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Abstract
Rough set theory is an extension of set theory with two additional unary set-theoretic operators known as approximation in
order to extract information and knowledge. It needs the basic, or say definable, knowledge to approximate the undefinable
knowledge in a knowledge space using the pair of approximation operators. Many existed approximation operators are
expressedwith unary form.How tomine the knowledgewhich is asked by binary formwith rough set has received less research
attention, though there are strong needs to reveal the answer for this challenging problem. There exist many information with
matroid constraints since matroid provides a platform for combinatorial algorithms especially greedy algorithm. Hence, it is
necessary to consider a matroidal structure on two sets no matter the two sets are the same or not. In this paper, we investigate
the construction of approximation operators expressed by binary form with matroid theory, and the constructions of matroidal
structure aided by a pair of approximation operators expressed by binary form.

• First, we provide a kind of matroidal structure—TD-matroid defined on two sets as a generalization of Whitney classical
matroid.

• Second, we introduce this new matroidal construction to rough set and construct a pair of approximation operators
expressed with binary form.

• Third, using the existed pair of approximation operators expressed with binary form, we build up two concrete TD-
matroids.

• Fourth, for TD-matroid and the approximation operators expressed by binary form on two sets, we seek out their properties
with aspect of posets, respectively.

• Through the paper, we use some biological examples to explain and test the correct of obtained results. In summary,
this paper provides a new approach to research rough set theory and matroid theory on two sets, and to study on their
applications each other.
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1 Introduction

Rough set theory, which was proposed by Pawlak (1982),
can be viewed as a successful mathematical approach to deal
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with situations in which every object of a given universe
can be identified only within the limits of imprecise data
by an indiscernibility relation. It associates some informa-
tion table such as data and knowledge. With this philosophy
idea, rough set theory has been applied to many fields, for
instance, computer science, expert system, classification the-
ory, artificial intelligence, and so on. (Acharjya and Ahmed
2020; Błaszczyński et al. 2021; Kauser and Acharjya 2021;
Lei et al. 2021; Pawlak 1982, 1991; Pawlak and Skowron
2007a, b, c; Penmatsa et al. 2020; Qu et al. 2020; Selvi and
Chandrasekaran 2019; Silfia et al. 2021; Wang et al. 2021;
Wei et al. 2021; Yoshifumi et al. 2021). The lower and upper
approximation operators are the basic notions in rough set
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theory. Since the basic notions in Pawlak classical rough set
model (Pawlak 1982, 1991) asked the requirement to be an
equivalence relation which restricted the applied fields of
rough set, many authors have hoped to change the equiva-
lence relation in order to extend the approximation operators
of Pawlak classical rough set model. And some extended
approximation operators are provided by the combining of
rough set with some other theories and some other mathe-
matical structures, for example, fuzzy theory (Cattanco 1998;
Mi et al. 2008; Yao 1998a, 2001; Yao et al. 2019), covering
theory (Bonikowski et al. 1998; Yao 1998b; Yao and Yao
2012; Zhang et al. 2019), lattice (Li et al. 2016; Pawlak and
Skowron 2007c; Wang et al. 2019; Yao 1998b), matroid the-
ory (Li and Liu 2012; Marek and Skowron 2014), three-way
decisions (Huang and Zhu 2016; Zhao and Hu 2020), and
some others (Li et al. 2019; Mao et al. 2021; Xu and Wang
2018; Zhang et al. 2016).

As Yao (1996, 2015) said, an interesting research direc-
tion in rough set theory is to extend Pawlak classical rough set
model tomoregeneral status in order to be applied tomore sit-
uations. All of the above results with respect to rough set are
defined on one set. Pawlak classical rough set model is estab-
lished on one universe, i.e., one non-empty set, which limits
its application. In other words, another interesting general-
ization of Pawlak classical rough set model is to generalize
the one universe to more than ones. For example, Yao et al.
(1995) provided two-universe rough set model. After that, it
was bornmany results of rough set on two universes (Pedrycz
and Bargiela 2002; Shao et al. 2018; Sun et al. 2017; Yao
1996, 2001, 2015).

In fact, the rough setmodel of Yao et al. (1995) on two uni-
verses and the other results mentioned above for rough set on
two universes were actually dealt on “one universe”. The two
universes are different, but there are some relevances with
some functions between the two universes. For example, let
(OB, AT , R) be an information table, in which OB is a set
of objects, AT is a set of attributes, R is a family of relations
between OB and AT such as that in Pedrycz and Bargiela
(2002) and Shao et al. (2018), and Yao (1996), respectively.
Let (APR, APR) be the pair of lower and upper approxi-
mation operators defined for (OB, AT , R) such as that of
Shao et al. (2018) and the others above. APR and APR are
defined on “one universe”, respectively, since the domains of
definition of APR and APR are on 2AT , respectively. At the
same time, the codomains of APR and APR are on another
universe such as on 2AT or 2OB . Both APR and APR are
expressed by unary form. In addition, some kind of lower
and upper approximation operators are produced with aid of
the pairwise form during the productive process such as that
in Pei and Xu (2004), but the final expressions of lower and
upper approximation operators are with the form of unary.
Actually, the process of “pairwise” is realized on one set also.

As a matter of fact, some information extracted from an
information table is expressed as a pair, that is, a binary form.
For example, in a kind of information table—a formal context
(OB, AT , I ), a formal concept extracted from (OB, AT , I )
is a pair (X ,Y ) where I ⊆ OB × AT , X ⊆ OB, Y ⊆ AT
(Ganter andWille 1999). Actually, in our real life, many facts
are needed to be expressed by pairwise on two different sets.
For instance, in classification of insects, or cluster analysis of
insects, if the set OB of objects is consisted of the specimens
of insects and the set AT of attributes is consisted of some
biological characteristics relative to the objects in OB, then
to obtain the dendrogram, or the cladogram, of the specimens
in OB, is a main duty for biologists to do their study on OB.
The dendrogram and cladogram should be simple and intu-
itive so as easily for some biologists to analyze the biological
properties existed in OB. When searching those diagrams,
some biologists consider every point in a dendrogram or a
cladogram by a pair (X ,Y ) where X ⊆ OB and Y ⊆ AT ,
though some points are obtained by the help of rough set
approximations.

With assistance of rough set theory or formal concept anal-
ysis (simply FCA), some biological ideas have been explored
and some of biological thoughts have been obtained (Mao
2018; Shang et al. 2010; Sinha and Namdev 2020; Wang and
Mao 2020; Wang et al. 2020; Ytow et al. 2006).

Another instance is to determine whether a person has
illness like the current COVID-19 pandemic for a doctor. To
find the patients is important for the tracing investigation and
further prevention of COVID-19 (Apolloni 2021; Zhu et al.
2021). Let OB be the set of citizen of a city and AT be the
characteristics of COVID-19. It is easy to see that OB and
AT are two different sets. Let A ⊆ OB. A′ ⊆ AT stands
for the characteristics common to the elements in A. Then,
(a, a′) implies that a person a ∈ A has the family a′ of
characteristics. Using a′, a doctor can determine the person
a to have COVID-19 or not. Here, (a, a′) is expressed by
pairwise on two different sets OB and AT . If A is a family
of citizens at the same residence zone, a persona belongs to A
with “+” for nucleic acid testing and every x ∈ A\a has “−”
result for nucleic acid testing. Then, the doctor can use the
other characteristics for any x ∈ A \ a to infer the situations
of health for x with aspect of COVID-19 in order to find the
potential patients. The inference is to approximate the fact
based on the known knowledge of a doctor with assistance of
(x, x ′) expressed by the way of pairwise on two different sets
OB and AT . Since every characteristic y ∈ x ′ has different
efficacy to affect COVID-19, the decidable process of the
doctor is actually “greedy” process.

From the above analysis for rough set and the need of
information and knowledge expressed by pairwise, we con-
firm that it is necessary to consider to build up a knowledge
system and rough set approximation operators expressed by
pairwise on two sets no matter the two are the same or not.
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Matroid, coined by Whitney (1935), is a mathematical
abstract structure for the combination of linear algebra and
graph theory. It solves combinatorial optimization problems
since its structure is better to design algorithms especially
greedy algorithm (Oxley 2011; Welsh 1976). Many mer-
its of matroid make it be applied in many fields such as
FCA, three-way decisions and granular computing (Li 2019;
Mao 2018; Wang and Mao 2020), coding and cryptology
(Ambadi 2019; Liu et al. 2017), rough set (Hu and Yao
2019; Li et al. 2016, 2017, 2019; Marek and Skowron 2014;
Restrepo andAguilar 2019;Wang et al. 2019; Zhu andWang
2011), submodular maximization (Corah and Michael 2019;
Hou and Clark 2021), gamble (Kleinberg and Weinberg
2019), and graph theory (Huang and Zhu 2016). Whitney
classical matroidal model (Whitney 1935) has been general-
ized in many ways. Among them, the combination between
rough sets and matroids has been obtained many interest-
ing results such as Zhu and Wang (2011) established a
matroidal structure using the upper approximation number
and studied generalized rough sets with matroidal meth-
ods. Li et al. (2016) investigated rough sets using matroidal
approaches. Restrepo and Aguilar (2019) presented the
matroidal structures obtained from different partitions, cov-
erings of a specific set, and covering-based rough sets. With
the assistance of rough sets and three-way decisions, Li et al.
(2017) proposed three-way matroids. We observe that any
of the above results about matroids is discussed on one uni-
verse and expressed as one dimension. One dimension space
limits the development of matroid theory since the world of
real life not only existed in one dimension. Some researchers
have found this problem and tried to solve it. For example, Im
et al. (2021) introduced a matroidal structure—matroid cup
game on n cup, i.e., on R

n . In fact, this matroidal structure
is expressed on the “same” ground universe R and displays
with unary form. Additionally, we observe that many infor-
mation and knowledge are with matroid constraints such as
that existed in Corah and Michael (2019) and He and Shi
(2019), respectively. Hence, to consider extract information
from an information system, it is better to consider matroid
theory under some situations.

Recently, we have discussed to extract information from
an information table such as formal context by pairwise with
rough set approximations (Mao 2019; Wang andMao 2020).
However, how to reveal the dendrogram or the cladogram of
some biological specimens with an effective algorithm, up
to now, we do not find a way to get success. With biology
knowledge, we know that these algorithms are actually in an
optimal and “greedy” process. Matroidal structure perhaps
will give a hand since matroid structure provides a good
platform for designing greedy algorithm (Im et al. 2021;
Oxley 2011; Welsh 1976). But we cannot deal with the rela-
tionships between rough set approximations and matroidal
structures expressed by pairwise on two sets especially two

different sets. This situation reduces the speed of develop-
ment to design an algorithm for some needs in real life such
as biological research, and to give a decision for a doctor in
searching the potential patients with some ill like COVID-19.

Based on the above expressions, we realize that the key
challenge in the theories of rough set and matroid is to study
their combination expressed by binary way on two sets espe-
cially two different sets. The solving of this problem will
produce a way to extract information from an information
table under a specially designed andmore efficient algorithm
such as greedy algorithm to approximate undefinable knowl-
edge with the definable knowledge. According to the views
ofWatt and Berg (2002) and Yao (2015), we know “concepts
are the building blocks of scientific theories. A scientific con-
cept consists of a theoretical definition and an operational
definition”. Hence, in this paper, we will make the following
contributions specially.

• The basic work in this paper is to consider matroid theory
by binary form on two sets, that is, to generalizeWhitney
classical matroid model from one set to two sets. We
will call this new matroidal structure as TD-matroid and
express the feasible sets of a TD-matroid by binary way.

• A pair of operators will be defined with aid of a TD-
matroid.And furthermore, itwill find the pair of operators
roughly to be a pair of lower and upper approximation
operators, which is a main context in rough set theory.
These operators are expressed by “pairwise” form.

• With the approximation operators provided by Mao
(2019), this paper will establish two concrete TD-
matroids.

• Some biological examples show the necessity and cor-
rect of all of the above results. All of these biological
examples also indicate that the idea and discussion in
this paper are based on practical needs.

We will see in Sect. 3 that up to isomorphism, the classi-
cal matroid is a special case of TD-matroid. This implies
that TD-matroid can solve the problems that Whitney clas-
sical matroid does. In addition, TD-matroid surmounts the
weakness of Whitney classical matroid since the classical
matroid can only solve the problem or extract information
expressed on one set. However, TD-matroid has the ability
for users to mine the useful information hoped to express
with binary form on two sets, no matter the two sets are
the same or not. Furthermore, TD-matroid is different from
some existed matroidal structures defined on two sets such
as matroid cup game if n = 2 in Im et al. (2021). In one
word, TD-matroid is a new matroidal structure in order to
extract information defined on two sets by binary form. The
approximation operators defined in this paper are different
from those approximation operators defined on one set since
the operators here are defined on two sets and expressed by
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binary form, and from the existed approximation operators
defined on two sets such as that in Shao et al. (2018), and
also from ones expressed by binary form such as that in Mao
(2019) and that in Im et al. (2021) if n = 2, since the oper-
ators here based on the feasible sets of a TD-matroid, that
is, the approximation operators given in this paper are con-
strained by a TD-matroid. These consequences show that this
paper provides a new approach to study rough set andmatroid
theory.

The remainder of this paper is organized as follows. In
Sect. 2, we present some notions and properties of matroid,
FCA and rough set. In Sect. 3, we provide the definition of
TD-matroid and find a pair of lower and upper approxima-
tion operators. After that, using a pair of lower and upper
approximation operators based on the set of semiconcepts in
a formal context, we construct two TD-matroids. Finally, a
summary of this paper is offered and future work is discussed
in the last section—Sect. 4.

2 Some notions and properties

Below we review basic notions used in this paper. For more
details, matroid is referred to Oxley (2011) and Welsh
(1976), FCA is referred toGanter andWille (1999), semicon-
cept is seen (Vormbrock and Wille 2005), and rough set is
seen (Pawlak 1982, 1991), poset and lattice are seen (Grätzer
2011).

2.1 Some notations

Let S, T andU be three sets. Then, we will use the following
notations in this paper for X1, X2 ⊆ S and Y1,Y2 ⊆ T .

(1) (X1,Y1) ⊆ (X2,Y2) :⇔ X1 ⊆ X2 and Y1 ⊆ Y2.
(2) (X1,Y1) � (X2,Y2) :⇔ X1 ⊆ X2 and Y1 ⊇ Y2.
(3) (X1,Y1) ∪ (X2,Y2) :⇔ (X1 ∪ X2,Y1 ∪ Y2).
(4) (X1,Y1) ∩ (X2,Y2) :⇔ (X1 ∩ X2,Y1 ∩ Y2).
(5) (X1,Y1)\(X2,Y2) :⇔ (X1\X2,Y1\Y2).
(6) |(X ,Y )| := |X | + |Y |.
(7) 2U represents the power set of U .

Remark 1 (1) This paper writes y for {y} if {y} is singleton.
(2) Since (X2 ∪ a,Y2 ∪ b) = (X2,Y2) ∪ (a, b) for any

(X2,Y2) ⊆ S × T and (a, b) ∈ S × T , we often write
(X2 ∪ a,Y2 ∪ b) when we consider (X2,Y2) ∪ (a, b).

(3) Pawlak classical rough set model is defined on one uni-
verse.Whitney classical matroidmodel is defined on one
set. In fact, this paper says a universe as a non-empty set.
Hence, to discuss identity, sometimes, we also say that
Pawlak classical rough set model is defined on one set if
there is no confusion from the text.

(4) Let f : S → U be a bijection. Then, we say that S is
isomorphic to U from the idea of sets.

(5) All of discussions are finite in this paper in what follows.

2.2 Matroid

Definition 1 (1) (Oxley 2011, p. 7; Welsh 1976, p. 7) A
matroid M is a finite set S and a collection I of subsets of S
(called independent sets) such that (I1)–(I3) are satisfied.

(I1)∅ ∈ I.

(I2)X ∈ I and Y ⊆ X ⇒ Y ∈ I.

(I3)X ,Y ∈ I and |X | < |Y | ⇒ X ∪ y ∈ I
for some y ∈ Y \ X .

(2) (Oxley 2011, p. 11; Welsh 1976, p. 9) Two matroids M1

and M2 on S1 and S2, respectively, are isomorphic if there is
a bijection ϕ : S1 → S2 which preserves independence. We
write M1 ∼= M2 if M1 and M2 are isomorphic.

2.3 FCA

Definition 2 (1) (Ganter and Wille 1999, pp. 17–18) A for-
mal context is a set structure K := (O, P, I ) for which
O and P are nonempty sets while I is a binary relation
betweenO and P , i.e., I ⊆ O×P; the elements ofO and
P are calledobjects andattributes, respectively, and gIm
is (g,m) ∈ I . The derivation operators of K are defined
as follows (X ⊆ O,Y ⊆ P): X ′ = {m ∈ P | gIm for
all g ∈ X} and Y ′ = {g ∈ O | gIm for all m ∈ Y }.

(2) (Vormbrock and Wille 2005) In a formal context K =
(O, P, I ), a pair (X ,Y ) with X ⊆ O and Y ⊆ P is
called a �-semiconcept if Y = X ′. Dually, a pair (C, D)

with C ⊆ O and D ⊆ P is called a �-semiconcept if
C = D′.

Lemma 1 (Ganter and Wille 1999, p. 19) The two deriva-
tion operators in a formal context K = (O, P, I ) satisfy
the following conditions for any A j , Z , Z1, Z2 ⊆ O (or
A j , Z , Z1, Z2 ⊆ P) where j ∈ J and J is an index set.

(1) Z1 ⊆ Z2 ⇒ Z ′
1 ⊇ Z ′

2.
(2) (∪ j∈J A j )

′ = ∩ j∈J A′
j .

Remark 2 (1) For a formal contextK = (O, P, I ), if x ∈ O
(or x ∈ P), then {x}′ is written as x ′ for short.

(2) By the discussions in Ganter andWille (1999, pp. 17 and
24), this paper considers the formal contexts with no full
rows and no full columns, that we mean objects g with
g′ = P and attributes m with m′ = O , respectively.

(3) According to the above (2), it is easy to see

∅′ = P if ∅ ⊆ O; ∅′ = O if ∅ ⊆ P.
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(4) It is easy to know that the family of �-semiconcepts
is the dual family of �-semiconcepts. Hence, we only
consider the family of �-semiconcepts, and simply call a
semiconcept instead of a�-semiconcept in what follows.
All of semiconcepts in a formal context K is denoted as
B(K).

2.4 Poset

Definition 3 (1) (Welsh 1976, p. 45; Grätzer 2011) A poset
is a set S together with a binary relation ≤ such that the
following properties for any x, y, z ∈ S

(p1) x ≤ x .

(p2) x ≤ y and y ≤ x ⇒ x = y.

(p3) x ≤ y and y ≤ z ⇒ x ≤ z.

(2) (Welsh 1976, p. 3; Grätzer 2011) A map ϕ : S1 → S2
between two posets (S1,≤1) and (S2,≤2) is called order-
preserving, if x ≤1 y ⇒ ϕ(x) ≤2 ϕ(y) for all x, y ∈ S1.

2.5 Rough set

For a formal context K = (O, P, I ), using the idea of
Pawlak classical rough set approximation operators model,
Mao (2019) provided a pair of operators R and R on O × P ,
see Definition 4, and obtained Lemma 2. The definition of
equivalence relation on a set is seen Pawlak (1991).

Definition 4 Mao (2019) Let K = (O, P, I ) be a formal
context and E ⊆ P × P be defined as: b1Eb2 ⇔ b′

1 = b′
2

for b1, b2 ∈ P . Let [x]E be the equivalence class containing
x for x ∈ P since it is easy to see E to be an equivalence
relation on P . Let (X ,Y ) ⊆ (O, P).

If X �= ∅ and Y �= ∅. Let L(X ,Y ) = {(x, [b]E ∩Y ) | x ∈
X , b ∈ P and b ∈ x ′} and U (X ,Y ) = {(x, [b]E ∪ Y | x ∈
X , b ∈ P and b ∈ x ′}. Let X = {x1, . . . , xn}. Define

R(X ,Y ) =
⎛
⎝ ⋃

(x,[b]E∩Y )∈L(X ,Y )

x,

n⋂
j=1

⎛
⎝ ⋃

(x j ,[b]E∩Y )∈L(X ,Y )

([b]E ∩ Y )

⎞
⎠

⎞
⎠ ;

R(X ,Y ) =
⎛
⎝ ⋃

(x,[b]E∪Y )∈U (X ,Y )

x,

n⋂
j=1

⎛
⎝ ⋃

(x j ,[b]E∪Y )∈U (X ,Y )

([b]E ∪ Y )

⎞
⎠

⎞
⎠ ;

If one of X and Y is ∅. Define

R(∅,Y ) = (∅,Y ) and R(∅,Y ) = (∅, P);
R(X ,∅) = (X ,∅) and R(X ,∅) = (X , X ′).

Lemma 2 Mao (2019) (R, R) satisfies the following state-
ments for any X ⊆ O and Y ⊆ P.

(1) R(X ,Y ) = (X , X ′ ∩ Y ) and R(X ,Y ) = (X , X ′ ∪ Y ).
(2) R(X ,Y ) � (X ,Y ) � R(X ,Y ).
(3) If X �= ∅ and Y �= ∅, then R(X ,Y ) = R(X , Y ) =

(X ,Y ) ⇔ (X ,Y ) ∈ B(K).
(4) R(∅,Y ) = R(∅,Y ) ⇔ (∅,Y ) ∈ B(K). R(X ,∅) =

R(X ,∅) ⇔ (X ,∅) ∈ B(K).
Yao and Yao (2012) gave the following definition and
properties.

Definition 5 Let U be a non-empty set, and C be a family
of subsets of U . If ∅ /∈ C and

⋃
C = U , then C is called a

covering of U .

Lemma 3 A pair of operators APR and APR on a non-
empty set U is a pair of rough set approximations, it should
keep the following properties for all X ⊆ U.

(1) APR(X) ⊆ X ⊆ APR(X).

(2) XisR − definable ⇔ APR(X) = APR(X).

Considered the definition of R-definable by Pawlak (1982,
1991), Definition 5, Lemma 3 with the expression of approx-
imations for knowledge spaces in Xu et al. (2008) and
Stefanutti (2019), we can give the following definition and
Proposition 1.

Definition 6 Let U be a non-empty set, S ⊆ 2U and S �= ∅.
Then, (U ,S) is a knowledge space and S is called basic
knowledge.

Proposition 1 Let (U ,S) be a knowledge space, APR and
APR be a pair operators defined on 2U . Then, (APR, APR)

is a pair of lower and upper approximation operators if and
only if the following properties are satisfied by APR and
APR with a partial order≤ defined on 2U for every X ⊆ U.

(1) APR ≤ X ≤ APR(X).

(2) X ∈ S ⇔ APR(X) = X = APR(X).

3 Generalizedmatroids and approximation
operators

Thefirst duty in this section is to generalizeWhitney classical
matroid model from one set to two sets, that is, to obtain a

123



9790 G. Wang, H. Mao

matroidal structure on two sets—TD-matroid. After that, it is
to discuss how to generalize lower and upper approximation
operators from one set to two sets with the assistance of a
TD-matroid. Another duty is the following: in a given formal
context K = (O, P, I ), using (R, R) on 2O × 2P defined in
Definition 4, it will show how to construct TD-matroids. The
two duties are the fundamental contents to realize the mutual
applications between matroids and rough sets on two sets.

3.1 Fundamental notions and approximation
operators for TD-matroids

Similar to the definition of Whitney classical matroid model
on one set, we provide the definition of a generalized
matroidal structure on two sets as follows.

Definition 7 (1) Let S and T be two sets such that S×T �= ∅.
A two-dimensional matroid, simply TD-matroid, M is S×T
and a collection T ⊆ 2S × 2T (called feasible sets) such that
(T1)–(T3) are satisfied.

(T1) T �= ∅.

(T2) (X1,Y1) ∈ T and(X2,Y2) � (X1,Y1) ⇒ (X2,Y2) ∈ T .

(T3) Let (X1,Y1), (X2,Y2) ∈ T .If(X1,Y1) �= (∅,∅)and

|(X2,Y2)| < |(X1,Y1)|, then(X2,Y2) ∪ (a, b) ∈ T for some

(a, b) ∈ (X1,Y1) \ (X2,Y2)and(a, b) �= (∅,∅).

(2) Two TD-matroids M1 and M2 on S1 ×T1 and S2 ×T2,
respectively, are isomorphic if there are two bijections ϕ1 :
S1 → S2 and ϕ2 : T1 → T2 such that ϕ : S1 ×T1 → S2 ×T2
defined as (x1, y1) �→ (ϕ1(x1), ϕ2(y1)) preserves feasibility.
We write M1 ∼= M2 if M1 and M2 are isomorphic.

We use an example, in which the data are referred to Liu
et al. (2011), to show the existence of TD-matroids.

Example 1 Table 1 is a table information expressed some
specimens of genus Uloma Dejean of China in biology.

In Table 1, “yes” represents an insect has the correspondent
characteristic;

“no” stands for an insect does not have the correspondent
characteristic.

Let S be some specimens of genusUlomaDejeanofChina,
i.e., S = {x1 = U.compressa, x2 = U.latimanus, x3 =
U.contracta, x4 = U.quadratithoraca}.

Let T be some biological characteristics, i.e.,

T = {b1 = Posterior angles of pronotum obtuse,

b2 = Male anterior margin of pronotum not emarginate,

b3 = Anterior margin of clypeus straight}.

Let T = {(∅, {b1, b2, b3}), (∅, {b2, b3}), (x1, {b1, b2, b3}),
(x2, {b1, b2, b3}), ({x1, x2}, {b1, b2, b3}), (x1, {b2, b3}),
(x2, {b2, b3}), ({x1, x2}, {b2, b3})}.

Wemay easily check T to satisfy the conditions (T1), (T2)
and (T3). Hence, (S × T , T ) is a TD-matroid.

Let 1 = yes and 0 = no. Then, Table 1 can be expressed
as Table 2. Hence, (S, T , I ) is a formal context in which I
is shown as Table 2.

Let OB be a non-empty set of some biological specimens
such as insects, AT be a non-empty set of some biological
characteristics, and I ⊆ OB × AT be defined as follows for
(x, y) ∈ OB × AT :

(x, y) ∈ I ⇔ x owns the characteristic y.

Let (X ,Y ) ⊆ OB × AT . Let X ′ stand for the fam-
ily of characteristics who are commonly owned by any of
specimens in X . Then, (X , X ′) ∈ B((OB, AT , I )). In fact,
sometimes, biologists just hope to search out (X , X ′) for any
X ⊆ OB when they study the classification of OB.

Let A1 = {x3, x4} and B1 = {b2}. It is clear to know
A′
1 = x ′

3 ∩ x ′
4 = {b1, b2} ∩ {b2} = {b2} = B1 by Lemma

1(2) and Definition 2. Hence, (A1, B1) ∈ B((S, T , I )) holds
by Definition 2(2) and Remark 2.

Let A2 = {x3} and B2 = B1. Then, we see A2 ⊆ A1

and B2 ⊇ B1. So, (A2, B2) � (A1, B1) holds. However,
A′
2 = x ′

3 = {b1, b2} �= B2 follows (A2, B2) /∈ B((S, T , I ))
using Definition 2(2). Thus, B((S, T , I )) does not satisfy
(T2).

UsingTable 2,we see (x2, x ′
2 = b3), (x3, x ′

3 = {b1, b2}) ∈
B((S, T , I )) such that |(x2, x ′

2)| = 1 + 1 = 2 < 3 =
|(x3, x ′

3)|. However, (x2, x ′
2) ∪ (a, b) /∈ B((S, T , I )) holds

for any (a, b) ∈ (x3, x ′
3) \ (x2, x ′

2) and (a, b) �= (∅,∅). That
is to say, (T3) does not hold for B((S, T , I )).

In other words, (S×T ,B((S, T , I ))) is not a TD-matroid
by Definition 7.

In addition, we may easily know (S × T , T ) �=
B((S, T , I )) since (x2, x ′

2) /∈ T though (x2, x ′
2) ∈

B((S, T , I )).
WithExample 1,we can indicate the following statements.
(1) The structure of T is different from that of

B((S, T , I )), though the two structures are based on the same
ground set S × T . This statement is the same with the gen-
eral idea since the background knowledge for everyone is
perhaps different to solve the same problem based on the
same context.

(2) We will find X ′
2 ⊆ X ′

1 if X1 ⊆ X2 ⊆ S according to
biological knowledge. This is just the same as that demon-
strated by Lemma 1(1). Considering this result with the basic
properties for semiconcept in Vormbrock andWille 2005, we
can indicate that (T2) is correct for the classification of bio-
logical specimens, though it has (S×T , T ) �= B((S, T , I )).

Remark 3 Let (S × T , T ) be a TD-matroid.
(1) We analyze the definition of a TD-matroid, i.e., Defi-

nition 7(1), as follows.
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Table 1 Taxa and data matrix
used in the cladistic analysis of
some species of genus Uloma
Dejean of China

Posterior angles of
pronotum obtuse

Male anterior margin of
pronotumnot emarginate

Anterior margin of
clypeus straight

U.compressa Yes No No

U.latimanus No No Yes

U.contracta Yes Yes No

U.quadratithoraca No Yes No

Table 2 The mathematical
expression of Table 1

b1 b2 b3

x1 1 0 0

x2 0 0 1

x3 1 1 0

x4 0 1 0

(1.1) In Definition 1(1), if S = ∅, then (S, IS) = (∅, {∅})
is a matroid.

In biology, S×T = ∅means no specimens and no biologi-
cal characteristics to be considered. This case has no valuable
for biologists. Hence, Definition 7(1) asks S × T �= ∅. Cor-
respondingly, this paper will suppose S �= ∅ for any matroid
(S, I).

(1.2) Let (X1,Y1), (X2,Y2) ∈ T satisfy |(X2,Y2)| <

|(X1,Y1)| and (X1,Y1) �= (∅,∅).
If Y1\Y2 = ∅ and Y1 ∩ Y2 �= ∅, then |X2| < |X1| holds

since “Y1\Y2 = ∅ andY1∩Y2 ⇒ Y1 ⊆ Y2” and |X2|+|Y2| =
|(X2,Y2)| < |(X1,Y1)| = |X1| + |Y1|. No matter whether
(T2) is satisfied, we can obtain a �= ∅ satisfying (a,∅) ∈
(X1\X2,Y1\Y2), but we do not confirm (X2 ∪ a,Y2) ∈ T
sincewe do not knowwhether X2∪a ⊆ X1 even ifT satisfies
(T2). This shows the essentials of (T3) and the independence
between (T2) and (T3) in Definition 7.

(2) Next, for the restrictive conditions (I1)-(I3) and (T1)-
(T3) on matroid and TD-matroid, respectively, we analyze
the relationships between them.

(2.1) (I1) and (T1) are the same.
(2.2) Let (S×T , I) be a matroid and X = (X1, X2),Y =

(Y1,Y2) ⊆ S × T .
If Y ⊆ X ∈ I, then Y ∈ I since (I2). It is easy to obtain

(Y1,Y2) ⊆ (X1, X2) ⇒ Y1 ⊆ X1 and Y2 ⊆ X2.
If Y2 �= X2, then Y2 ⊇ X2 does not hold. This hints
(Y1,Y2) � (X1, X2) not to be correct. And further, (I2) will
not replace (T2).

If Y � X ∈ T , then Y ∈ T according to (T2). If Y2 �= X2,
then Y2 ⊆ X2 does not hold according to Y2 ⊃ X2. This
means (Y1,Y2) ⊆ (X1, X2) not to be correct. And further,
(T2) will not replace (I2).

Hence, we confirm that (T2) is a new feature which is
different from (I2).

(2.3) By (I1) and (I2), we know (∅,∅) ∈ I. The TD-
matroid in Example 1 satisfies (∅,∅) not to be feasible. It is

easy to see (S × T , {(∅,∅)}) to be a matroid with T �= ∅.
By (T2), (S × T , {(∅,∅)}) is not a TD-matroid. This means
(I1)-(I2) together does not have ability to replace (T1)-(T2).

(2.4) If (I3) and (T3) can replace each other, then
|(∅,∅)| < |(X1, X2)| for (X1, X2) ∈ T \(∅,∅). Using (I3),
we obtain (a, b) ∈ T for ∀(a, b) ∈ (X1, X2), a contradiction
to Example 1 since (x1, b j ) /∈ T , ( j = 1, 2, 3) in Example
1. Hence, (I3) and (T3) cannot replace each other in general.

(3) Every feasible set in a TD-matroid is expressed by
“pairwise” which is different from the classical matroid in
which any independent set is expressed by unary form.

In otherwords, even if (U = S×T , I ⊆ 2U ) be amatroid,
then (S × T , I) may not be a TD-matroid since (T2) cannot
be expressed by (I1)-(I3).

Next, we consider the relationships in respect of properties
between matroids and TD-matroids. For this purpose, we
need the following series lemmas.

Lemma 4 Let S and T be two sets. Let (X j ,Y j ) ⊆ S ×
T , ( j = 1, 2). If (X1,Y1) �= (∅,∅) and |(X2, Y2)| <

|(X1,Y1)|, then (X1,Y1)\(X2,Y2) �= (∅,∅).

Proof (X ,Y ) �= (∅,∅) means that at least one of X and Y is
not to be ∅ for (X ,Y ) ⊆ S × T . According to this meaning,
we will use two cases to finish the proof.

Case 1. (X2,Y2) = (∅,∅).
(X1,Y1) \ (X2,Y2) �= (∅,∅) is followed since

(X1,Y1)\(X2,Y2) = (X1,Y1) �= (∅,∅).
Case 2. (X2,Y2) �= (∅,∅).
Suppose (X1,Y1) \ (X2,Y2) = (∅,∅). Then, there are

X1\X2 = ∅ and Y1\Y2 = ∅ since (X1,Y1)\(X2, Y2) =
(X1\X2,Y1\Y2). Thus, it is easy to find X1 ⊆ X2 and Y1 ⊆
Y2. And further, we receive |X1| ≤ |X2| and |Y1| ≤ |Y2|.
So, it follows |(X1,Y1)| = |X1| + |Y1| ≤ |X2| + |Y2| =
|(X2,Y2)|. This is a contradiction to |(X2,Y2)| < |(X1, Y1)|.

Lemma 4 implies the existence of (a, b) ∈ (X1, Y1)\
(X2,Y2) �= (∅,∅). It also gives a chance of the possibility
for (T3) in Definition 7(1). ��
Lemma 5 Let E, S and T be three sets. Then, the following
statements are correct.

(1) Let S �= ∅. If (S × T , TS) is a TD-matroid, then (S, IS)
is a matroid, where IS = {X ⊆ S | (X ,Y ) ∈ TS for
some Y ⊆ T }.
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Table 3 Comparison the structures between matroid and TD-matroid

Background set Dimension of background set Decisive conditions Replacement

(E, I), a E One (I1)–(I3) (E × ∅, I × ∅), a

matroid TD-matroid with E �= ∅
(S × T , T ), a S × T Two (T1)–(T3) (S × ∅, T ),a

TD-matroid matroid with S �= ∅

(2) Let E �= ∅and (E, IE )beamatroid. Then, (E×∅, TE ) is
a TD-matroid where TE = {(X ,∅) | X ⊆ E, X ∈ IE }.

Lemma 5 can be easily verified by checking IS and TE to sat-
isfy (I1)–(I3) and (T1)–(T3), respectively. Its proof is omitted.

Remark 4 (1) We analyze Lemma 5 as follows
Let (S × T , T ) be a TD-matroid. If S = ∅, then T �= ∅

holds since S × T �= ∅. By Lemma5, we can obtain IT =
{Y ⊆ T | (X ,Y ) ∈ T for some X ⊆ S} to be a matroid
since “S×T �= ∅ and S = ∅′′ ⇒ “T �= ∅”. Combining with
Lemma 5, no matter S = ∅ or S �= ∅, we always construct
a matroid based on (S × T , T ). Hence, we only need to pay
attention to the case of S �= ∅.

According to the above and item (1) in Remark 3, we ask
S �= ∅ and E �= ∅ in Lemma 5.

(2) Let (S, I) be a matroid with S �= ∅.
Let E = S×∅. Then,wemayobtain (E, I×∅ = {(X ,∅) |

X ∈ I}) to be a matroid according to Definition 1.
Let f : E → E ×∅ as x �→ (x,∅). Then, it is easy to see

f to be an isomorphic map between (S, I) and (E, I × ∅)

using item (2) in Definition 1.
Combining the above andLemma5,we canobtainTable3.

Lemma 6 Let (S j × Tj , TS j ) be a TD-matroid, (E j , IE j ) be
a matroid, and IS j , TE j be defined as Lemma 5 on the sets S j

and E j × ∅, respectively, where S j �= ∅ and E j �= ∅, ( j =
1, 2). Then,

(1) (S1×T1, TS1) ∼= (S2×T2, TS2) ⇒ (S1, IS1) ∼= (S2, IS2).
(2) (E1, IE1)

∼= (E2, IE2) ⇒ (E1 × ∅, TE1)
∼= (E2 ×

∅, TE2).

Lemma 6 can be easily verified by combining Lemma 5 and
Definition 1(2) with Definition 7(2) and its proof is omitted.

Theorem 1 Under the idea of isomorphism of matroids in
Definition 1(2) and the idea of isomorphism of TD-matroids
in Definition 7(2), the correspondence between a matroid
(E, IE ) and the TD-matroid (E × ∅, TE ) is a bijection
between the set of matroids and the set of TD-matroids in
the forms (S × ∅, T ) where S �= ∅.
Proof It is straightforward by Definition 1(2) and Definition
7(2), Lemmas 5 and 6. ��

Remark 5 However, a TD-matroid on S ×∅ is a special kind
of TD-matroids where S �= ∅. Considered Theorem 1, we
can say that the definition of a TD-matroid is an extension of
the definition of Whitney classical matroid from one set S to
two sets S and T . In other words, TD-matroid is a matroidal
structure. Hence, Definition 7 is meaningful.

For matroidal structures on one set, some researchers use
rough set to study on them (Hu and Yao 2019; Li et al. 2016,
2019;Wang et al. 2019; Zhu andWang 2011). Here, for a TD-
matroid on two sets, we will apply rough set to research on it
since TD-matroid is a matroidal structure by Theorem 1. The
basic work of the application is to explore the relationships
between TD-matroids and approximation operators. Hence,
our work now is to construct a pair of approximation opera-
tors using a TD-matroid.

According to Definition 6, a TD-matroid (S × T , T ) is
a knowledge space with T as the set of basic knowledge.
Hence, we will seek approximation operators based on the
knowledge space (S × T , T ), i.e., on a TD-matroid.

Definition 8 Let (S × T , T ) be a TD-matroid. Let (A, B) ⊆
(S, T ). Define

low(A, B) = {(X ,Y ) | (X ,Y ) ∈ T , (X ,Y ) � (A, B)};
upr(A, B) = {(X ,Y ) | (X ,Y ) ∈ T , (A, B) � (X ,Y )};
MR(A, B) = (∪(X ,Y )∈low(A,B)X ,∩(X ,Y )∈low(A,B)Y );
MR(A, B) = (∩(X ,Y )∈upr(A,B)X ,∪(X ,Y )∈upr(A,B)Y ) if

upr(A, B) �= ∅.

MR(A, B) = (S,∅) if upr(A, B) = ∅.

We analyze Definition 8 as follows.

Remark 6 Let (S × T , T ) be a TD-matroid.
On one hand, T �= ∅ is correct by (T1). We confirm

(∅, T ) ∈ T since (∅, T ) � (X ,Y ) ∈ T and (T2). And fur-
ther, it induces low(A, B) �= ∅ since (∅, T ) � (A, B) and
(∅, T ) ∈ T . Hence, the definition of MR(A, B) is effective
and well defined.

On the other hand, if upr(A, B) �= ∅, then MR(A, B)

is well defined. If upr(A, B) = ∅, then by the definition
of MR for upr(A, B) �= ∅, there is MR(A, B) = (S,∅)

since ∩∅⊆S∅ = S and ∪∅⊆T∅ = ∅. This also shows the
correct of MR(A, B) = (S,∅) if upr(A, B) = ∅ in Def-
inition 8. Definition 8 provides the different expressions
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for upr(A, B) �= ∅ and upr(A, B) = ∅ so as to express
MR(A, B) more clearly. In one word, MR(A, B) is effec-
tive.

Considering Definition 8, we will find the following lemma.

Lemma 7 Let (S×T , T ) be a TD-matroid. Then, the follow-
ing statements are correct for any (A, B) ⊆ (S, T ).

(1) MR(A, B) � (A, B) � MR(A, B).
(2) (A, B) ∈ T ⇒ MR(A, B) = (A, B) = MR(A, B).
(3) If upr(A, B) �= ∅, then MR(A, B) = (A, B) =

MR(A, B) ⇒ (A, B) ∈ T .

The proof of Lemma 7 can be found in Appendix.

Remark 7 We analyze the condition upr(A, B) �= ∅ in
Lemma 7 as follows.

Let upr(A, B) = ∅. We see MR(A, B) = (S,∅) by
Definition 8. If MR(A, B) = (A, B) = MR(A, B), then
(A, B) = (S,∅). However, in some TD-matroid, (S,∅) ∈ T
does not hold. For example, the TD-matroid (S × T , T ) in
Example 1 satisfies (S,∅) = ({x1, x2, x3, x4},∅) /∈ T .

In otherwords, the pre-condition upr(A, B) �= ∅ is neces-
sary for MR(A, B) = (A, B) = MR(A, B) ⇒ (A, B) ∈ T
in Lemma 7 (3).

Combining Remarks 6 and 7 with Lemma 7, we can
demonstrate the following theorem.

Theorem 2 Let (S × T , T ) be a TD-matroid. If MR and
MR are defined as Definition 8, then for (A, B) ⊆ (S, T )

and upr(A, B) �= ∅, there are the following statements.

(1) MR(A, B) � (A, B) � MR(A, B).
(2) MR(A, B) = (A, B) = MR(A, B) ⇔ (A, B) ∈ T .

Proof It is routine verification from Lemma 7. ��
Remark 8 We analyze MR and MR as follows.

(1) For any (A, B) ∈ T , we confirm upr(A, B) �= ∅ since
(A, B) � (A, B) ∈ T ⇒ (A, B) ∈ upr(A, B). Hence,
using Theorem 2, MR and MR together provides an idea to
characterize T .

Under the case of upr(A, B) = ∅ for (A, B) ⊆ S × T ,
we can use MR(A, B) to approximate (A, B), namely, use
MR(A, B) to infer the information existed in (A, B). If
upr(A, B) �= ∅, then Theorem 2 shows MR and MR to
be approximation operators by Proposition 1.

Additionally, MR and MR are described as binary form
which is different from the known rough set approximation
operators definedonone set and that on twonon-empty sets. It
is a new expression with an information table and knowledge
database. Hence, it is better to say that a pair of operators

by binary form is to be approximation operators if the pair
satisfies most of properties in Proposition 1 which is satisfied
by approximation operators on one set.

Based on the above analysis, (MR, MR) is roughly called
lower and upper approximation operators defined by the
basic knowledge T in knowledge space (S × T , T )—a TD-
matroid using Definition 6 and Proposition 1. In other words,
(MR, MR) is a pair of approximation operators in a knowl-
edge space (S × T , T ), or said an information system, with
TD-matroid constraints. Using (MR, MR), we can extract
information from (S × T , T ) by rough set theory.

(2) For a family OB of collected biological specimens
such as insects and a family AT of some biological character-
istics, sometimes biologists hope to consider to approximate
some information based on the known information T ⊆
2OB × 2AT which is the family of feasible sets of a TD-
matroid. Under this view, the lower MR and upper MR of
approximation operators may play an important role.

Let upr(A, B) = ∅ for some (A, B) ⊆ OB × AT . Def-
inition 8 points MR(A, B) = (S,∅). This means that there
does not exist any known biological information to give a
hand for biologists to guess the biological knowledge existed
in (A, B) with aspect of MR(A, B). Under this case, if biol-
ogists hope to obtain the results by their guesses using the
known information T , then MR may give their help. Thus,
(MR, MR) will assist biologists to do their research.

The following example illustrates Lemma 7 and Theorem
2.

Example 2 Let S, T and T be given in Example 1.
Let A1 = {x1, x2} and B1 = {b1, b2}. Then,

low(A1, B1) = {(X ,Y ) ∈ T | (X ,Y ) � (A1, B1)}
= {(∅, {b1, b2, b3}), (x1, {b1, b2, b3}),

(x2, {b1, b2, b3}), ({x1, x2}, {b1, b2, b3})},
upr(A1, B1) = {(X ,Y ) ∈ T | (A1, B1) � (X ,Y )} = ∅.

Thus,

MR(A1, B1) = (∅ ∪ x1 ∪ x2 ∪ {x1, x2},
{b1, b2, b3} ∩ {b1, b2, b3}
∩{b1, b2, b3} ∩ {b1, b2, b3})
= ({x1, x2}, {b1, b2, b3})

and MR(A1, B1)) = ({x1, x2, x3, x4},∅).
Let A2 = {x1} and B2 = {b2, b3}. Then,

low(A2, B2) = {(X ,Y ) ∈ T | (X ,Y ) � (A2, B2)}
= {(∅, {b1, b2, b3}), (∅, {b2, b3}),
(x1, {b2, b3}), (x1, {b1, b2, b3})}

upr(A2, B2) = {(X ,Y ) ∈ T | (A2, B2) � (X ,Y )}
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= {(x1, {b2, b3}), ({x1, x2}, {b2, b3})}.

So, MR(A2, B2) = (∅∪∅∪ x1∪ x1, {b1, b2, b3}∩{b2, b3}∩
{b2, b3} ∩ {b1, b2, b3})

= (x1, {b2, b3}) and MR(A2, B2) = (x1 ∩ {x1, x2},
{b2, b3} ∪ {b2, b3}) = (x1, {b2, b3}).
From the above, we summarize the results as follows:

(1) (A1, B1) /∈ T , upr(A1, B1) = ∅, MR(A1, B1) =
(S,∅) and MR(A1, B1) �= MR(A1, B1);

(2) (A2, B2) ∈ T and MR(A2, B2) = MR(A2, B2) =
(A2, B2);

(3) MR(Ai , Bi ) � (Ai , Bi ) � MR(Ai , Bi ), (i = 1, 2).

The above results not only show the condition
upr(A, B) �= ∅ to be a necessary condition forMR(A, B) =
(A, B) = MR(A, B) ⇒ (A, B) ∈ T where (A, B) ⊆
S×T , but also examine the correct of Theorem2. In addition,
upr(A1, B1) = ∅ demonstrates the correct of the description
in Remark 8(2) for upr(A1, B1) = ∅.
Remark 9 In Example 2, we find (A1, B1) /∈ T , upr(A1, B1)

= ∅ and
⋃

T �= (S, T ). In Pawlak classical rough set
approximation operators model, the family of all of classes
for an equivalent relation R on a non-empty set U satisfies⋃

x∈U [x]R = U . That is to say, {[x]R | x ∈ U } is a covering
of U in view of Definition 5. Some researchers considered
rough set approximation operators relative to matroid (U , I)

under the supposition
⋃

I = U (e.g.,Li et al. 2016 ), i.e.,
I is a covering of U by Definition 5. In fact, if the family
of specimens collected by biologists is in notations S, then
under somecases, the setT of knownknowledgeof biologists
does not always satisfy

⋃
T = (S, T ), where T is the set of

biological characteristics considered by biologists for every
specimen in S. For example, in Example 1, there is

⋃
T =

({x1, x2}, {b1, b2, b3}) �= ({x1, x2, x3, x4}, {b1, b2, b3}) =
(S, T ). Hence, we do not ask

⋃
T = (S, T ) for TD-matroid.

It is easy to know the relevant results of TD-matroid here to
be correct if

⋃
T = (S, T ) according to the definition of

TD-matroid in Definition 7.
The following is to consider some further properties for

MR and MR.

Lemma 8 Let (S × T , T ) be a TD-matroid. If (A1, B1) �
(A2, B2) ⊆ S × T , then the following statements hold.

(1) MR(A1, B1) � MR(A2, B2).
(2) MR(A1, B1) � MR(A2, B2).
The proof of Lemma 8 can be found in Appendix.
The following example shows the correct of Lemma 8.

Example 3 Let S, T and T be given in Example 1, and
(A1, B1) be given in Example 2.

Let A3 = {x1} and B3 = {b1, b2, b3}. Then, (A3, B3) �
({x1, x2}, {b1, b2}) = (A1, B1) holds.

Using Example 1, we see (A3, B3) ∈ T . So, combining
with Lemma 7, we receive MR(A3, B3) = MR(A3, B3) =
(A3, B3).

Using Example 2, we see

MR(A1, B1) = ({x1, x2}, {b1, b2, b3});
MR(A1, B1) = ({x1, x2, x3, x4},∅).

Hence, we obtain MR(A3, B3) � MR(A1, B1) and
MR(A3, B3) � MR(A1, B1).

By an extension of Lemma 8, we find the following corol-
lary.

Corollary 1 Let MR and MR be defined as Definition 8.
Then, MR and MR are two order-preserving mappings from
(2S × 2T ,�) to (2S × 2T ,�), and further from (T ,�) to
(T ,�).

Corollary 1 is straightforward to be verified by Definition
3 and the definition of �. Its proof is omitted.

Remark 10 In the research of biology, sometimes biologists
express their results with the form of posets, for example,
phylogenetic tree is a construction of poset. Lemma 8 and
Corollary 1 imply that the two approximation operators MR
and MR preserve the “construction” of a known information
system T with respect of posets where T is the set of feasible
sets of aTD-matroid. In fact, this assertion shows that in some
biological research, MR and MR own the ability to keep the
structure of thewhole spacewhich is considered by biologists
and the structure of basic knowledge of biologists.

Comparison and analysis
There are many models for rough set approximation oper-

ators. We just compare (MR, MR) to some other famous
models.

(1) Table 4 is the comparison between (MR, MR), or
say TD-matroid approximation operators model, and the pair
(R, R), the approximation operatorsmodel defined inPawlak
classical rough set.

Let MR and MR be produced by a TD-matroid (S ×
T , T ), respectively.

Let U be a non-empty set, R be an equivalence relation
on U , [x]R be a category in R containing x ∈ U .

With the aspect of express form, (MR, MR) and (R, R)

cannot replace each other.
Suppose U = S × T . (R, R) cannot be replaced by

(MR, MR) since 2S×T �= 2S × 2T in general. For exam-
ple, let S and T be given in Example 1. We may easily know
2S×T �= 2S × 2T .

Generally, {[x]R | x ∈ U } does not satisfy (I3) since
0 < |[x]R | < |[y]R | ⇒ |[x]R | �= |[y]R | for x, y ∈ U .
And further, [x]R ∪ a /∈ R holds for any a ∈ [y]R . For
example, let S and T be given in Example 1. Let U0 =
S ∪ {x5 = U.formosana}. Let x, y ∈ U0. Define R0 as:
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Table 4 Comparison between
(MR, MR) and Pawlak
classical (R, R)

Operator Domain Range Based space Basic knowledge Express form

(MR, MR) 2S × 2T 2S × 2T (S × T , T ) T Binary

(R, R) 2U 2U (U , R) {[x]R | x ∈ U } Unary

x R0y ⇔ x ′ = y′. It is easy to see the binary relation R0

given here to be an equivalence one on U0. Thus, [x]R0 =
{y ∈ U0 | x ′ = y′} holds for x ∈ U0. Using Liu et al. (2011),
we know the relationships between U.formosana and T as:
corresponding to “Posterior angles of pronotum obtuse” is
“yes”; for the other two “Male anterior margin of pronotum
not emarginate” and “Anterior margin of clypeus straight”,
they are “not,” respectively. (S ∪ x5 = U0, T , I ) can be
expressed in Table 5.
Then, we obtain [x1]R0 = {x1, x5} and [x2]R0 = {x2} sat-
isfying |[x2]R0 | = 1 < 2 = |[x1]R0 |. However, [x2]R0 ∪
x1 = {x1, x2} /∈ R0, [x2]R0 ∪ x5 = {x2, x5} /∈ R0 since
[x j ]R0 = {x j }, ( j = 2, 3, 4).

Hence, in general, {[x]R | x ∈ U } cannot produce a
matroid onU according to (I3). And further, (U ×∅, {[x]R ×
∅ | x ∈ U }) is not a TD-matroid since Theorem 1 and
the above closest result. Moreover, (U , R) cannot produce
(MR, MR) though (R, R) is produced by (U , R). There-
fore, even under the idea of Theorem 1, (MR, MR) cannot
be replaced by (R, R).

Let S1 = {s} �= ∅ and T1 = ∅. Then, wemay easily obtain
(S1 × T1, T1 = 2S1 = {(∅,∅), (s,∅)}) to be a TD-matroid,
and (S1, IS1 = {∅, s}) to be a matroid by Theorem 1. Under
this case, MR(∅,∅) = (∅,∅) = MR(∅,∅) and MR(s,∅) =
(s,∅) = MR(s,∅) hold. That is, MR(A, B) = (A, B) =
MR(A, B) holds for any (A, B) ⊆ S1×T1. Define a relation
R1 on S1 : x R1y ⇔ x = y. Thus, R1 is an equivalence
relation on S1. For any X ⊆ S1, there are R1(X) = X =
R1(X) where (R1, R1) is defined by Pawlak (1982, 1991).
Since S1 × ∅ is isomorphic to S1 under the isomorphic of
sets, we can state (MR, MR) expressed here for S1 × T1
to be (R1, R1) under the idea of isomorphism of sets. This
means that (MR, MR) and (R, R) can replace each other for
some cases under isomorphism.

(2) For rough set model over two non-empty sets, we will
compare (MR, MR)with the other three famous approxima-
tion operators. One is the model of Yao (2015), the second is
that of Yao et al. (1995), and the third is the one of Pedrycz
and Bargiela (2002).

Let (MR, MR) be produced by a TD-matroid (S×T , T ).
Let U , V be two non-empty sets.
Let (apr

A
, apr A) be the approximation operators defined

by Yao (2015). Let I S = (U , V , {va | a ∈ A}, {Ia | a ∈
A}) be an information system expressed by Yao (2015),
DEFA(I S) be the family of all A-definable sets in I S and
∅ �= A ⊆ V such that ∅,U ∈ DEFA(I S). Let {DEFA(I S) |
A ⊆ V } be DS for short.

Table 5 The mathematical
expression of
(S ∪ x5 = U0, T , I )

b1 b2 b3

x1 1 0 0

x2 0 0 1

x3 1 1 0

x4 0 1 0

x5 1 0 0

Let (RF , RF ) be the approximation operators defined by
Yao et al. (1995). Let R be a compatibility relation from U
to V , F : U → 2V , F(u) = {v ∈ V | (u, v) ∈ R}, RF =
{x ∈ U | F(x) ⊆ Y }, RF = {x ∈ U | F(x) ∩ Y �= ∅}.

Let (Rr , Rr ) be the approximation operators defined by
Pedrycz and Bargiela (2002). Let F : 2U → 2V as X �→⋃{F(x) | x ∈ X}.

The comparisons between (MR, MR) and (apr
A
, apr A),

(RF , RF )(Rr , Rr ) are shown as Table 6.
Using Table 6, we can obtain the following results by

comparing.
With the aspect of express form, (MR, MR) cannot be

replaced by any of the other three pairs of rough set approx-
imation operators. At the same time, any of the other three
operators (apr

A
, apr A), (RF , RF ) and (Rr , Rr ) cannot be

replaced by (MR, MR).
In an information system onU ×V , it hasU �= ∅, V �= ∅

andU∩V = ∅.We confirm that between (MR, MR) andone
of the three (apr

A
, apr A), (RF , RF ) and (Rr , Rr ), it cannot

replace each other since 2U �= 2U × 2V and 2V �= 2U × 2V .
It will do more detail comparing and analysis for the

relationships between (MR, MR) and one of the three
approximation operators.

(2.1) Comparing: (MR, MR) and (apr
A
, apr A).

Though under isomorphism of sets, 2U is isomorphic to
2U × 2V if V = ∅. With the aspect of knowledge space,
(apr

A
, apr A) ask U ∈ DEFA(I S). Under isomorphism of

sets,U is isomorphic to (U ,∅). (U ,∅) cannot always belong
to T according to Definition 1, Definition 7 and Theorem 1.
For example, in Example 1, (U ,∅) /∈ T holds if U = S.
Hence, (apr

A
, apr A) cannot replace (MR, MR).

(apr
A
, apr A) is based on A ⊆ V . It cannot determine

DEFA1(I S) = DEFA2(I S) for A1, A2 ⊆ V and A1 �= A2.
So, if A1, A2 ⊆ V and A1 �= A2, then it cannot deter-
mine apr

A1
(X) = apr

A2
(X) and apr A1

(X) = apr A2
(X)

for X ⊆ U . However, for one X ⊆ U , MR(X , A)
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Table 6 Comparison between
(MR, MR) and (apr

A
, apr A),

(RF , RF ), (Rr , Rr )

Operator Domain Range Based space Basic knowledge Express form

(MR, MR) 2S × 2T 2S × 2T (S × T , T ) T Binary

(apr
A
, apr A) 2U 2U (I S,DS) DS Unary

(RF , RF ) 2V 2U (U , V , R) {F(x) | x ∈ U } Unary

(Rr , Rr ) 2V 2V (U , V , R) {F(X) | X ⊆ U } Unary

and MR(X , A) are deterministic according to Definition 8.
Hence, (MR, MR) cannot replace (apr

A
, apr A).

The above comparison and analysis together mean that
generally, (MR, MR) and (apr

A
, apr A) cannot replace each

other.
Let ∅ �= V ⊆ V , and every X ⊆ V be an A-definable for

any A ⊆ V . Then, it is easy to see DEFA(I S) = 2U , and
further {DEFA(I S) | A ⊆ V } = 2U , and apr

A
(X) = X =

apr A(X) for any A ⊆ V and X ⊆ U . Using Definition 1,
we obtain (U , 2U ) to be a matroid. So, (U × ∅, 2U × 2∅ =
(2U ,∅) = TU ) is a TD-matroid by Definition 7 or by The-
orem 1. Under this case, we receive MR(X ,∅) = (X ,∅)

and MR(X ,∅) = (X ,∅). Thus, under the idea of isomor-
phism of sets, we can say apr

A
(X) = MR(X ,∅) and

apr A(X) = MR(X ,∅) for any X ⊆ U since X is iso-
morphic to (X ,∅). This status indicates that for some cases,
(MR, MR) and (apr

A
, apr A) can replace each other under

isomorphism of sets.
(2.2) Comparing: (MR, MR) and (RF , RF ).
It does not confirm the basic knowledge {F(x) | x ∈ U }

to be the family of independent sets of a matroid on V . For
example, let (U , V , R) be a formal context. Define F(u) =
u′ for any u ∈ U . So, it gets {F(x) | x ∈ U } = {x ′ | x ∈ U }.
Using Definitions 1 and 2, we may easily know {F(x) | x ∈
U } not always to be the family of a matroid on V , though
sometimes it is. Hence, in general, (RF , RF ) cannot replace
(MR, MR) even by the idea of isomorphism of matroids
and by Theorem 1. Meanwhile, (MR, MR) cannot replace
(RF , RF ) generally.

If R is defined as (x, y) /∈ R for any x ∈ U and every
y ∈ V , then F(u) = {v ∈ V | (u, v) ∈ R} = ∅ holds for
any u ∈ U . And further, if Y ⊆ V , we obtain RF (Y ) = {x ∈
U | F(x) ⊆ Y } = U and RF (Y ) = {x ∈ U | F(x) ∩ Y �=
∅} = ∅. So, it gets {F(x) | x ∈ U } = {∅} ⊆ 2V .

It is easy to know (V , {∅}) to be a matroid. By Theorem
1, this matroid corresponds to a TD-matroid (V × ∅, TV =
{(∅,∅)}).

Let (A, B) ⊆ T × ∅. Then, by Definition 8, there are
low(A, B) = low(A,∅) = {(∅,∅)} and upr(A, B) =
upr(A,∅) = ∅, and further, MR(A, B) = (

⋃ ∅,
⋂ ∅) =

(∅,∅) and MR(A, B) = (
⋂ ∅,

⋃ ∅) = (V ,∅).
Since V given above is the set of attributes and U is

the set of objects in the space (U , V , R) provided by Yao
et al. (1995). However, in the set V × ∅, V is the family of

objects. In order to make it intuitive with aspect of corre-
sponding (RF , RF ) and the approximation operators given
in Definition 8, we use the dual operators (MR∗, MR

∗
) of

(MR, MR) on ∅ × U , we can obtain MR∗(∅, B) = (∅,U )

and MR
∗
(∅, B) = (∅,∅) for any B ⊆ U .

Therefore, under the isomorphismof set, it has (∅,U ) to be
isomorphic to U . We obtain (RF , RF ) to be (MR∗, MR

∗
).

In other words, under the duality and the isomorphism,
(RF , RF ) and (MR, MR) are the same for some spe-
cial cases. Hence, for some special cases, (MR, MR) and
(RF , RF ) can replace each other under isomorphism of sets
and the duality.

(2.3) Comparing: (MR, MR) and (Rr , Rr ).
From the descriptions in Pedrycz and Bargiela (2002) and

Shao et al. (2018),we know (Rr , Rr ) to be the revised version
of (RF , RF ) on the space (U , V , R) where R is an arbitrary
compatibility relation. Hence, similarly to (2.2), we confirm
that (Rr , Rr ) and (MR, MR) cannot replace each other in
general, though (Rr , Rr ) and (MR, MR) are the same for
some special cases under some ideas.

(2.4) Consequence.
Summarizing all of the above discussions for the rela-

tionships between (MR, MR) and any of (apr
A
, apr A),

(RF , RF ) and (Rr , Rr ), we find that each of (MR, MR),
(apr

A
, apr A), (RF , RF ) and (Rr , Rr ) has its own features.

Between (MR, MR) and one of the other three, any of them
cannot replace the other one, but they have some intersection
up to some ideas and for some cases.

These comparisons and analysis indicate that (MR, MR)

is different from the existed rough set approximation oper-
ators on two sets. (MR, MR) is a new pair of rough set
approximation operators on two sets and has the value of
its own development. It is a complement for the research of
rough set approximation operators.

The research route in this subsection is as follows:

(S × T , T ), a TD-matroid,

�⇒ (MR, MR),

a pair of approximation operators, roughly say

This route is exactly to apply matroid theory to the research
of rough set theory.
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It is probably more interesting to find the converse of
the above route. That is, on two sets, how to establish TD-
matroids using a pair of given approximation operators?
Since any pair of approximation operators are defined by
some given information. Hence, the above question can be
expressed in detail as: how to establish TD-matroids using
a pair of rough set approximation operators based on some
given information on two sets.

The two approximation operators MR and MR are based
on the known information system T which is a family of
feasible sets of a TD-matroid. However, some information
system is not expressed as the family T mentioned above.
For example, as one of themain tool to extract information—
FCA, the set B(K) in a formal context K is perhaps not to
be the family of feasible sets of a TD-matroid, for instance,
(S × T ,B((S, T , I ))) in Example 1 is not a TD-matroid.
Hence, it is necessary to answer the above question for a
pair of approximation operators which are based on B(K).
Namely, it is necessary to find a way to establish some TD-
matroids with a pair of approximation operators based on
B(K). This will be done in the coming subsection.

3.2 TD-matroids based on approximation operators
R and R

In this subsection, how to establish TD-matroids with R and
R will be solved, where R and R are given in Definition 4.
(R, R) is a pair of approximation operators on O × P based
on B(K) in which K = (O, P, I ) according to items (2)-
(4) in Lemma 2 and Proposition 1 for (X ,Y ) ⊆ O × P and
X �= ∅ and Y �= ∅. In other words, it will realize the converse
route in the last subsection, that is,

R and R, a pair of approximation operators on O × P,

roughly say �⇒ some TD-matroids .

The realization of this route belongs to the applied fields of
rough set theory into matroid theory.

Theorem 3 Let K = (O, P, I ) be a formal context, and R
and R be given in Definition 4. For (A, B) ⊆ (O, P), let

T(A,B)(R)

= {(X ,Y ) | (X , Y ) ⊆ (O, P), R(X ,Y ) � (A, B)};

T(A,B)(R)

= {(X ,Y ) | (X ,Y ) ⊆ (O, P), R(X ,Y ) � (A, B)}.

Then, the following statements are correct.

(1) (O × P, T(A,B)(R)) is a TD-matroid.

(2) (O × P, T(A,B)(R)) is a TD-matroid if B ⊆ A′.

Item (1) in Theorem 3 is easily verified by Definition 7(1) and
its proof is omitted. The proof of Theorem 3(2) can be found
in Appendix.

The following example shows that for some (A, B) ⊆ O×
P, (O× P, T(A,B)(R)) can be a TD-matroid even if B � A′.

Example 4 Let O = {x1, x2, x3, x4}, P = {b1, b2, b3} and I
be shown in Table 2.

Let A1 = {x1, x2} and B1 = {b3}. Let T(A1,B1)(R) =
{(X ,Y ) ⊆ O × P | R(X ,Y ) � (A1, B1)}. Then, we obtain
the following results:

(1) A′
1 = {x1, x2}′ = x ′

1 ∩ x ′
2 = ∅ ⇒ B1 � A′

1;
(Definition 2 and Lemma 1(2)).

(2) (∅,Y ), (x2,Y ) ∈ T(A1,B1)(R) for Y ∈ 2{b1,b2,b3};
(∅′ = P ⊇ Y , x ′

2 = b3,Lemma 2(1)).

(3) (x1,Y ), ({x1, x2},Y ) ∈ T(A1,B1)(R)

for Y ∈ {b3, {b1, b3}, {b2, b3}, {b1, b2, b3}};
(x ′

1 = b1, {x1, x2}′ = ∅,Lemma 2(1)).

Since R(X ,Y ) � (A1, B1) and Lemma 2(1) together ask
(X , X ′ ∪Y ) � (A1, B1), namely, X ⊆ A1 and X ′ ∪Y ⊇ B1.
X ⊆ A1 implies X ∈ 2A1 = {∅, x1, x2, {x1, x2}}. Using
Table 2, Definition 2 and Remark 2, we obtain ∅′ = P, x ′

1 =
{b1}, x ′

2 = {b3} and {x1, x2}′ = x ′
1 ∩ x ′

2 = ∅. X ′ ∪ Y ⊇ B1

implies b3 ∈ X ′ ∪ Y . Hence, we infer that

if X = ∅, then b3 ∈ P ∪ Y = P for any Y ∈ 2{b1,b2,b3};
if X = {x1}, then b3 ∈ b1 ∪ Y ⇒ b3 ∈ Y ;
if X = {x2}, then b3 ∈ x3 ∪ Y for anyY ∈ 2{b1,b2,b3};
if X = {x1, x2}, then b3 ∈ ∅ ∪ Y ⇒ b3 ∈ Y .

Moreover, we obtain T(A1,B1)(R) = {(∅,Y ) | Y ∈
2{b1,b2,b3}}∪{(x1,Y ) | Y ∈ {b3, {b1, b3}, {b2, b3},
{b1, b2, b3}}} ∪ {(x2,Y ) | Y ∈ 2{b1,b2,b3}} ∪ {({x1, x2}, Y ) |
Y ∈ {b3, {b1, b3}, {b2, b3}, {b1, b2, b3}}}.

Here, B1 � A′
1 holds, but we may easily prove (O ×

P, T(A1,B1)(R)) to be a TD-matroid.

Remark 11 (1) In Theorem 3(2), it asks B ⊆ A′. Actually,
the condition B ⊆ A′ is only used in the proof of Case 2
when we check (T3) for T(A,B)(R). Next, we analyze the
corresponding proof as follows:

Assume Y1\Y2 = ∅. Then, (a, b) ∈ (X1,Y1)\(X2, Y2) =
(X1\X2,∅) holds. Under this assumption, if the following
(�1) and (�2), two possible and reasonable suppositions, hap-
pen

(�1) If (X ′
2 ∩ a′) ∪ Y2 ⊂ X ′

2 ∪ Y2

holds since (X ′
2 ∩ a′) ∪ Y2 ⊆ X ′

2 ∪ Y2.

(�2) If X ′
2 ∪ Y2 = B holds since the following statements

123



9798 G. Wang, H. Mao

R(X2,Y2) � (A, B)

⇒ R(X2,Y2) = (X2, X
′
2 ∪ Y2) � (A, B)(Lemma 2(1))

⇒ X ′
2 ∪ Y2 ⊇ B(Definition of �)

Then, it is clear (X ′
2 ∩ a′) ∪ Y2 ⊂ X ′

2 ∪ Y2 = B. So, R(X2 ∪
a,Y2) = (X2 ∪ a, (X2 ∪ a)′ ∪ Y2) = (X2 ∪ a, (X ′

2 ∩ a′) ∪
Y2) �� (A, B) is correct by Lemma 2(1), Lemma 1(1) and
the definition of �. That is to say, (X2 ∪ a,Y2) /∈ T(A,B)(R)

holds. This means T(A,B)(R) not to satisfy (T3). In other
words, (S × T , T(A,B)(R)) is not a TD-matroid. In addition,

(X2,Y2) ∈ T(A,B)(R) ⇒ R(X2,Y2) � (A, B)

(definition of T(A,B)(R))

⇒ (X2, X
′
2 ∪ Y2) � (A, B)

(Lemma 2(1))

⇒ X2 ⊆ A and X ′
2∪

Y2 ⊇ B(definition of �)

⇒ X ′
2 ⊇ A′ and

X ′
2 ∪ Y2 ⊇ B

(Lemma 1(1))

⇒ B = X ′
2 ∪ Y2 ⊇ X ′

2 ⊇
A′((�2))
⇒ B � A′

The above analysis shows that B � A′ holds, and
T(A,B)(R) is not the family of feasible sets of any of TD-
matroids on O × P under the assumption and suppositions.

(2) Combining the above analysis (1) and Example 4 with
Theorem 3, we confirm B ⊆ A′ to be a necessary condition
for deciding (S × T , T(A,B)(R)) to be a TD-matroid.

(3) The results of Theorem 3 also illustrate the importance
to study on TD-matroids since T(A,B)(R) is the family of

feasible sets of aTD-matroid, andT(A,B)(R) is also the family
of feasible sets of a TD-matroid if B ⊆ A′.
Corollary 2 Let K = (O, P, I ) be a formal context, and
R and R be given in Definition 4. Let (A, B) ⊆ O × P.
Let T(A,B)(R) and T(A,B)(R) be given in Theorem 3. Then,

T(A,B)(R) ⊆ T(A,B)(R).

Proof Let (X ,Y ) ⊆ O×P . If (X ,Y ) ∈ T(A,B)(R). Then, by
Lemma 2(1), this means (X , X ′ ∩ Y ) = R(X ,Y ) � (A, B).
And further, X ⊆ A and X ′ ∩Y ⊇ B hold using Lemma 2(1)
and the definition of �. In addition, X ′ ∩ Y ⊆ X ′ ∪ Y holds.
So, it gets B ⊆ X ′ ∪ Y . Moreover, we receive (X , X ′ ∪
Y ) = R(X ,Y ) � (A, B) by Lemma 2(1). That is to say,
(X ,Y ) ∈ T(A,B)(R) holds. ��

For T(A,B)(R) and T(A,B)(R) given in Theorem 3, we con-
tinue to discuss their properties.

Theorem 4 Let K = (O, P, I ) be a formal context. Let
(A, B), (Xi ,Yi ), (Ai , Bi ) ⊆ O × P (i = 1, 2). Let R and R
be given in Definition 4. Let T(A,B)(R) = {(X j ,Y j ), j ∈ J }
and T(A,B)(R) = {(X p,Yp), p ∈ P}, where T(A,B)(R) and

T(A,B)(R) are given in Theorem 3. Then, there are the fol-
lowing statements.

(1) (T(A,B)(R),�) and (T(A,B)(R),�) are a poset, respec-
tively.

(2) (X1,Y1) � (X2,Y2) ⇒ R(X1,Y1) � R(X2,Y2);
(X1,Y1) � (X2,Y2) ⇒ R(X1,Y1) � R(X2, Y2).

(3) (∅, P) is the minimum element in (T(A,B)(R),�);
(∪ j∈J X j ,∩ j∈J Y j ) is the maximum element in
(T(A,B)(R),�).

Suppose B ⊆ A′. Then, (∅, P) is the minimum element in
(T(A,B)(R),�); (∪p∈P X p,∩p∈PYp) is the maximum ele-
ment in (T(A,B)(R),�).

(4) T(A1,B1)(R) ∩ T(A2,B2)(R) = T(A1∩A2,B1∪B2)(R);

T(A1,B1)(R) ∩ T(A2,B2)(R) = T(A1∩A2,B1∪B2)(R).

Item (1) in Theorem 4 is easily verified by checking (p1)–
(p3) in Definition 3 and its proof is omitted. The proofs of the
other items in Theorem 4 can be found in Appendix.

Remark 12 (1) For a formal context K = (OB, AT , I ),
where OB is a set of collected biological specimens such
as insects, AT is a set of biological characteristics, and
I ⊆ OB×AT is a binary relation such that “(x, y) ∈ I ⇔ x
owns y”, we can obtainB(K) byDefinition 2 or by theway in
Vormbrock andWille 2005. But, sometimes, biologists hope
to know how to explore the information not in B(K)with the
assistance of B(K).

For (A, B) ⊆ OB × AT , T(A,B)(R) is obtained using

Theorem 3, and so as to T(A,B)(R). Applying the known
information T(A,B)(R) and T(A,B)(R), one can explore the
biological information contained in (A, B) with respect to
the order �. And further, one can find out which elements in
T(A,B)(R) and T(A,B)(R) to be the closest for explaining the
nature of (A, B), respectively. In fact, Theorem 4(3) shows
that (∪ j∈J X j ,∩ j∈J Y j ), and (∪p∈P X p,∩p∈PYp) if B ⊆
A′, will be up to the requirements, respectively.

(2) If the set Ai of the specimens such as insects is col-
lected at the same region Ci , (i = 1, 2), and the two regions
C1 and C2 are not adjacent. How to use the known A1

and A2 to infer the situation of insects living at the mid-
dle zone C between C1 and C2? This question is often
considered by biologists. Actually, using Ai , biologists can
find the set Bi of biological characteristics relative to Ai ,
(i = 1, 2). This means that T(Ai ,Bi )(R) and T(Ai ,Bi )(R))
will be obtained (i = 1, 2). Sometimes, A1 ∩ A2 is con-
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sidered as the set of insects in the region C since biologists
guess the insects in C to be the common insects in both
C1 and C2. Under this guess, with the known information
T(Ai ,Bi )(R) and T(Ai ,Bi )(R) (i = 1, 2), Theorem 4(4) indi-

cates T(A1∩A2,B1∪B2)(R) and T(A1∩A2,B1∪B2)(R) perhaps to
assist to arrive the goal of biologists’ guess.

Here,weprovide twokinds of information systemsT(A,B)(R)

and T(A,B)(R). After using Theorem 4(4), if some biologists
hope to know which one in

T(A1∩A2,B1∪B2)(R) and T(A1∩A2,B1∪B2)(R) to be better
for biologists, it needs to analyze the results obtained here
combining with some other biological ideas such as mor-
phology for the two known information systems T(A,B)(R)

and T(A,B)(R).
(3) It is well known that biological ideas are the best way

to research on the study of insects. The way provided in this
paper is just to help biologists to speed up the process of their
research. It is an auxiliary method for biologists under some
cases.

4 Conclusion

As an extension of Whitney classical matroid model on
one set, this paper provides a matroidal structure on two
sets—TD-matroid. Using the family of feasible sets of a TD-
matroid, the lower and upper approximation operators are
constructed. For the existed pair of lower and upper approx-
imation operators based on the family of semiconcepts for a
formal context, it constructs two concrete TD-matroids and
deals their some properties with aspect of poset theory. Some
examples used biological data examine the correct of all of
results in this paper. These results indicate the important to
research on TD-matroids and rough sets on two sets.

TD-matroid is effective only within limits on two-
dimensional space, and also one-dimensional space since
one-dimensional space is a subspace of two-dimensional
spaceup to isomorphismof spaces.According to the structure
of TD-matroid, TD-matroid can reveal some properties for
the same existed phenomena in real world as that Whitney
classical matroid did. However, our real world is in three-
dimensional space.This implies that somecontents in our real
world should be expressed by ternary form. Under this analy-
sis, we believe that it is not only that TD-matroidwill not play
a role to solve those problems needed by ternary form, but
also that the approximation operators aided by TD-matroid
in this paper will not approximate the knowledge expressed
by ternary form. However, the idea in this paper will perhaps
assist to define a “matroidal structure” on three-dimensional
space, and further find approximation operators aided by
the above “matroidal structure”. In addition, TD-matroid is
a discrete structure, and the correspondent approximation

operator is also discrete. Both of them have no ability to face
to a continuous process.

In the future, we hope to continue the research of TD-
matroid with rough set. For instance,

(1) How to generalize the other axioms for matroids defined
on one set such as the axioms of greedy algorithm to TD-
matroids. With assistance of these axioms, how to find
out rough set approximation operators, and further, use
the found approximation operators to research on TD-
matroids.

(2) How to use the results in (1) to solve some problems in
real life such as biology.

(3) How to generalize the train of thought in this paper
to n-dimensional space (n ≥ 3). How to find their
correspondent greedy algorithm for the new matroidal
structure on n-dimensional space (n ≥ 3).

(4) How to combine the results here with that of Im et al.
(2021) to simulate a continuous process.
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Appendix

1. Proof of Lemma 7

Proof Let low(A, B) = {(X j ,Y j ), j ∈ J } and upr(A, B)

= {(X p,Yp), p ∈ P}. It follows |J |, |P| < ∞ since
|S|, |T | < ∞.

Next, we prove item (1).
X j ⊆ A and B ⊆ Y j hold since (X j ,Y j ) � (A, B) ( j ∈

J ). So, we obtain∪ j∈J X j ⊆ A and B ⊆ ∩ j∈J Y j . And fur-
ther, we get MR(A, B) = (∪ j∈J X j ,∩ j∈J Y j ) � (A, B).
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If |P| = 0, then upr(A, B) = ∅. Under this case, we
know MR(A, B) = (S,∅) by Definition 8. So, (A, B) �
MR(A, B) holds since A ⊆ S and B ⊇ ∅.

If |P| �= ∅, then A ⊆ X p and B ⊇ Yp hold since
(A, B) � (X p,Yp) (p ∈ P). So, we obtain A ⊆
∩p∈P X p and B ⊇ ∪p∈PYp. And further, we get (A, B) �
(∩p∈P X p,∪p∈PYp) = MR(A, B).
Next, we prove item (2).

Let (A, B) ∈ T . Then, A ⊆ A and B ⊆ B together mean
(A, B) ∈ low(A, B) and (A, B) ∈ upr(A, B).

On the one hand, there is one and only one j0 ∈ J satisfy-
ing X j0 = A and Y j0 = B since (A, B) ∈ low(A, B). So, we
get A = X j0 ⊆ ∪ j∈J X j ⊆ A and B = Y j0 ⊇ ∩ j∈J Y j ⊇ B
according to the definition of MR(A, B) and item (1). Thus,
we obtain MR(A, B) = (∪ j∈J X j ,∩ j∈J Y j ) = (A, B).

On the other hand, there is one and only one p0 ∈ P
satisfying X p0 = A and Yp0 = B since (A, B) ∈ upr(A, B).
So, we get A ⊆ ∩p∈P X p ⊆ X p0 = A and B ⊇ ∪p∈PYp ⊇
Yp0 = B according to the definition of MR(A, B) and item
(1). Thus, we obtain MR(A, B) = (∩p∈P X p,∪p∈PYp) =
(A, B).
Next, we prove item (3).

Suppose MR(A, B) = (A, B) = MR(A, B). Then, it
infers the following formulas

X j ⊆ ∪ j∈J X j = A = ∩p∈P X p ⊆ X p ( j ∈ J , p ∈ P) 1©.

Yp ⊆ ∪p∈PYp = B = ∩ j∈J Y j ⊆ Y j ( j ∈ J , p ∈ P) 2©.

It induces (A,Yp) � (X p,Yp) ∈ T according to Yp ⊆
Yp and the formula 1© (p ∈ P). Combining formula 2©
with (T2) and (X p,Yp) ∈ T (p ∈ P), we get (A,Yp) ∈ T
satisfying (A, B) � (A,Yp) for any p ∈ P . Thus, (A,Yp) ∈
upr(A, B) holds for any p ∈ P . That is to say, there is p1 ∈
P such that X p1 = A satisfying (X p1 ,Yp) ∈ T (p ∈ P).
Additionally, (X p, B) � (X p,Yp) ∈ T holds since B ⊇ Yp

holds by formula 2© (p ∈ P). Taking this result with (T2), it
induces (X p, B) ∈ T (p ∈ P). Combining formula 1© with
(A, B) � (X p, B) (p ∈ P), we get (X p, B) ∈ upr(A, B)

for any p ∈ P . That is to say, there is p2 ∈ P such that Yp2 =
B and (X p,Yp2) ∈ T (p ∈ P). Especially, (X p1 ,Yp2) ∈ T
holds since p1 ∈ P . In other words, (A, B) ∈ T is followed
since X p1 = A and Yp2 = B.

2. Proof of Lemma 8

Proof Let low(Ai , Bi ) = {(Xi j ,Yi j ), j ∈ Ji } and
upr(Ai , Bi ) = {(Xip,Yip), p ∈ Pi } (i = 1, 2).

To prove item (1).
(X1 j ,Y1 j ) � (A1, B1) � (A2, B2) follows (X1 j ,Y1 j ) ∈

low(A2, B2) ( j ∈ J1). So, we get ∪ j∈J1X1 j ⊆ ∪ j∈J2X2 j

and ∩ j∈J1Y1 j ⊇ ∩ j∈J2Y2 j . Furthermore, we obtain

MR(A1, B1) = (∪ j∈J1X1 j ,∩ j∈J1Y1 j ) � (∪ j∈J2X2 j ,

∩ j∈J2Y2 j ) = MR(A2, B2).
To prove item (2).

(A1, B1) � (A2, B2) � (X2p,Y2p) follows (X2p, Y2p) ∈
upr(A1, B1) (p ∈ P2). So, upr(A2, B2) ⊆ upr(A1, B1)

holds. This demonstrates that the case of upr(A1, B1) = ∅
and upr(A2, B2) �= ∅ does not exist. In other words, it exists
and only exists the following cases:

Case 1. upr(Ai , Bi ) �= ∅ (i = 1, 2);
Case 2. upr(Ai , Bi ) = ∅ (i = 1, 2);

Case 3. upr(A1, B1) �= ∅ and upr(A2, B2) = ∅.
Under Case 1, we get ∩p∈P1X1p ⊆ ∩p∈P2X2p and

∪p∈P1Y1p ⊇ ∪p∈P2Y2p according to upr(A2, B2) ⊆
upr(A1, B1). Furthermore, we obtain MR(A1, B1) =
(∩p∈P1X1p,∪p∈P1Y1p) � (∩p∈P2X2p,∪p∈P2Y2p) =
MR(A2, B2).

Under Case 2, we obtain MR(Ai , Bi ) = (S,∅) (i = 1, 2)
in viewofDefinition8.That is,MR(A1, B1) � MR(A2, B2)

holds.
Under Case 3, we obtain MR(A2, B2) = (S,∅) and the

existence of MR(A1, B1) with (MR(A1, B1) �= (S,∅) in
light of Definition 8. It is easy to see MR(A1, B1) � (S,∅).
Namely, it has MR(A1, B1) � MR(A2, B2).

3. Proof of Theorem 3(2)

Proof Since K is a formal context, it follows O �= ∅ and
P �= ∅ by Definition 2. Using Definition 7, we only need to
check the conditions (T1), (T2) and (T3) to be satisfied by
T(A,B)(R), respectively.

First to check (T1) for T(A,B)(R).
Using Lemma 2(1), we receive R(∅, B) = (∅,∅′ ∪ B) =

(∅, P) since ∅′ = P for ∅ ⊆ O . Hence, (∅, B) ∈ T(A,B)(R)

holds since ∅ ⊆ A and P ⊇ B together follow (∅, P) �
(A, B). Thus, T(A,B)(R) �= ∅ holds.

Second to check (T2) for T(A,B)(R).
Let (X2,Y2) � (X1,Y1) ∈ T(A,B)(R). Then, we may

easily find X2 ⊆ X1 and Y2 ⊇ Y1 by the definition of �. In
addition, we also find the following two facts.

Fact 1 : (X1,Y1) ∈ T(A,B)(R) ⇒ R(X1,Y1) � (A, B)

(definition of T(A,B)(R))

⇒ (X1, X
′
1 ∪ Y1) � (A, B) (Lemma 2(1))

⇒ X1 ⊆ A and X ′
1 ∪ Y1 ⊇ B. (definition of �)

Fact 2 : (X2,Y2) � (X1,Y1)

⇒ X2 ⊆ X1 and Y2 ⊇ Y1 (definition of �)

⇒ X ′
2 ⊇ X ′

1

and Y2 ⊇ Y1 (Lemma 1(1))

⇒ X ′
2∪
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Y2 ⊇ X ′
1 ∪ Y1

Combining the above two facts and X2 ⊆ X1 ⊆ A,
we obtain X ′

2 ∪ Y2 ⊇ X ′
1 ∪ Y1 ⊇ B. Thus, R(X2,Y2) =

(X2, X ′
2 ∪ Y2) � (A, B) holds. So, (X2,Y2) ∈ T(A,B)(R) is

followed.
Third to check (T3) for T(A,B)(R).
Let (X1,Y1), (X2,Y2) ∈ T(A,B)(R) satisfy |(X2,Y2)| <

|(X1,Y1)| and (X1,Y1) �= (∅,∅). Then, we get the following
fact:

(X j ,Y j ) ∈ T(A,B)(R)

⇒ R(X j ,Y j ) � (A, B) ( j = 1, 2)

(definition of T(A,B)(R))

⇒ (X j , X
′
j ∪ Y j ) � (A, B) ( j = 1, 2)

(Lemma 2(1))

⇒ X j ⊆ A and X ′
j ∪ Y j ⊇ B ( j = 1, 2)

(definition of �)
Via Lemma 4, we confirm (X1,Y1)\(X2,Y2) �= (∅,∅).
Then, we select (a, b) ∈ (X1,Y1) \ (X2,Y2). We divide two
cases to finish the proof.
Case 1. X1 \ X2 = ∅.

It gets a = ∅ and b ∈ Y1\Y2 �= ∅. Then, we obtain
R((X2,Y2)∪(a, b)) = R(X2,Y2∪b) = (X2, (X ′

2∪Y2)∪b)
holds according to Lemma 2(1). Using X ′

2 ∪ Y2 ⊇ B, we
obtain (X ′

2∪Y2)∪b ⊇ B. Thus, combining X2 ⊆ Awith the
results mentioned above, we confirm R((X2,Y2)∪ (a, b)) �
(A, B). Hence, we receive (X2,Y2) ∪ (a, b) ∈ T(A,B)(R).
Case 2. X1 \ X2 �= ∅.

Select a ∈ X1\X2 and b ∈ Y1\Y2. If Y1\Y2 = ∅ (or
Y1\Y2 �= ∅), then b = ∅ (or b �= ∅). No matter which
situation happens, it follows

R((X2,Y2) ∪ (a, b)) = R(X2 ∪ a,Y2 ∪ b)

(definition of ∪)

= (X2 ∪ a, (X2 ∪ a)′ ∪ (Y2 ∪ b))

(Lemma 2(1))

= (X2 ∪ a, (X ′
2 ∩ a′) ∪ (Y2 ∪ b))

(Lemma 1(2))

Combining a ∈ X1 ⊆ A and X2 ⊆ A, we obtain X2∪a ⊆
X2 ∪ X1 ⊆ A. So, (X2 ∪ a)′ = X ′

2 ∩ a′ ⊇ A′ in light
of Lemma 1. Thus, we confirm (X ′

2 ∩ a′) ∪ (Y2 ∪ b) ⊇
A′ ∪ (Y2 ∪ b) ⊇ A′ ⊇ B since B ⊆ A′. Furthermore, we get
(X2,Y2) ∪ (a, b) ∈ T(A,B)(R).

Summing up the above two cases, (T3) is correct for
T(A,B)(R).

4. Proofs of items (2), (3) and (4) in Theorem 4

Proof The proof of item (2) will be finished by two parts.

Part 1. (X1,Y1) � (X2,Y2)

⇒ X1 ⊆ X2 and Y1 ⊇ Y2 (definition of �)

⇒ X1 ⊆ X2, X
′
1 ⊇ X ′

2 and Y1 ⊇ Y2 (Lemma 1(1))

⇒ X1 ⊆ X2 and X ′
1∩

Y1 ⊇ X ′
2 ∩ Y2

⇒ (X1, X
′
1 ∩ Y1) � (X2, X

′
2 ∩ Y2)

(defition of �)

⇒ R(X1,Y1) � R(X2,Y2)

(Lemma 2(1))

Part 2. (X1, Y1) � (X2, Y2)

⇒ X1 ⊆ X2 and Y1 ⊇ Y2 (definition of �)

⇒ X1 ⊆ X2, X
′
1 ⊇ X ′

2 and Y1 ⊇ Y2 (Lemma 1(1))

⇒ X1 ⊆ X2 and X ′
1 ∪ Y1 ⊇ X ′

2 ∪ Y2

⇒ (X1, X
′
1 ∪ Y1) � (X2, X

′
2 ∪ Y2) (definition of �)

⇒ R(X1, Y1) � R(X2, Y2) (Lemma 2(1))

To prove item (3).
Combining Remark 2, we know ∅′ = P for ∅ ⊆ O . This

implies (∅, P) ∈ B(K) by Definition 2(2) and Remark 2. So,
it infers R(∅, P) = R(∅, P) = (∅, P) using Lemma 2(4).

It is clear (∅, P) � (A, B). Moreover, we receive
(∅, P) ∈ T(A,B)(R) and (∅, P) ∈ T(A,B)(R). Additionally,
both (∅, P) � (X j ,Y j ) and (∅, P) � (X p,Yp) evidently
hold ( j ∈ J ; p ∈ P). Considered item (1), we can indicate
(∅, P) to be the minimum element in the poset (TA,B)(R),�
), and also theminimum element in the poset (T(A,B)(R),�).

Additionally, we obtain the following expression Part I.

Part I. (X j ,Y j ) ∈ T(A,B)(R) ( j ∈ J )

⇒ R(X j ,Y j ) � (A, B) ( j ∈ J )

(definition of T(A,B)(R))

⇒ (X j , X
′
j ∩ Y j ) � (A, B) ( j ∈ J )

(Lemma 2(1))

⇒ X j ⊆ A and X ′
j ∩ Y j ⊇ B ( j ∈ J )

(definition of �)

⇒ ∪ j∈J X j ⊆ A

and(∪ j∈J X j )
′ ∩ (∩ j∈J Y j ) = ∩ j∈J (X ′

j ∩ Y j ) ⊇ B

(Lemma 1(2))

⇒ (∪ j∈J X j , (∪ j∈J X j )
′ ∩ (∩ j∈J Y j )) � (A, B)

(definition of �)
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⇒ R(∪ j∈J X j ,∩ j∈J Y j ) � (A, B)

(Lemma 2(1))

⇒ (∪ j∈J X j ,∩ j∈J Y j ) ∈ T(A,B)(R)

(definition of T(A,B)(R))

Using the definition of �, we may easily obtain “X j ⊆
∪ j∈J X j and Y j ⊇ ∩ j∈J Y j”⇒ “(X j ,Y j ) � (∪ j∈J X j ,

∩ j∈J Y j )” for any j ∈ J . Considered this result with the
result in Part I, we find (∪ j∈J X j ,∩ j∈J Y j ) to be the maxi-
mum element in (T(A,B)(R),�).

We can obtain the following expression Part II.

Part II. (X p,Yp) ∈ T(A,B)(R) (p ∈ P)

⇒ R(X p,Yp) � (A, B) (p ∈ P)

(definition of T(A,B)(R))

⇒ (X p, X
′
p ∪ Yp) � (A, B) (p ∈ P)

(Lemma 2(1))

⇒ X p ⊆ A (p ∈ P)

(definition of �)

⇒ ∪p∈P X p ⊆ A

⇒ (∪p∈P X p)
′ ∪ (∩p∈PYp)

⊇ (∪p∈P X p)
′ ⊇ A′ ⊇ B

(Lemma 1(1), and A′ ⊇ B)

⇒ (∪p∈P X p, (∪p∈P X p)
′ ∪ (∩p∈P

Yp)) � (A, B) (definition of �)

⇒ R(∪p∈P X p,∩p∈PYp) � (A, B)

(Lemma 2(1))

⇒ (∪p∈P X p,∩p∈PYp) ∈ T(A,B)(R)

(definition of T(A,B)(R))

Using the definition of �, we may easily obtain “X p ⊆
∪p∈P X p and Yp ⊇ ∩p∈PYp”⇒ “(X p,Yp) � (∪p∈P X p,

∩p∈PYp)” for any p ∈ P . Combining the result of Part II
with the above result, we find (∪p∈P X p,∩p∈PYp) to be the
maximum element in (T(A,B)(R),�).

To prove item (4).
We will use two parts to finish the proof.

Part 1. (X ,Y ) ∈ T(A1,B1)(R) ∩ T(A2,B2)(R)

⇔ (X ,Y ) ∈ T(Ai ,Bi )(R) (i = 1, 2)

⇔ R(X ,Y ) � (Ai , Bi ) (i = 1, 2)

(definition of T(Ai ,Bi )(R))

⇔ X ⊆ Ai and X ′ ∩ Y ⊇ Bi (i = 1, 2)

(Lemma 2(1), definition of �)

⇔ X ⊆ A1 ∩ A2 and X ′ ∩ Y ⊇ B1 ∪ B2

⇔ R(X ,Y ) � (A1 ∩ A2, B1 ∪ B2)

(Lemma 2(1))

⇔ (X ,Y ) ∈ T(A1∩A2,B1∪B2)(R)

(definition of T(A1∩A2,B1∪B2)(R))

Part 2. (X ,Y ) ∈ T(A1,B1)(R) ∩ T(A2,B2)(R)

⇔ R(X ,Y ) � (Ai , Bi ) (i = 1, 2)

(definition of T(Ai ,Bi )(R))

⇔ X ⊆ Ai and X ′ ∪ Y ⊇ Bi (i = 1, 2)

(Lemma 2(1), definition of �)

⇔ X ⊆ A1 ∩ A2 and X ′ ∪ Y ⊇ B1 ∪ B2

⇔ R(X ,Y ) � (A1 ∩ A2, B1 ∪ B2)

(Lemma 2(1), definition of �)

⇔ (X ,Y ) ∈ T(A1∩A2,B1∪B2)(R)

(definition of T(A1∩A2,B1∪B2)(R))
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