

confusion error even sufficient memory is employed, while

Table 2 Simulation results in the checking phase

Simulation case Memory usage Error type Number of strings with error in the checking set

20 classes 30 classes 40 classes

PBF Proposed scheme PBF Proposed scheme PBF Proposed scheme

Car license plate 700 KB C 3329 0 5027 0 6719 0

FP 1174 222 1649 229 2273 365

800 KB C 1771 0 2783 0 3638 0

FP 571 40 927 57 1156 81

900 KB C 936 0 1491 0 1957 0

FP 336 8 546 15 661 17

1 MB C 579 0 861 0 1171 0

FP 198 5 316 8 405 11

1.1 MB C 385 0 568 0 802 0

FP 138 0 207 0 251 0

Email address 700 KB C 3046 0 4688 0 6274 0

FP 1042 312 1529 234 2099 268

800 KB C 1073 0 1686 0 2261 0

FP 382 36 569 63 779 73

900 KB C 401 0 650 0 938 0

FP 145 23 203 34 330 48

1 MB C 183 0 292 0 357 0

FP 64 13 107 23 132 22

1.1 MB C 101 0 138 0 190 0

FP 29 0 59 0 57 0

C confusion, FP false positive

1966 Neural Comput & Applic (2016) 27:1959–1967

123

the proposed scheme is immune from such error. Although

both schemes inevitably associate with false-positive

errors, the proposed scheme committed less false rates than

the benchmark in all aspects. It is conceivable that there

will be no prediction errors for both the proposed scheme

and the benchmark when the memory is unlimited. How-

ever, the memory is usually constrained and related to the

number of string identifiers in the payload, e.g., 300,000 for

both simulation cases in our experiments. Future work will

focus on exploring rules for determining the optimal

memory usage with respect to the payload size including

the number and length of the string identifiers.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Tan L, Brotherton B, Sherwood T (2006) Bit-split string-match-

ing engines for intrusion detection and prevention. ACM Trans

Archit Code Optim 3(1):3–34

2. Bentley J, Sedgewick R (1997) Fast algorithms for sorting and

searching strings. In: Proceedings of ACM-SIAM symposium on

discrete algorithms, pp 360–369

3. Matias Y, Muthukrishnan S, Sahinalp S, Ziv J (1998) Aug-

menting suffix trees, with applications. In: Proceedings of Euro-

pean symposium on algorithms, pp 67–78

4. Bloom BH (1970) Space/time trade-offs in hash coding with

allowable errors. Commun ACM 13(7):422–426

5. Stranneheim H, Kaller M, Allander T, Andersson B, Arvestad L,

Lundeberg J (2010) Classification of DNA sequences using

Bloom filters. Bioinformatics 26(13):1595–1600

6. AlaguPriya AG, Lim H (2010) Hierarchical packet classification

using a Bloom filter and rule-priority tries. Comput Commun

33:1215–1226

7. Hao F, Kodialam M, Lakshman TV (2008) Incremental Bloom

filters. In: Proceedings of INFOCOM, pp 1741–1749

8. Donnet B, Baynat B, Friedman T (2006) Retouched Bloom fil-

ters: allowing networked applications to trade off selected false

positives against false negatives. In: Proceedings of ACM CoN-

EXT, pp 149–160

9. Dharmapurikar S, Krishnamurthy P, Sproull TS, Lockwood JW

(2004) Deep packet inspection using parallel Bloom filters. IEEE

Micro 24(1):52–61

10. Xiao B, Hua Y (2010) Using parallel Bloom filters for multiat-

tribute representation on network services. IEEE Trans Parallel

Distrib Syst 21(2):20–32

11. Bose P, Guo H, Kranakis E, Macheswari A, Morrison J, Smid M,

Tang Y (2008) On the false-positive rate of Bloom filters. Inf

Process Lett 108:210–213

12. Shanmugasundaram K, Bronnimann H, Memon N (2004) Pay-

load attribution via hierarchical Bloom filters. In: Proceedings of

the 11th ACM conference on computer and communications

security, pp 31–41

13. Albus JS (1975) A new approach to manipulator control: the

cerebellar model articulation controller (CMAC). J Dyn Syst

Meas Control 97:220–227

14. Lin CJ, Lee JH, Lee CY (2008) A novel hybrid learning algo-

rithm for parametric fuzzy CMAC networks and its classification

applications. Expert Syst Appl 35:1711–1720

15. Ellison D (1991) On the convergence of the multidimensional

Albus perceptron. Int J Robot Res 10:338–357

16. Bonomi F, Mitzenmacher M, Panigrahy R, Singh S, Varghese G

(2006) Beyond bloom filters: from approximate membership

checks to approximate state machines. In: Proceedings of the

ACM SIGCOMM, pp 315–326

17. Yu H, Mahapatra RN (2011) A power and throughput-efficient

packet classifier with n Bloom filters. IEEE Trans Comput

60(8):1182–1193

18. Hua Y, Xiao B, Veeravalli B, Feng D (2012) Locality-sensitive

Bloom filter for approximate membership query. IEEE Trans

Comput 61(6):817–830

19. Hao F, Kodialam M, Lakshman TV, Song H (2012) Fast dynamic

multiple-set membership testing using combinatorial Bloom fil-

ters. IEEE/ACM Trans Netw 20(1):295–304

20. Huang K, Xie G, Li R, Xiong S (2013) Fast and deterministic

hash table lookup using discriminative Bloom filters. J Netw

Comput Appl 36:657–666

21. Qiao Y, Li T, Chen S (2014) Fast Bloom filters and their gen-

eralization. IEEE Trans Parallel Distrib Syst 25(1):93–103

22. Lim H, Lee N, Lee J, Yim C (2014) Reducing false positives of a

Bloom filter using cross-checking Bloom filters. Appl Math Inf

Sci 8(4):1865–1877

Neural Comput & Applic (2016) 27:1959–1967 1967

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A CMAC-based scheme for determining membership with classification of text strings
	Abstract
	Introduction
	Hash function for text string
	Parallel Bloom filters versus proposed scheme
	The parallel Bloom filters
	The proposed scheme

	Experimental results
	Conclusion
	Open Access
	References

