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Abstract
Accurate modeling and prediction of suspended sediment load (SSL) in rivers have an important role in environmental

science and design of engineering structures and are vital for watershed management. Since different parameters such as

rainfall, temperature, and discharge with the different lag times have significant effects on the SSL, quantifying and

understanding nonlinear interactions of the sediment dynamics has always been a challenge. In this study, three soft

computing models (multilayer perceptron (MLP), adaptive neuro-fuzzy system (ANFIS), and radial basis function neural

network (RBFNN)) were used to predict daily SSL. Four optimization algorithms (sine–cosine algorithm (SCA), particle

swarm optimization (PSO), firefly algorithm (FFA), and bat algorithm (BA)) were used to improve the capability of SSL

prediction of the models. Data from gauging stations at the mouth of the Kasilian and Talar rivers in northern Iran were

used in the analysis. The selection of input combinations for the models was based on principal component analysis (PCA).

Uncertainty in sequential uncertainty fitting (SUFI-2) and performance indicators were used to assess the potential of

models. Taylor diagrams were used to visualize the match between model output and observed values. Assessment of daily

SSL predictions for Talar station revealed that ANFIS-SCA yielded the best results (RMSE (root mean square error): 934.2

ton/day, MAE (mean absolute error): 912.2 ton/day, NSE (Nash–Sutcliffe efficiency): 0.93, PBIAS: 0.12). ANFIS-SCA

also yielded the best results for Kasilian station (RMSE: 1412.10 ton/day, MAE: 1403.4 ton/day, NSE: 0.92, PBIAS: 0.14).

The Taylor diagram confirmed that ANFIS-SCA achieved the best match between observed and predicted values for

various hydraulic and hydrological parameters at both Talar and Kasilian stations. Further, the models were tested in Eagel

Creek Basin, Indiana state, USA. The results indicated that the ANFIS-SCA model reduced RMSE by 15% and 21%

compared to the MLP-SCA and RBFNN-SCA models in the training phase. Comparing models performance indicated that

the ANFIS-SCA model could decrease MAE error compared to ANFIS-BA, ANFIS-PSO, ANFIS-FFA, and ANFIS models

by 18%, 32%, 37%, and 49% in the training phase, respectively. The results indicated that the integration of optimization

algorithms and soft computing models can improve the ability of models for predicting SSL. Additionally, the

hybridization of soft computing models with optimization algorithms can decrease the uncertainty of models.
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1 Introduction

Sediment dynamics (transport and deposition) can cause

environmental issues and concerns such as damage to

aquatic ecosystems, declining quality of surface water and

groundwater, and variations in reservoir recharge and river

morphology (Afan et al. 2016; Shojaeezadeh et al. 2018;

Gholami et al. 2016; Guo et al. 2020; Ren et al. 2020).

Suspended sediment load (SSL) in watersheds is one of the

most important hydraulic and hydrological parameters,

which can impact the performance of hydraulic structures

and water transfer projects. Additionally, sediments trans-

ported to reservoirs can reduce the reservoir capacity and

affect operational policy, e.g., water supply, energy gen-

eration, and irrigation. Therefore, the estimation and pre-

diction of SSL in rivers are vital tasks in the water

resources management, and accurate results would help

decision-making on river engineering, reservoir operation,
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watershed management, and sustainable water resources

(Yang et al. 2009; Downs et al. 2009; Akrami et al. 2013;

Himanshu et al. 2017; Haghighi et al. 2019). Prediction of

daily sediment can lead to optimal decisions for dam’s

outlet operation during the flood and conveying some part

suspended sediment load to downstream area. Addressing

short-term and long-term sediment dynamics is challenging

owing to the heterogeneity of basins, the uncertainty in

hydrological parameters, and the stochastic nature of flow

and characteristics of sediment transport and deposition

processes (Malmon et al. 2002; Pirnia et al. 2019b; Pizzuto

2020). Imprecise SSL modeling and prediction can reduce

the amount of water stored by dam reservoirs, which can

have an enormous negative impact on domestic and agri-

cultural water supply, and also on dam structures (Lafdani

et al. 2013; McCarney-Castle et al. 2017; Zhang et al.

2020; Zhao et al. 2020).

During recent decades, various approaches to improve the

accuracy of SSL predictions have been introduced, including

numerical and hydraulic, distributed and lumped models,

statistics, empirical models, and machine learning models

(Bezak et al. 2014; Merkhali et al. 2015; Kumar et al. 2016;

Shamaei andKaedi 2016; Choubin et al. 2018). Some studies

have predicted SSL at daily scale using data-driven methods

such as machine learning algorithms and soft computing

models (Nourani and Andalib 2015; Choubin et al. 2018;

Kaveh et al. 2020). Other studies worldwide seeking to

enhance the precision of the SSL estimation have used

machine learning techniques such as adaptive neuro-fuzzy

system (ANFIS) (Rajaee et al. 2009; Cobaner et al. 2009;

Kisi et al. 2012; Azamathulla et al. 2012; Vafakhah 2013;

Choubin et al. 2018), artificial neural network (ANN) (Ra-

jaee et al. 2009; Melesse et al. 2011; Kisi et al. 2012; Vafa-

khah 2013; Nourani and Andalib 2015; Wang et al. 2018;

Halecki et al. 2018; Liu et al. 2019), support vector machine

(SVM) (Kisi et al. 2012; Pektaş and Doğan 2015; Choubin

et al. 2018), multilayer perceptron (MLP) (Cigizoglu 2004;

Gholami et al. 2016; Romano et al. 2018), and radial basis

function neural network (RBFNN) (Erol et al. 2008; Ahmad

and Kumar 2016; Ibrahim et al. 2019). The soft computing

models were widely applied for predicting SSL, e.g., Adib

and Mahmoodi (2017) were applied GAmethod to optimize

the structure of the ANNmodel predicting SSL, Talebi et al.

(2017) estimated SSL using regression trees and ANN

models, Salih et al. (2020) have illustrated that the attribute

selected classifier performed better than the tree models in

SSL prediction, Ehteram et al. (2020) have employed ANN

and a multiobjective genetic algorithm to predict the SSL,

and Samantary andGhose (2020) estimated SSL using SVM,

feed-forward neural network (FFN), and RBFNN and they

have shown that the SVM had the highest performance.

Although the MLP, ANIFS, RBFNN, and SVM models

have a high capability for estimating SSL, optimization of

these algorithms is required to obtain more accurate results

(Fiyadh et al. 2019). Classical model training algorithms,

such as backpropagation and the gradient descent algo-

rithm, may become trapped in local optimums, so

researchers have begun to develop new optimization

algorithms (Ehteram et al. 2017). One recent example is the

sine–cosine algorithm (SCA), inspired by mathematical

sine and cosine functions, which has high search accuracy,

speed of convergence, and stability (Mirjalili 2016). Opti-

mization algorithms can be utilized as training algorithms

to set the internal parameters of the MLP, ANFIS, and

RBFNN models.

In the present study, data-based approaches and soft

computing models (stand-alone and hybridized with opti-

mization algorithms) were used for predicting SSL in the

Talar river basin in northern Iran, where sediment is mostly

generated during high-severity, erosive precipitation events

and where complex processes determine suspended sedi-

ment and precipitation in river systems at watershed scale.

The innovation of the present study is the new soft com-

puting hybrid models which have been employed in pre-

vious studies for predicting other hydrological variabels.

Furthermore, the present study deals with using these soft

computing models and optimization algorithms that can be

linked to hydraulic and hydrological modeling. Addition-

ally, the present study deals with the uncertainty of model

parameters and its effect on the outcomes. ANFIS and

ANN models are widely used models for predicting

hydrological variables given their high potential, high

accuracy, and easy learning for modelers. Furthermore, the

extensive capability of soft computing models in other

engineering fields makes the mentioned models be present

as the models used in the study. However, the motivation

behind of the study is to provide solutions to identify the

parameters needed to estimate the SSL in different areas.

Moreover, the optimization algorithms of the study, as will

be stated, were selected for the study given their high

search capability, fast convergence speed, and lack of

computational complexity. The hybridization of the models

makes the results more accurate. Likewise, the models are

more able to simulate variables in more complex problems.

Since the hybridized and optimized models performed

better than individual models, the soft computing models

are frequently optimized or hybridized to overwhelm the

weakness of stand-alone models. However, it should be

considered that the preparation of the structure of soft

computing models and the selection of the best input sce-

nario are the challenges of the current study.

The current study develops a low-cost estimation

approach for accurately predicting SSL in developing

regions where sediment loads in rivers are the main envi-

ronmental concern. Specific objectives were to: (1) develop

and implement optimization algorithms (SCA, particle
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swarm optimization (PSO), bat algorithm (BA) and firefly

algorithm (FFA)) to improve model prediction of SSL; (2)

investigate the capability of the four optimization methods

in SSL prediction by applying widely used performance

indices; and (3) compare outputs achieved using the stand-

alone and hybrid ANFIS, MLP, and RBFNN models.

2 Material and methods

2.1 Study areas

This study was carried out in two case study including

Talar river and Eagel Creek Basins located in Iran and

USA with different types of climate and environmental

conditions. In the following section, some characteristics of

the two above-mentioned basins are presented.

2.1.1 Talar river basin

The Talar river watershed (2100 km2) is situated in

Mazandaran region, northern Iran (52� 350 1800–53� 230 3500
E; 35� 440 1900–36� 190 1300 N) (Fig. 1). Based on its aridity

index of 0.69 (Sahin 2012; Pirnia et al. 2019a), the region

climate is semi-humid, with 552.7 mm yearly precipitation

and mean yearly minimum and maximum temperatures of

7.7 and 21.1 �C (Kavian et al. 2018). The smaller Kasilian

river also runs through the watershed, to discharge into the

Caspian Sea to the north (Fig. 1). Landslides are an

important sediment source to both the Talar and Kasilian

river systems (Emamgholizadeh and Demneh 2019). The

watershed is characterized by intense rainfall events

accompanied by frequent floods (Kavian et al. 2018) and

has mountainous terrain characterized by rugged topogra-

phy (altitude ranging from approximately 200 to 4000 m

asl) and sparse vegetation cover in headwater areas, leading

to huge sediment flows to the river network (Kavian et al.

2018). Both rivers have hydrometric stations situated at

their outlet, from which daily observed data on rainfall,

discharge, and suspended sediment concentration (SSC)

were obtained for this work. The data were randomly

divided into two subsets, with 80% utilized to calibrate the

models and the remaining 20% utilized to test the proposed

models. The maximum suspended sediment concentrations

in the training and testing datasets were, respectively,

40,000 and 39,200 ton/day at Talar station and 60,000 and

59,000 ton/day at Kasilian station (Table 1).

2.1.2 Eagel Creek Basin

In addition of the Talar basin, we used our models to

predicts the daily SSL in a temperate and humid conti-

nental climate named Eagel Creek Basin in the Indiana

state, USA (Fig. 2). The models run based on the rainfall,

temperature, and discharge data (Table 1) from 2015 to

2018 (data retrieved from https://www.usgs.gov/centers/

oki-water). For this basin, THE data were randomly divi-

ded into two subsets, with 80% utilized to calibrate the

models and the remaining 20% utilized to test the proposed

models.

2.2 Models tested for SSL prediction

2.2.1 Adaptive neuro-fuzzy system (ANFIS)

As an artificial neural network combined with fuzzy logical

inference, ANFIS has a high ability for dealing with the

imprecision and uncertainty of nonlinear environmental

problems through its strong, effective learning techniques

(Chang and Lai 2014; Choubin et al. 2018). Figure 3a

shows a structure of the ANFIS model, which is a rule-

based system comprising three parts: a rule base, a data-

base, and an inference system that produces the system

results by combining the fuzzy rules (Yurdusev and Firat

2009). The five layers in the ANFIS model are (1) input

nodes, (2) rule nodes, (3) average nodes, (4) consequent

nodes, and (5) output nodes, which employ different

algorithms to produce fuzzy rules for training and testing

(Park et al. 2012; Choubin et al. 2018). In ANFIS grid

partitioning, fuzzy clustering and hybrid learning algo-

rithms are applied to determine the input data structures in

combination with the backpropagation gradient descent

method (Cobaner et al. 2009; Kisi et al. 2012). The ANFIS

model creates the following if–then rules using the pattern

of input and output data:

if x ¼ A1ð Þ and y ¼ B1ð Þ ! f ¼ p1xþ q1xþ r1 ð1Þ
if x ¼ A2ð Þ and y ¼ B2ð Þ ! f ¼ p2xþ q2xþ r2 ð2Þ

where A1, B1, A2, and B2 are related membership functions

(MFs), x and y are inputs, and p1, q1, r1, and r2 are con-

sequent parameters. The ANFIS model has five computa-

tional layers:

1. The amount of input variable is fuzzified by the first

layer:

O1;i ¼ �lAi
xð Þ ð3Þ

where O1;i is the MF of Ai and I is the linguistic label of

node function. In the current work, the bell function

was selected as the MF:

lAi
xð Þ ¼ exp � x� ci

ai

� �2
" #

ð4Þ

where ai and ci are premise parameters.
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2. The second layer calculates the firing strength of each

rule by product operation:

O2;i ¼ lAi xð Þ � lBi xð Þ ð5Þ

where O2;i is the second layer output and lBi xð Þ is the
fuzzy MF of fuzzy set Bi.

3. The third layer is used to compute the normalized firing

strength of every rule.

O3;i ¼
xiP
xi

¼ xi

x1 þ x2

ð6Þ

where xi is the fuzzy strength of each rule.

4. The fourth layer determines the output of each rule:

O4;i ¼ x� fi ð7Þ

where fi is the output of the fuzzy region and x is the

output of the third layer.

5. The fifth layer is defuzzification:

O5 ¼
X

xi � fi ð8Þ

where O5 is the output of all the rules.

2.2.2 Multilayer perceptron (MLP)

The MLP network is a model one or more hidden layers

which can use various input sets by a set of suitable outputs

(Choubin et al. 2018). In MLP (Fig. 3b), the major learning

rule is the backpropagation algorithm, which comprises

two stages, a feed-forward and a backward stage, with

external input information and calculated and measured

information signals at the output (Cigizoglu 2004). The

MLP network can simulate 90% of processes related to

environmental and nature problems (Kim and Valdes

2003). The MLP model employed in the present study was

a three-layer learning network having a hidden, an input,

and an output layer (Samanta et al. 2019; Bhowmik et al.

2019; Van Dao et al. 2020). The neurons at hidden layers

Fig. 1 Location of the Talar watershed, Iran
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use the nonlinear activation function to provide the output

as follows:

uj ¼
Xp
i¼1

wij:xi ð9Þ

xj ¼ u uj � hj
� �

ð10Þ

where xi is input, xj is the output of the model, uj is acti-

vation function, and hj is a threshold function. Previous

researchers have successfully utilized the logistic sigmoid

function for the MLP model as follows:

ux ¼
1

1þ e�x
ð11Þ

The training algorithms are introduced to search for the

optimum value of weight connections. Classical training

algorithms such as backpropagation algorithm and gradient

descent algorithm are widely applied to calibrate the MLP

parameters.

2.2.3 Radial basis function neural network (RBFNN)

The RBFNN model is a type of feed-forward neural net-

work which consists of a number of artificial neurons (see

Fig. 3c). It can be considered a general-purpose network

that can be employed in different fields to achieve accurate

predictions. The RBFNN is considered a good candidate

for solving problems by faster learning potential (Erol et al.

2008; Han et al. 2012; Kong et al. 2016; Ibrahim et al.

2019). RBFNN has very powerful mathematical functions

for organization of deep learning theory in solving prob-

lems (Sabour and Movahed 2017). In practical application,

the learning algorithm for the RBFNN model employs

different datasets for training and testing, so as to adapt

itself rapidly to new factors or combinations (Sabour and

Movahed 2017). RBFNN has the advantage over other

types of neural networks of having a clustering stage in

training and testing (Singh et al. 2014; Kumar et al. 2016).

It uses symmetric basis functions as activation functions:

/i xð Þ ¼ exp � x� cik k
r2i

� �
ð12Þ

where /i xð Þ is the Gaussian function,ri is the width of the

ith radial basis function node, and ci is the center of hidden

neuron i. The network output is computed as follows:

y ¼
Xn
i¼0

/iwi ð13Þ

where y is output and n is number of hidden neurons.

The training algorithms are used to set the RBFNN

parameters such as center, width, and weight of the radial

basis function node.

2.3 Optimization algorithms tested

2.3.1 Sine–cosine algorithm (SCA)

The SCA approach was first proposed by Mirjalili (2016).

It updates the position of solutions using sine and cosine

functions. The mathematical formulation of SCA is:

Xtþ1
i ¼ Xt

i þ r1 � sin r2ð Þð Þ � r3p
t
i � xti

�� �� ð14Þ

Xtþ1
i ¼ Xt

i þ r1 � cos r2ð Þð Þ � r3p
t
i � xti

�� �� ð15Þ

where Xt
i is the position of current solution at the ith iter-

ation in the ith dimension, r2 and r3 are random values, pi
t

Table 1 Characteristics and range of suspended sediment load (SSL)

at gauging stations

For 2000–2011 period

Parameter Minimum Maximum Mean SD

Training period (Talar)

Discharge (Q, m3 s-1) 32 45 38 0.91

Rainfall (R, mm) 23 70 45 3.22

Sediment (ton/day) 545 40,000 34,567 747

Testing period (Talar)

Discharge (m3 s-1) 35 45 39 0.92

Rainfall (mm) 25 72 48 3.98

Sediment (ton/day) 612 39,200 29,123 678

Training period (Kasilian)

Discharge (m3 s-1) 33 67.00 42.00 1.12

Rainfall (mm) 29 8 4.00 3.85

Sediment (ton/day) 614 60,000 48,700 911

Testing period (Kasilian)

Discharge (m3 s-1) 36 47 39 0.92

Rainfall(mm) 27 75 48 3.24

Sediment (ton/day) 616 59,000 34,567 905

For 2015–2018 period

Parameter Minimum Maximum Mean SD

Training period (Eagel

Creek Basin)

Discharge (Q, m3 s-1) 0.06 163.25 51.89 12.14

Rainfall (R, mm) 20 90 65 14.55

Sediment (mg/L) 55 642 277.12 63.12

Testing period (Eagel

Creek Basin)

Discharge (m3 s-1) 1.12 154.12 7.89 14.15

Rainfall (mm) 45 80 67 12.98

Sediment (mg/L) 57 656 266.14 34.69
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is the destination solution, and r1 is a control parameter

used to get a balance between exploration and exploitation.

The two SCA functions (Eqs. 14, 15) are then integrated

into one function:

Xt
i ¼

Xtþ1
i ¼ Xt

i þ r1 � sin r2ð Þð Þ � r3p
t
i � xti

�� �� ifð Þ r4\0:5

Xtþ1
i ¼ Xt

i þ r1 � cos r2ð Þð Þ � r3p
t
i � xti

�� �� ifð Þ r4 � 0:5

" #

ð16Þ

The following equation is used to update the value of

parameter r1:

r1 ¼ a� t
a

T
ð17Þ

where a is a constant and T is the maximum quantity of

iterations. Parameter r2 is utilized to obtain the movement

direction of the next solution. Parameter r3 is used to define

a random weight for the destination with a stochastic

influence emphasizing (r3[ 1) or decreasing distance

(r3\ 1). Parameter r4 is used to switch between the cosine

and sine functions. Figure 4 shows the sine–cosine effect

on the next position and Fig. 5 shows a flowchart of SCA.

2.3.2 Bat algorithm (BA)

All bats have the echolocation characteristic to sense dis-

tance and use it to identify the difference between the food

and obstacles (Yang et al. 2009). In the first step in BA, the

Fig. 2 Location of Eagel Creek

Basin, USA

Fig. 3 Structure of the three models used: a adaptive neuro-fuzzy

system (ANFIS), b multilayer perceptron (MLP), and c radial basis

function neural network (RBFNN)
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initial population of bats is randomly initialized (Fig. 6).

The BA uses the following equations to renew the bats’

velocity and position (Yang et al. 2009):

fi ¼ fmin þ fmax � fminð Þb
vti ¼ vt�1

i þ xt�1
i � x�

� �
fi

xi ¼ xt�1
i þ vti

ð18Þ

where fi is frequency of bat i, fmax is the maximum fre-

quency, fmin is the minimum frequency, vti is velocity of

agent i at iteration t, xt�1
i is position of agnet i at iteration

t - 1, xti is position of agnet i at iteration t, b is a random

number, vt�1
i is velocity of agnet i at iteration t, x� is the

best solution, and xi is position of agnet i at iteration t.

When the bat becomes closer to its prey, the rate of pulse

emission and the loudness of the bat are renewed as:

Atþ1
i ¼ aAt

i

rtþ1
i ¼ roi 1� exp �ctð Þ½ �

ð19Þ

where Atþ1
i is loudness of bat i at iteration t ? 1, a is a

constant value, c is a constant value, roi is the pulse emis-

sion’ initial rate, rtþ1
i is the pulse emission rate of bat i at

iteration t ? 1, and At
i is the loudness of bat i at iteration t.

The bats use random walk to update their position:

xnew ¼ xold þ eAt
i ð20Þ

where xnew is the bat’s new position, xold is the old position

of the bat, and e is a random number.

2.3.3 Firefly algorithm (FFA)

Firefly algorithm, introduced by Yang et al. (2009), is

dependent on the firefly’s behavior (Fig. 7). The short,

rhythmic flashes produced by fireflies are intended to

attract other fireflies that have weaker flashes. The land-

scape of the objective function identifies the firefly

brightness. For a problem of minimization, a brighter

firefly has a smaller objective function. The fireflies update

their position as follows:

xi t þ 1ð Þ ¼ xi tð Þ þ vðrÞ xj tð Þ � xi tð Þ
� �

þ /tt ð21Þ

where xi t þ 1ð Þ is position of firefly i at iteration t ? 1,

xi tð Þ is position of firefly i at iteration t, xj tð Þ is position of

firefly j at iteration t, vðrÞ is attractiveness, /t is a step

factor, and t is a random number. The attractiveness is

computed as follows:

v rð Þ ¼ v0e
�cr2 ð22Þ

rij ¼ xi � xj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

xid � xjd
� �2

vuut ð23Þ

Fig. 4 Sine–cosine effect on the next position in sine–cosine

algorithm (SCA)

Fig. 5 Flowchart of

optimization using sine–cosine

algorithm (SCA)
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where v0 is attractiveness at r = 0, D is number of

dimensions, and rij is distance between two fireflies.

2.3.4 Particle swarm optimization (PSO)

Eberhart and Kennedy (1995) introduced PSO, which is

inspired by the social behavior of particles (Fig. 8). The

algorithm starts with initialization of random particles in

the search space. The particles search for the optimal

solution by updating generations. At each iteration, the two

best values are used to update each particle. The first is the

best solution found so far and the second is the best value

found so far by any particle in the population. The fol-

lowing equations are utilized to renew the position and

velocity of particles:

xi tð Þ ¼ xi t � 1ð Þ þ vi tð Þ ð24Þ

vti ¼ wvt�1
i þ C1r1 Pbest � xi tð Þ½ � þ C2r2 Gbest � xti

	 

ð25Þ

Fig. 6 Flowchart of

optimization using bat

algorithm (BA)

Fig. 7 Flowchart of

optimization using firefly

algorithm (FFA)
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where vti is velocity of the particle at time t, w is inertia

coefficient, C1 and C2 are acceleration coefficients, r1 and

r2 are random numbers, Pbest is the most promising position

of the particle, Gbest is the most promising position among

the particles of the whole swarm, and xi tð Þ is the position of
particles at time t.

2.4 Hybridization of prediction models
with optimization algorithms

2.4.1 ANFIS hybridization

Application of the ANFIS model starts with setting

parameters to optimal values, commonly by using a hybrid

learning method combining gradient descent (GD) and the

least square estimate (LSE). However, the hybrid LSE-GE

method may unable to achieve the rate of convergence for

finding appropriate values of internal parameters in ANFIS,

and therefore supporting algorithms are widely applied to

optimize the internal parameters. The premise and conse-

quent parameters in ANFIS are decision variables of the

optimization algorithms that are optimized using these

supporting algorithms. The main function of the opti-

mization algorithms is then to update the initial values of

the internal parameters in ANFIS, utilizing algorithm

operators. An objective function, root mean square error

(RMSE), is defined for hybrid ANFIS optimization algo-

rithms. The optimization process tries to minimize the

value of RMSE. When the ANFIS optimization algorithms

converge to the lowest value of RMSE as a stopping cri-

terion, the hybrid ANFIS model achieves the optimal value

of its internal parameters.

2.4.2 MLP hybridization

The MLP parameters must be optimized to achieve the

most accurate results. Training algorithms are required to

set weight connections and threshold values. The initial

threshold values and weight connections are defined as the

initial population of algorithms. Each of the agents of the

algorithms has two key parts: a set of weight connections

and a set of threshold values. The values of MLP param-

eters are updated when the optimization algorithm tries to

minimize the error function (RMSE). The convergence

cycle of optimization continues until the hybrid MLP

optimization algorithm model converges to a minimum

objective function value.

Fig. 8 Optimal parameters of optimization algorithms based on

signal-to-noise (S/N) ratio. a Sine –cosine algorithm (SCA), b firefly

algorithm (FFA), c bat algorithm (BA), and d particle swarm

optimization (PSO). PS population size, Lo loudness, Fr frequency.

For explanation of parameters, see Sect. 2.2
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2.4.3 RBFNN hybridization

Training algorithms are introduced to search for optimum

parameters of the RBFNN model. Each of the agents of

optimization algorithms has three key parts: center, width,

and weight of the radial basis function node. The RBFNN

parameters are defined as the initial population algorithms,

which are entered into optimization algorithms to be

updated by the operators of optimization algorithms. The

optimal value of RBFNN parameters is found when the

hybrid RBFNN optimization algorithm model converges to

the lowest value of the target objective function.

2.5 Uncertainty analysis of soft computing
models

Uncertainty in sequential uncertainty fitting (SUFI-2) is

one of the best-known models for uncertainty analysis

(Kumar et al. 2017). In SUFI-2, the parameter uncertainties

account for uncertainty in model inputs and an objective

function must be defined before the uncertainty analysis.

Latin hypercube (LH) sampling is conducted, the objective

function is assessed, and finally, the parameter covariance

matrix is computed. In addition, 95% prediction uncer-

tainty (95PPU) is computed at the 2.5% and 97% levels.

Uncertainty analysis is required for the study as opti-

mization algorithms try to find the exact values of the

model parameters, as the input values may have include

some sort of uncertainties. Thus, model uncertainty anal-

ysis can examine the effect of uncertainty related to model

structure and parameter on the results. Two indices are

used to quantify the uncertainty of models, observed data’s

percentage bracketed by 95 PPU (p index) and an index r

computed as follows:

d ¼ 1

n

Xn
t¼1

y97:5% � y2:5%ð Þ

r ¼ d

r

ð26Þ

where r is standard deviation of the data, y97:5% is the upper

boundary of 95PPU, y2:5% is the lower boundary of 95PPU,

n is quantity of data, and r is average width of the confi-

dence interval band. Other evaluation statistics utilized in

this study were: RMSE (lower RMSE shows more accurate

estimations), mean absolute error (MAE) (lower MAE

shows more accurate estimation), percentage bias (PBIAS)

(lower PBIAS shows more accurate estimations), and

Nash–Sutcliffe efficiency (NSE) (NSE = 1 shows the ideal

model):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Yobs � Ysimð Þ2
s

ð27Þ

RMSE ¼ 1

n

Xn
i¼1

Yobs � Ysimj j ð28Þ

PBIAS ¼ 100 �
Pn

i¼1 Yobs � Ysimð ÞPn
i¼1 Yobsð Þ

� �
ð29Þ

NSE ¼ 1�
Pn

i¼1 Yobs � Ysimð Þ2Pn
i¼1 Yobs � Yobs

� �
" #

ð30Þ

where n is quantity of observed data, Yobs is observed data,

Ysim is simulated data, and Yobs is mean of observed data.

3 Results and discussion

3.1 Selection of appropriate inputs for soft
computing models

In this study, the soft computing models are used to predict

SSL (t) (a 1-day ahead forecast of SSL). Principal com-

ponent analysis (PCA) is an effective method for identi-

fying inputs of models and decreasing the number of input

parameters required (Lu et al. 2019). PCA achieves parsi-

mony by describing the maximum value of common vari-

ance in a correlation matrix using the smallest number of

illustrative concepts. The Kaiser–Meyer–Melkin criterion

(KMO) is used to investigate the adequacy of data as fol-

lows. The KMO is a measure of the proportion of variance

among variables that might be common variance (Darabi

et al. 2014).

KMO ¼
P

correlationð Þ2P
correlationð Þ2þ

P
partial correlationð Þ2

ð31Þ

According to the literature, the minimum value of KMO

should be 0.5. In this study, KMO was 0.65. The correla-

tion among variables should be checked, to avoid multi-

collinearity problems (Lu et al. 2019). In this study, all

correlation values were below the threshold (0.9), and thus,

there were no problems of multicollinearity. Table 2 shows

the value of the contribution of principal components

(PCs). The results indicated that the first three PCs included

60, 23, and 12% of input variables at Talar station, and 61,

20, and 11% of input variables at Kasilian station. Lagged

data (one-day to nine-day lagged rainfall, one-day to nine-

day lagged discharge, and one-day to nine-day lagged SSL)

were regarded as the initial data. It was found that the first

three PCs were affected more by one-day and two-day

lagged SSL, one-day lagged R, and one-day lagged Q than

by any other variables (Table 2). The direction of new

future space was determined by the eigenvectors and the
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variance of data by the eigenvalues (Table 2). The PCs are

the integration of the independent variable.

3.1.1 Tuning the random parameters in optimization
algorithms

In the current work, the Taguchi model was utilized to set

the random parameters of evolutionary algorithms. Popu-

lation size and r2, r3, and r4 are regarded as the random

parameters in SCA that can affect the accuracy of the

proposed model. Four levels were defined for each of these

four parameters. The total number of tests to be performed

to find the optimum value of parameters was computed as:

Number ¼ 1þ N L� 1ð Þ ð32Þ

where L is level number and N is parameter number.

Hence, at least 13 experiments had to be conducted for

SCA. In addition, the Taguchi model utilizes signal-to-

noise ratio to select the optimal value of parameters

(Mozdgir et al. 2013):

Table 2 Eigenvalues and

eigenvectors obtained for

principal components (PCs)

describing the most influential

variables (time (t)-lagged

suspended sediment load (SSL),

discharge (Q), rainfall (R))

Parameter Talar

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

SSL (t - 1) 0.92 0.88 0.80 0.65 0.45 0.32 0.22 0.20 0.15

Q (t - 1) 0.87 0.85 0.82 0.79 0.77 0.72 0.68 0.67 0.66

R (t - 1) 0.84 0.83 0.81 0.80 0.78 0.76 0.64 0.62 0.60

SSL (t - 2) 0.83 0.82 0.80 0.78 0.65 0.62 0.60 0.57 0.55

SSL (t - 3) 0.79 0.77 0.74 0.73 0.69 0.68 0.57 0.56 0.54

Q (t - 2) 0.76 0.65 0.62 0.60 0.59 0.66 0.61 0.60 0.52

Q (t - 3) 0.67 0.60 0.60 0.58 0.55 0.65 0.60 0.58 0.54

R (t - 2) 0.53 0.45 0.41 0.39 0.37 0.30 0.29 0.27 0.20

R (t - 3) 0.45 0.33 0.29 0.27 0.26 0.25 0.27 0.25 0.19

Eigenvalue 5.45 2.10 1.10 0.20 0.09 0.03 0.02 0.05 0.05

Parameter Kasilian

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

SSL (t - 1) 0.93 0.89 0.80 0.67 0.43 0.31 0.21 0.19 0.14

Q (t - 1) 0.89 0.86 0.84 0.75 0.76 0.70 0.67 0.65 0.65

R (t - 1) 0.87 0.84 0.83 0.79 0.77 0.75 0.62 0.60 0.58

SSL (t - 2) 0.84 0.85 0.80 0.77 0.62 0.65 0.58 0.55 0.54

SSL (t - 3) 0.78 0.79 0.73 0.72 0.67 0.67 0.55 0.55 0.52

Q (t - 2) 0.75 0.69 0.64 0.61 0.54 0.65 0.60 0.58 0.51

Q (t - 3) 0.65 0.62 0.62 0.57 0.52 0.64 0.55 0.57 0.50

R (t - 2) 0.52 0.47 0.40 0.37 0.36 0.29 0.27 0.26 0.20

R (t - 3) 0.44 0.39 0.30 0.25 0.25 0.21 0.25 0.25 0.19

Eigenvalue 5.55 2.00 1.00 0.25 0.10 0.04 0.03 0.015 0.015

Parameter Eagel Creek Basin

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

SSL (t - 1) 0.93 0.90 0.86 0.84 0.82 0.78 0.65 0.62 0.55

Q (t - 1) 0.90 0.89 0.85 0.82 0.80 0.76 0.64 0.59 0.54

R (t - 1) 0.89 0.85 0.84 0.80 0.79 0.74 0.72 0.68 0.53

SSL (t - 2) 0.69 0.68 0.67 0.66 0.64 0.62 0.60 0.59 0.58

Q (t - 3) 0.65 0.62 0.60 0.59 0.54 0.52 0.50 0.45 0.42

SSL (t - 3) 0.64 0.55 0.54 0.52 0.50 0.49 0.44 0.43 0.41

Q (t - 3) 0.62 0.45 0.42 0.40 0.39 0.37 0.37 0.35 0.33

R (t - 2) 0.61 0.44 0.40 0.39 0.38 0.35 0.32 0.31 0.29

R (t - 3) 0.55 0.42 0.39 0.35 0.34 0.32 0.28 0.27 0.27

Eigenvalue 6.12 1.22 1.14 0.19 0.15 0.06 0.04 0.04 0.04
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S

N
ratio ¼ �10 log objective functionð Þð Þ2 ð33Þ

where the optimal value of random parameters has the

highest S/N ratio. Figure 8 depicts the computed S/N ratio

for different parameters in the four optimization algorithms

tested here.

3.2 Talar station

For Talar station, the best results with the training dataset

were obtained when ANFIS-SCA was used (RMSE: 934.2

ton/day, MAE: 912.3 ton/day, NSE: 0.93, PBIAS: 0.14)

and the worst results were obtained when RBFNN was

used (RMSE: 1789.10 ton/day, MAE: 1765.2 ton/day,

NSE: 0.77, PBIAS: 0.36) (Table 3). The MLP-SCA was the

best second model, and the hybrid and stand-alone MLP

outperformed the hybrid and stand-alone RBFNN models

(Table 3). Comparison of results obtained using the opti-

mization algorithms revealed that SCA provided the best

results and FFA the worst results.

The best results with the testing dataset for Talar station

were also obtained with ANFIS-SCA (RMSE: 1423.2

Table 3 Value of evaluation

criteria (root mean square error

(RMSE), mean absolute error

(MAE), Nash–Sutcliffe

efficiency (NSE), percentage

bias (PBIAS)) obtained for the

different hybrid and stand-alone

models in the training and

testing phases for the Talar and

Kasilian stations

Model Train

RMSE (ton/day) MAE (ton/day) NSE PBIAS

Talar Kasilian Talar Kasilian Talar Kasilian Talar Kasilian

ANFIS-SCA 934.2 898.1 912.2 712.3 0.93 0.95 0.14 0.12

MLP-SCA 967.1 923.2 958.3 823.10 0.92 0.93 0.18 0.14

RBFNN-SCA 1056.3 1012.1 1043.2 1000.2 0.90 0.91 0.20 0.16

ANFIS-BA 1012.4 923.2 1001.1 912.32 0.89 0.94 0.22 0.18

MLP-BA 1102.5 1098.1 1076.2 967.21 0.87 0.92 0.23 0.20

RBFNN-BA 1145.7 1255.2 1112.4 1123.2 0.86 0.90 0.25 0.23

ANIFS-PSO 1212.2 1044.1 1204.3 1000.1 0.85 0.93 0.27 0.25

MLP-PSO 1289.2 1245.6 1232.3 1189.2 0.84 0.90 0.29 0.21

RBFNN-PSO 13,450 1469.2 1268.2 1456.8 0.83 0.89 0.31 0.26

ANFIS-FFA 1698.2 1589.6 1598.9 1512.30 0.82 0.88 0.32 0.28

MLP-FFA 1701.2 1590.20 1685.2 1578.3 0.81 0.87 0.32 0.30

RBFNN-FFA 1754.1 1592.3 1697.2 1589.2 0.80 0.85 0.33 0.31

ANFIS 1759.8 1623.3 1699.2 1612.3 0.79 0.84 0.34 0.33

MLP 1772.3 1645.2 1701.3 1639.2 0.78 0.83 0.35 0.35

RBFNN 1789.10 1655.6 1765.2 1645.2 0.77 0.82 0.36 0.39

Model Test

Talar Kasilian Talar Kasilian Talar Kasilian Talar Kasilian

ANFIS-SCA 1423.2 1412.10 1412.2 1403.4 0.92 0.92 0.16 0.14

MLP-SCA 1455.7 1423.2 1423.8 1421.2 0.91 0.90 0.20 0.17

RBFNN-SCA 1497.6 1467.2 1478.6 1455.2 0.89 0.89 0.24 0.18

ANFIS-BA 1434.2 1422.2 1423.4 1418.2 0.88 0.90 0.27 0.21

MLP-BA 1502.3 1501.1 1498.4 1498.2 0.86 0.86 0.28 0.22

RBFNN-BA 1595.1 1578.2 1512.3 1500.2 0.85 0.84 0.29 0.24

ANIFS-PSO 1602.3 1601.2 1601.2 1598.2 0.84 0.78 0.32 0.27

MLP-PSO 1665.8 1662.3 1663.1 1661.2 0.83 0.76 0.33 0.29

RBFNN-PSO 1678.2 1675.2 1672.3 1651.2 0.81 0.75 0.35 0.32

ANFIS-FFA 1692.9 1687.2 1678.1 1678.0 0.80 0.73 0.36 0.34

MLP-FFA 1723.8 1712.3 1712.9 1711.2 0.79 0.71 0.38 0.39

RBFNN-FFA 1745.3 1734.3 1723.8 1729.1 0.78 0.70 0.39 0.42

ANFI 1767.2 1763.2 1734.2 1731.2 0.77 0.69 0.40 0.45

MLP 1787.1 1765.2 1756.2 1744.2 0.76 0.67 0.41 0.47

RBFNN 1799.2 1789.1 1769.3 1767.2 0.75 0.65 0.43 0.49
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ton/day, MAE: 1412.10 ton/day, NSE: 0.92, PBIAS: 0.16)

(Table 3). Based on the RMSE, MAE, and PBIAS values,

in the test stage the stand-alone ANFIS, MLP, and RBFNN

models were more accurate than the hybrid ANFIS, MLP,

and RBFNN models. Adding SCA decreased the RMSE of

ANFIS, MLP, and RBFNN by 20%, 21%, and 22%,

respectively. The testing results indicated that the hybrid

and stand-alone MLP was better than the hybrid and stand-

alone RBFNN models.

3.3 Kasilian station

For Kasilian station, in the training stage ANFIS-SCA was

the best performing model (RMSE: 898.1 ton/day, MAE:

712.3 ton/day, NSE: 0.95, PBIAS: 0.12) and RBFNN was

the worst (RMSE: 1655.6 ton/day, MAE: 1645.2 ton/day,

NSE: 0.82, PBIAS: 0.39) (Table 3). The hybrid and stand-

alone MLP models outperformed the stand-alone and

hybrid RBFNN models during the training phase, while

ANFIS-SCA outperformed MLP-SCA and RBFNN-SCA

in terms of precision. Overall, the NSE, MAE, PBIAS, and

NSE values for SCA proved its superiority among the

optimization algorithms tested, while FFA gave the worst

results. The performance of the hybrid ANFIS, MLP, and

RBFNN models surpassed that of their stand-alone coun-

terpart in the training stage.

In the testing phase, ANFIS-SCA again provided the

best results (RMSE: 1412.10 ton/day, MAE: 1403.4 ton/-

day, NSE: 0.92; PBIAS: 0.14), and RBFNN again exhib-

ited the worst results (RMSE: 1789.1 ton/day, MAE:

1767.2 ton/day, NSE: 0.65; PBIAS: 0.49) (Table 3). The

hybrid ANFIS, MLP, and RBFNN models outperformed

the stand-alone ANFIS, MLP, and RBFNN models. Based

on the assessment statistics for Kasilian Station, it can be

said that the SCA was the most accurate optimization

algorithm and, as in the training phase, FFA gave the worst

results) (Table 3). The evaluation criteria also confirmed

the superiority of ANFIS-SCA, followed by the MLP-SCA,

in comparison with RBFNN-SCA.

Fig. 9 Taylor diagram for the different hybrid and stand-alone models

(using whole dataset) for a Talar station and b Kasilian station

Table 4 Uncertainty results (r, p) for the different hybrid and stand-

alone models

Model r index p index

Talar Kasilian Talar Kasilian

ANFIS-SCA 0.14 0.12 0.94 0.95

MLP-SCA 0.17 0.14 0.90 0.94

RBFNN-SCA 0.19 0.16 0.89 0.93

ANFIS-BA 0.21 0.19 0.87 0.91

MLP-BA 0.25 0.20 0.86 0.90

RBFNN-BA 0.26 0.23 0.84 0.89

ANIFS-PSO 0.28 0.24 0.84 0.88

MLP-PSO 0.32 0.26 0.83 0.87

RBFNN-PSO 0.33 0.28 0.82 0.86

ANFIS-FFA 0.34 0.31 0.82 0.85

MLP-FFA 0.35 0.33 0.81 0.82

RBFNN-FFA 0.36 0.35 0.80 0.81

ANFIS 0.37 0.36 0.79 0.80

MLP 0.42 0.37 0.76 0.78

RBFNN 0.45 0.39 0.74 0.76
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In order to visually summarize how closely the proposed

models matching the observed values, Taylor diagrams

were used to display the match between observed data and

the output of the models in terms of their RMSE, standard

deviation, and correlation. The Taylor diagram for Talar

station, in which statistics for the 15 models (see Table 3)

were calculated and a colored circle was assigned to each

model, is shown in Fig. 8a. The position of each circle

appearing in the diagram quantifies how that model’s

estimated SSL matched measured data, where the centered

RMSE is proportional to the distance from the reference

point on the horizontal axis as observed data. The whole

dataset was used to plot the Taylor diagrams. The results

revealed that for ANFIS-SCA, MLP-SCA, and RBFNN-

SCA, the centered RMSE was 1000, 1050, and 1189 m,

respectively. The hybrid soft computing models resulted in

lower RMSE than the stand-alone models (Fig. 9a).

The Taylor diagram for Kasilian station is shown in

Fig. 8b. It indicated that ANFIS-SCA and MLP-SCA pre-

dictions gave the best match with observed data and that

the ANFIS-SCA model had a higher Taylor correlation and

lower RMSE than the other models. The RBFNN model

had the highest RMSE. When using the hybrid MLP,

RBFNN, and ANFIS model, the Taylor correlation

increased from 0.4 to 0.97. The highest RMSE was found

for the stand-alone and hybrid MLP models (980–3000

ton/day) and the stand-alone and hybrid RBFNN models

(1100 to 3300 ton/day) (Fig. 9b).

3.4 Uncertainty analysis of models and box plots

Comparison of models in terms of the selected indices

(p and r) showed that ANFIS-SCA provided better r (0.12)

and p (0.95) values for both Talar and Kasilian stations

(Table 4). The hybrid ANFIS, MLP, and RBFNN models

gave better p and r values than the stand-alone ANFIS,

MLP, and RBFNN models. In addition, RBFNN-FFA had

the lowest p (0.76) and highest r (0.39) among the hybrid

models. For Talar station, the hybrid and stand-alone

ANFIS models gave better r and p values than the hybrid

and stand-alone MLP and RBFNN models (Table 4). Fig-

ure 10a, b shows the box plots for different models at Talar

and Kasilian stations. The results indicated that ANFIS-

SCA, MLP-SCA, and RBFNN-SCA most closely matched

the observed SSL, outperforming the stand-alone ANFIS,

MLP, and RBFNN models at both stations.

Overall, this study showed that the hybrid ANFIS-SCA

model has good ability for predicting SSL in rivers.

However, different climate parameters affected the SSL

values obtained (Table 2), so follow-up studies should

predict SSL for future periods using climate models and

scenarios describing projected changes in meteorological

parameters such as temperature and rainfall.

3.4.1 The analysis for the Eagel Creek river basin

Table 2 indicates that the first three components (PC1, PC3,

and PC3) have greater values of participation. Furthermore,

SSL (t - 1), R (t - 1), and Q (t - 1) data are more

significant for all three components compared to other data.

Thus, the first three components were selected as input to

the models. Table 5 shows that the ANFIS-SCA model

reduced RMSE by 15% and 21% compared to the MLP-

SCA and RBFNN-SCA models in the training phase.

Comparing models performance indicated that the ANFIS-

SCA model could decrease MAE error compared to

ANFIS-BA, ANFIS-PSO, ANFIS-FFA, and ANFIS models

by 18%, 32%, 37%, and 49% in the training phase,

respectively. Comparing the performance of the models

showed that the ANFIS-SCA model with the highest value
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Fig. 10 Box plots of suspended sediment load (SSL) values obtained

with the different hybrid and stand-alone models for a Talar and

b Kasilian, c Eagel Creek Basin stations
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of p and the lowest value of r had less uncertainty than

other models in the training phase. Moreover, the findings

indicated that RBFNN model with 0.77 NSE had the

weakest performance in the training phase. Examining the

performance of the models in the training phase according

to PBIAS value indicated that the MLP-SCA model had

less PBIAS than other MLP models, showing better per-

formance of the MLP-SCA model than other models.

Comparing the performance of the models in the test phase

indicated that the ANFIS-SCA model reduced RMSE value

by 8.8%, 24%, 38%, and 45%, respectively, compared to

the ANFIS-BA, ANFIS-PSO, ANFIS-FFA, and ANFIS in

the test phase. Additionally, the results indicated that the

RBFNN model with NSE and PBIAS of 0.62 and 0.55 has

the weakest performance among the models in the test

phase. One can see that the hybrid ANFIS models had

higher and lower p and r values than the ANFIS model,

showing less uncertainty of hybrid ANFIS models com-

pared to the ANFIS model. Ultimately, Fig. 10c indicates

that ANFIS-SCA box diagram was more in line with the

observational data compared to other models. Figure 10c

indicates that ANFIS, MLP, and RBFNN models are less

Table 5 Performance of the

different hybrid and stand-alone

models for the training and

testing phases for the Eagel
Creek Basin

Model Train

RMSE (mg/L) MAE (mg/L) NSE PBIAS

RMSE MAE NSE PBIAS r p R2

ANFIS-SCA 12.23 11.10 0.98 0.14 0.12 0.94 0.95

MLP-SCA 14.35 12.23 0.97 0.16 0.14 0.91 0.92

RBFNN-SCA 15.36 14.23 0.95 0.18 0.16 0.90 0.90

ANFIS-BA 14.78 14.35 0.94 0.20 0.18 0.87 0.85

MLP-BA 15.67 14.87 0.92 0.22 0.20 0.85 0.84

RBFNN-BA 16.67 15.12 0.91 0.24 0.22 0.82 0.80

ANIFS-PSO 18.12 16.12 0.90 0.26 0.25 0.79 0.78

MLP-PSO 18.25 17.23 0.89 0.28 0.27 0.77 0.76

RBFNN-PSO 19.12 18.24 0.88 0.32 0.29 0.75 0.72

ANFIS-FFA 19.14 18.45 0.86 0.33 0.30 0.72 0.68

MLP-FFA 20.21 19.12 0.85 0.34 0.31 0.68 0.66

RBFNN-FFA 22.23 20.12 0.82 0.36 0.32 0.67 0.65

ANFIS 23.45 21.23 0.80 0.39 0.33 0.66 0.64

MLP 24.56 22.10 0.76 0.40 0.34 0.62 0.62

RBFNN 25.67 22.12 0.77 0.42 0.35 0.60 0.58

Model Test

RMSE MAE NSE PBIAS r p R2

ANFIS-SCA 16.12 15.78 0.96 0.16 0.14 0.90 0.94

MLP-SCA 17.23 16.12 0.94 0.18 0.18 0.89 0.90

RBFNN-SCA 17.45 16.98 0.90 0.20 0.20 0.87 0.89

ANFIS-BA 17.68 17.02 0.89 0.22 0.22 0.85 0.85

MLP-BA 19.23 18.23 0.87 0.25 0.24 0.84 0.84

RBFNN-BA 20.12 19.12 0.85 0.29 0.26 0.82 0.80

ANIFS-PSO 21.12 20.12 0.82 0.31 0.30 0.80 0.76

MLP-PSO 22.34 21.12 0.80 0.32 0.32 0.76 0.75

RBFNN-PSO 24.45 22.34 0.78 0.35 0.33 0.65 0.70

ANFIS-FFA 25.67 24.67 0.76 0.39 0.35 0.60 0.65

MLP-FFA 27.62 27.65 0.74 0.42 0.37 0.59 0.60

RBFNN-FFA 28.63 27.69 0.70 0.45 0.39 0.58 0.59

ANFI 29.12 28.14 0.68 0.49 0.40 0.57 0.58

MLP 30.12 29.12 0.65 0.51 0.42 0.56 0.57

RBFNN 31.12 30.12 0.62 0.55 0.44 0.55 0.56
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accurate than models using optimization algorithms.

Hence, the performance of the models for the second case

study indicated that ANFIS-SCA model had better accu-

racy in the present study. In Table 5, the performance of the

different hybrid and stand-alone models for the training

and testing phases is presented for the Eagel Creek Basin.

4 Conclusions

The knowledge of suspended sediment load modeling in

rivers is excessive, as it results from soil erosion and plays

a key role in watershed management, river morphology,

and the operation of hydraulic structures. The current

research studied any possibility of evolutionary soft com-

puting approaches in suspended sediment load modeling.

However, soft computing approaches such as the ANFIS,

MLP, and RBFNN models are widely used to estimate

SSL, but their output is not sufficiently accurate for basin

management. In this study, four optimization algorithms

(SCA, PSO, BA, and FFA) were used to train the ANFIS,

MLP, and RBFNN models for suspended sediment load

prediction at the basin scale (Talar and Eagel Creek Basins

located in northern Iran and central part of USA). The

second case study demonstrated that the ANFIS-SCA

model could decrease MAE error compared to ANFIS-BA,

ANFIS-PSO, ANFIS-FFA, and ANFIS models by 18%,

32%, 37%, and 49% in the training phase, respectively.

However, different climate parameters affected the SSL

value, so future studies should predict SSL for future

periods using models and scenarios describing future

changes in climate. Each optimization algorithm in the

study with high accuracy and appropriate convergence

speed showed a very high capacity for solving optimization

problems. The conclusions are as follows:

• Novel optimized models had an important scientific

contribution to the development of a powerful model

for suspended sediment load prediction at the watershed

scale. The sine–cosine algorithm (SCA) optimizer gave

strong predictive capacities to the (multilayer percep-

tron (MLP), adaptive neuro-fuzzy system (ANFIS), and

radial basis function neural network (RBFNN).

• Among the optimized models, ANFIS-SCA showed the

best performance in the training and testing phases for

both stations, while RBFNN showed the lowest

accuracy.

• Optimization of the models using SCA has decreased

the RMSE by 20%, 21%, and 22% for ANFIS, MLP,

and RBFNN, respectively.

• The uncertainty outputs (based on the uncertainty in

sequential uncertainty fitting (SUFI-2)) indicated that

the hybrid ANFIS, MLP, and RBFNN models were the

most accurate (lowest r index, highest p index) of the

models tested. Overall, ANFIS-SCA showed a good

ability for predicting SSL.

• This study can help as a basic research for future studies

and other regions (other optimization algorithms or soft

computing models) seeking suspended sediment load

prediction in a watershed scale using optimized models.
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