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Ultra-thin oxide breakdown for OTP
development in power technologies
O. Gasparri , M. Bernardoni, P. Del Croce, A. Baschirotto

OTP (One Time Programmable) memory in power technology enables electrical performance optimization together with area occupa-
tion reduction. In this paper, the aspects relative to the oxide breakdown (which is the key mechanism for memory programmability)
are studied and applied to the development of an antifuse OTP cell in a 350 nm-CMOS power technology. The physical analysis of the
degradation phases of an oxide layer is presented together with the physical models, exploited to foresee the device time-to-breakdown
depending on applied voltage, oxide thickness etc. The achieved results are used in the development and reliable implementation of
OTP cells in the target 350 nm-CMOS node.
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Ultradünner Oxidabbau für die OTP-Entwicklung in der Energietechnik.

OTP-Speicher (One Time Programmable) in der Energietechnik ermöglicht die Optimierung der elektrischen Leistung bei gleichzeitiger
Reduzierung der Flächenbelegung. In diesem Beitrag werden die Aspekte in Bezug auf den Oxiddurchbruch (welcher der Schlüssel-
mechanismus für die Programmierbarkeit des Speichers ist) untersucht und auf die Entwicklung einer OTP-Zelle mit Antifuse-Funktion
in einer 350nm-CMOS-Leistungstechnologie angewandt. Die physikalische Analyse der Degradationsphasen einer Oxidschicht wird
zusammen mit den physikalischen Modellen vorgestellt, die ausgenutzt werden, um die Zeit bis zum Durchbruch des Bauelements in
Abhängigkeit von der angelegten Spannung, Oxiddicke usw. vorherzusehen. Die erzielten Ergebnisse werden bei der Entwicklung und
zuverlässigen Implementierung von OTP-Zellen im 350nm-CMOS-Zielknoten verwendet.
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1. Introduction

Recently aggressive optimization of power devices is exploiting dig-

ital programmability, which is possible for the availability of on-chip

low-cost memory as OTP (One Time Programmable) cells. Digital

programmability is exploited in power devices to configure the cir-

cuit and optimize it for any operation condition. On the other hand,

in the design of analog blocks, where the power devices are not

specifically developed for, digital programmability is exploited to ad-

just and tune performance to achieve accuracy otherwise critical in

such technology. This key need of on-chip memory in power tech-

nology is satisfied by the development of low-cost OTP cells, which

have to guarantee efficient and reliable programmability mecha-

nism.

In an OTP cell, the oxide is the antifuse element to be programmed

by inducing its Breakdown reliability and within a certain time, de-

fined Time-To-Breakdown (TBD).

In this paper, the mechanisms producing the Breakdown events

are presented and their effects are studied for the development of

an OTP cell in 350 nm technology with 7.7 nm oxide thickness (tox ).

2. Oxide degradation processes

The main classes of processes producing oxide degradation, result-

ing in damages and, then, in Breakdown are the Wearout currents

and the Defect Generation Mechanisms, as described in the follow-

ing.

2.1 Wearout currents
If a voltage is applied to an oxide layer, a leakage current flows,
called tunneling or wearout current. There are two main mecha-
nisms causing such current:

• Fowler-Nordheim tunneling (FN): the band diagram deforms such
that the electron crosses a triangular potential barrier. Such FN
current is due to electrons reaching the anode passing through
the oxide conduction band, as in Fig. 1(left), and is:

JFN = A · Eox
2 · exp

( − B
Eox

)
(1)

where q is the elementary charge, and A, B parameters are:

A = q3

8πhφe
· m*

Si

m*
ox

and B = 8π

√
2m*

ox φe
3/2

3hq
(2)

with m*
Si the electron rest mass, m*

ox the electron effective mass
within the dielectric and φe the injecting electrode barrier height.
FN mechanism dominates for high electric fields;

• Direct Tunneling (DT): the current is due to cathode injected elec-
trons crossing a trapezoidal potential barrier (between
metal/oxide/Si in CMOS) reaching the anode without flowing into
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Fig. 1. Energy band diagrams: Fowler-Nordheim (left) and Direct
(right) Tunneling

Fig. 2. Trap assisted tunneling (left), AHI mechanism (right)

the oxide conduction band as shown in Fig. 1(right). The approxi-
mated DT current is:

JDT = A · Eox
2 · exp

(
− B

Eox
·
[
1 −

(
1 − Vox

φe

)3/2])
(3)

This mechanism dominates for low electric fields;

For a given Eox , the DT current density is higher than the FN one.
Based on the tunneling regime, differences in the Breakdown event,
such as its rapidity, are to be expected.

The Electric field (Eox ) threshold between the DT and FN is be-
tween 5−20MV/cm, e.g. for a tox = 7.7nm corresponds to � 3.8V.
For thick oxide (tox > 5nm) and electric fields above 5 − 8MV/cm
FN current dominates [1]. While for thin oxide (tox < 5nm) and volt-
age below 3.1 − 3.2V (corresponding to the barrier height between
n-doped silicon and SiO2) the DT dominates. Since Eox = VG/tox ,
where VG is the voltage applied across the gate oxide, any tox

change would affect the MV/cm ratio. In the implementation of an
OTP cell using 350 nm technology (tox = 7.7 nm) in high voltage
(>10 V) domain, the Eox � 13MV/cm, therefore the FN current is
expected to dominate.

2.2 Defect generation mechanisms
Defects in an oxide layer are due to fabrication imperfections and/or
generation mechanisms. These defects would introduce traps or re-
combination centers into the forbidden SiO2 band-gap, which en-
able carriers to tunnel the oxide and, depending on their energies,
to trigger other defect creation mechanisms. In a trap-assisted tun-
neling, considering a single trap, electrons tunnel from the cathode
to the trap and then from the trap to the anode, as shown in Fig. 2
(left) for a deep (top) and an interface (bottom) trap.

For electrons with energy > 5eV [1], [2] (as it is the case for the
higher voltages required in the OTP Breakdown) the Anode Hole In-
jection (AHI) mechanism and bonds rupture, shown in Fig. 2 (right),
are activated. Hot electrons tunnel the triangular barrier reaching
the anode conduction band. Then, they transfer their energy to deep

Fig. 3. Gate Current waveform for TBD detection with a 13V-VG

valence-band electrons, which are promoted to the conduction band
leaving holes behind. Due to Eox , hot holes tunnel into oxide valence
band. This could lead to interface traps generation and recombina-
tion centers for incoming electrons [8]. Trap assisted tunneling in
localized spots follows, leading to irreversible oxide damages.

3. Breakdown physical models
The OTP programmability efficiency and reliability depends on the
accuracy of the evaluation of TBD, whose value depends on the dom-
inating defect creation mechanisms. There are three main mecha-
nisms producing Breakdown, each of which leading to a different
TBD.

• E Model (also Thermo-Chemical model): the Breakdown results
from the covalent SiO2 bonds rupture due to the electric field [7].
In this case:

TBD,E = (C · e
Ea

KbT ) · e−G·Eox (4)

where G is the electric field acceleration factor and Ea is the acti-
vation energy for the oxide Breakdown;

• 1/E Model (also AHI model): the Breakdown is due to the hot
holes injected from the anode. The hole tunneling current can be
expressed as the product between the electron FN tunneling cur-
rent and a term expressing the probability of the hole generation
and tunneling through the anode barrier [3], [4]. The amount of
injected holes determines the TBD, expressed as:

TBD,1/E = (D · e
Ea

KbT ) · e
F

Eox (5)

• Power Law: linked to the hydrogen release phenomena. Hot tun-
neling electrons may break the Si-H bonds, leading to releasing of
hydrogen atoms at the cathode interface. These can subsequently
diffuse through the oxide and combine with oxygen vacancies [5].
In such a way, defects are generated till the Breakdown happens
and TBD is given by:

TBD,Power = K · VG
−β (6)

where β is the voltage acceleration factor [6], related to the dis-
ruption energy of Si-H bonds.

Depending on the implementation aspects (oxide quality, technol-
ogy processes, electric field etc.) the relative importance of the three
mechanisms changes and one of these could become dominating.
The case with a 350 nm technology is discussed in the following
section.
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Fig. 4. Wearout current fit with FN equation (left), TBD fit (right)

4. Models validation
Based on the above described physical mechanisms, the case of an
OTP cell in the 350nm technology with oxide surface of 9.2 µm2

and thickness of 7.7nm is studied. The goal is to relate electric field,
oxide properties and TBD. For this purpose, high voltage (>13 V)
pulses are applied to the gate (while source and drain were shorted)
to induce Breakdown. From Fig. 3, for 13V programming voltage,
the Wearout current is about 50 µA and the TBD is 30ms. Since the
electric field is > 15MV/cm, the FN current dominates, as proven in
Fig. 4 (left) where the Eq. (1) correctly fits the data. The extrapolated
A and B parameters of Eq. (1) are:

A = 3.5 · 10−3 A/V2 and B = 3.8 · 1010 V/m (7)

The TBD behaviour as a function of the applied voltage is shown in
Fig. 4 (right). The fitting equations are (4), (5) and (6) where Vg/tox =
Eox . The extrapolated parameters are:

E model : (C · e
Ea

Kb ·T ) = 1.2e11, G/tox = 2.22

1/E model : (D · e
Ea

Kb ·T ) = 2.4e−17, F · tox = 460

PowerLaw model : K = 2.3e34, β = 32

(8)

These results are validated also by the good agreement with liter-
ature. In fact, B is consistent with [6] and E model parameters are
comparable with those obtained in [7].

The fitting to the experimental data proves the pertinence of the
three models. However, the experiment is yet not enough to deter-
mine which of those defect generation mechanisms have more im-
pact. Indeed, breakdown is generally a consequence of more mech-
anisms superimposed. Anyway, guesses of TBD can still be obtained
by extrapolation. Must be pointed out that it is important to guaran-
tee a maximum failure rate: the programmed oxide must be hardly
broken, to avoid misunderstanding while reading the memory. The
higher the electric field, the higher is the probability of having hard
breakdowns in the programming time window. Nevertheless, pro-
ducing a higher voltage would require more power and area con-
sumption, affecting the overall chip cost. On the basis of these con-
siderations, the specifications concerning the oxide properties, the
target TBD and the applied field are drawn and the OTP circuit design
follows.

5. Conclusion
The paper explains the oxide Breakdown process in a high-voltage
technology required for the development of an OTP cell. The main
models and formulas, useful to relate the oxide lifetime with the
oxide dimension and the applied field are presented. From the con-
ducted experiments in the adopted 350 nm technology and in the
range 13 to 16 V, the three mechanism results in similar TBD and

then TBD optimization requires to manage all three phenomena. This
validates the presented research activity. The same methodology can
also be adopted for predicting the devices lifetime for the surround-
ing 350 nm CMOS circuit.
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