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Abstract How well does a given pitch fit into a tonal scale
or tonal key, let it be amajor orminor key?A similar question
can be asked regarding chords and tonal regions. Structural
and probabilistic approaches in computational music the-
ory have tried to give systematic answers to the problem of
tonal attraction.Wewill discuss two previousmodels of tonal
attraction, one based on tonal hierarchies and the other based
on interval cycles. To overcome the shortcomings of these
models, both methodologically and empirically, I propose a
new kind of models relying on insights of the new research
field of quantum cognition. I will argue that the quantum
approach integrates the insights from both group theory
and quantum probability theory. In this way, it achieves a
deeper understanding of the cognitive nature of tonal music,
especially concerning the nature of musical expectations
(LeonhardMeyer) and a better understanding of the affective
meaning of music.

Keywords Quantum cognition · Tonal attraction · Compu-
tational music theory · Generative music theory · Interval
cycles · Musical expectation · Affective meaning of
music

1 Introduction

In the past 20 years, there has been an enormous progress
in the development of cognitive theories of tonal music.
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We can distinguish two different kinds of models that have
been developed within the years—structural and probabilis-
tic accounts. The label “structural” applies to approaches
that follow the mechanics of symbol manipulation systems
(Harnad 1990; Newell 1980) prominently represented by the
generative music theory (Lerdahl and Jackendoff 1983). The
label “probabilistic” applies to all approaches that see (sub-
jective) probabilities expressing expectations of the music
listener as crucial for the understanding of tonal music
(Huron 2006; Meyer 1956; Temperley 2007).

One central claim of the present paper is that structural
and probabilistic approaches can and must be integrated to
construct a proper approach to tonal music. This idea of inte-
gration is not new in cognitive science. It was developed
successfully in cognitive linguistics, most prominently by
the writings of Paul Smolensky and his colleagues (Prince
and Smolensky 1993/2004; Smolensky and Legendre 2006).
In recent years, proponents of quantum cognition have devel-
oped another kind of integration. This kind of approach
uses insights from the mathematics developed in quantum
physics, especially the role of symmetries and the formu-
lation of a special kind of probability theory that differs
from the standard Kolmogorovian calculus. It integrates the
structural insights of the relevant symmetry groups with the
insights of quantum probabilistics.

As the central problem of this paper, we will investigate
the question of tonal attraction. How well does a given pitch
fit into a tonal scale or tonal key, let it be a major or minor
key? In an celebrated study, Krumhansl and Kessler (1982)
asked listeners to rate how well each note of the chromatic
octave fitted with a preceding context, which consisted of
short musical sequences in major or minor keys. The results
of this experiment clearly show a kind of hierarchy: the tonic
pitch received the highest rating, followed by the pitches
completing the tonic triad (third and fifth), followed by the
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remaining scale degrees, and finally the chromatic, non-scale
tones. This finding plays an essential role in Lerdahl’s and
Jackendoff’s generative theory of tonal music (Lerdahl and
Jackendoff 1983) and is one of the main pillars of the struc-
tural approach in music theory.

Several models aim to account for the mechanism of
tonal attraction. We will discuss two of them: the hierarchi-
cal approach and the interval cycles account. The hierarchic
approach to tonal pitches was developed by Krumhansl and
Kessler (1982), Lerdahl and Jackendoff (1983), and Lerdahl
(1988, 2001). In this approach, tonal attraction is propor-
tional to the number of levels in the tonal hierarchy (tonic
root, tonic triad, diatonic series) the pitch belongs to. The
account based on interval cycles is due to Woolhouse and
colleagues (Woolhouse 2009, 2010; Woolhouse and Cross
2010) and was criticized by Quinn (2010).1 The model
assumes the hypothesis of interval cycle proximity (ICP):

“Tonal attraction in music is proportional to the sum
of the interval cycles formed between sequential pairs
of tones and/or chords. Higher interval cycles produce
strong tonal attraction; low interval cycles produce
weak tonal attraction.” (Woolhouse 2010: 66)

Iwill demonstrate that bothmodels are insufficient for empir-
ical and conceptual reasons. Moreover, I will develop a very
simple but new model based on quantum probabilities, com-
bined with the idea of symmetries grounded on the cyclic
group C12. The model highlights certain geometric aspects
of a theory of tonal music (Tymoczko 2011) and it integrates
its structural and probabilistic aspects.

In the following section, I will discuss some previous
models of tonal attraction in more detail including Lerdahl’s
hierarchic model and Woolhouse’s model of interval cycles.
Section 3 develops the quantum model of tonal attraction. In
Sect. 4, I compare the three models, discuss their empirical
and methodological impact, and draw some general conclu-
sions.

2 Previous models of tonal attraction: tonal
hierarchies and interval cycles

Geometrical (or topological) models have a long tradition in
music theory. They can relate to pitches and pitch classes,
to chords, and to tonal regions (defining the known key sys-
tems in European music). A tonal pitch system consists of
a number of pitches where pitches are sounds defined by a
certain fundamental frequency. In this paper, we assume 12

1 A reply to Quinn’s criticisms can be found in Woolhouse and Cross
(2011).

pitch classes, also called tones2, and we will use a numeric
notation to define the 12 tones of the system, in ascending
order:

0 = C, 1 = C�, 2 = D, 3 = D�, 4 = E, 5 = F, 6 = F�,

7 = G, 8 = G�, 9 = A, 10 = B�, 11 = B. (1)

Pitches, and on a more abstract level, tones are objects of our
acoustic perception.Basically, perception is basedon similar-
ities. Consequently, pitches can be ordered by this similarity
relation. Geometric models simulate the perceived similarity
of pitches by geometric distances in a spatial model.

A standard example is the tonnetz first proposed by Euler
(1739), later adapted by Riemann, Longuet-Higgins and
many others. In the Euler tonnetz, the tones are organized
along two axes. The horizontal axis consists of a fifth cycle
and the vertical axis of a major third cycle (and the diagonals
yield semitone and minor third cycles). Balzano (1980) pro-
posed another kind of tonnetz grounded on group theory. The
horizontal axis consists of aminor third cycle and the vertical
axis of a major third cycle (the diagonals yield semitone and
fifth cycles).

One significant problem with both kinds of spatial repre-
sentations is that they generate absolute, context-independent
distances (or similarities) between pitches.However, the sim-
ilarity of pitches is not absolute—it is dependent of a given
scale that underlies the tonal system. In Western systems of
tonal music, for instance, a common scale is a diatonic scale
based on a certain root tone. If C is the root tone, the diatonic
scale (C major) consists of the seven pitches C, D, E, F, G,
A, B. Based on the C-major scale, the perceived distances
between E–F on the one hand and C–D on the other hand
are equal. However, this is not reflected by equal distances
in the tonnetz.3 Once more based on the C-major scale, the
perceived distances between E–F� on the one hand and C–D
on the other hand are perceived differently even when the
corresponding distances in the tonnetz are the same.4 When
the underlying scale is changed to G-major we get the oppo-
site pattern even when the distances within the tonnetz (and
the corresponding frequency quotients) are not changed: the
perceived distances between E–F and C–D are different but
the perceived distances between E–F� and C–D are identi-

2 Tones can be seen as equivalent classes of pitches. Two pitches with
fundamental frequencies f1 ≥ f2 are equivalent if f1/ f2 is a natural
number (i.e., the two pitches are equal or have a distance of one or more
octaves). Hence, the concept of tones as equivalence classes of pitches
abstracts from the octave level.
3 Similar observation can be based on acoustic considerations by com-
paring the fundament frequency quotients (assuming the octave is
equally divided into 12 parts, i.e. the tuning is equal temperament). For
E–F the quotient is about 16/15. In contrast, for C–D the corresponding
quotient is 9/8.
4 Likewise, the frequency quotients are identically in both cases (9/8).

123



Modelling tonal attraction: tonal hierarchies… 1403

cal. The situation is like the situation in natural language. The
similarity relations between different phonemes depend on
the underlying language (assuming the considered phonemes
do really appear in all the considered languages).

Lerdahl (1988) states another problem with the tonnetz.
The problem is that this structural approach does not pro-
vide a consistent theory of similarity considering the level of
tones, chords, and tonal regions.

A comprehensive model must incorporate all three
levels into one framework, representing perceived
proximity at each level and showing how the levels
interconnect. (Lerdahl 1988: 319)

In the following subsection, we present Lerdahl’s model of
the tonal pitch space and look how it generalizes to chords
and tonal regions.

2.1 Tonal hierarchies

Lerdahl (1988, 2001) has developed a model of tonal attrac-
tion based on a tonal hierarchy. Forerunners of this approach
are Krumhansl (1979), Krumhansl and Kessler (1982) and
Deutsch and Feroe (1981). Lerdahl has presented the model
in a way that allows stringent generalisations and that invites
for comparisons with the linguistic domain—using the com-
mon nominator “optimality theory” (Prince and Smolensky
1993/2004; Smolensky and Legendre 2006).

A numerical representation of Lerdahl’s basic space for
C-major is given in Table 1. It shows the 12 tones at their
levels in the tonal hierarchy. In all, five levels are considered:

A: octave space (defined by the root tone, 0 =C in the present
case),

B: open fifth space,
C: triadic space,
D: diatonic space (including all diatonic pitches of C-major

in the present case),
E: all (including all 12 pitch classes).

Table 1 also shows the embedding distance c, which is
calculated by counting the number of levels down that a pitch
class first appears. The smaller the embedding distance, the

Table 1 The basic tonal pitch space as given in Lerdahl (1988)

Level A 0

Level B 0 7

Level C 0 4 7

Level D 0 2 4 5 7 9 11

Level E 0 1 2 3 4 5 6 7 8 9 10 11

Embedding distance c 0 4 3 4 2 3 4 1 4 3 4 3

Table 2 The basic tonal pitch space as given by an optimality theoretic
tableau

Constraints\
pitch class

0 1 2 3 4 5 6 7 8 9 10 11

A x x x x x x x x x x x

B x x x x x x x x x x

C x x x x x x x x x

D x x x x x

Embedding distance c 0 4 3 4 2 3 4 1 4 3 4 3

Tonal attraction (6.5−c) 6.5 2.5 3.5 2.5 4.5 3.5 2.5 5.5 2.5 3.5 2.5 3.5

The embedding distance now is simply the number of violations of the
involved constraints A–D

higher its tonal attraction (i.e. the better it fits into the given
tonal scale).

The basic tonal pitch space is easy to model within
the framework of optimality theory (Prince and Smolen-
sky 1993/2004; Smolensky and Legendre 2006). In this
framework, the tonal levels have to be interpreted by tonal
constraints. The constraints simply express whether a given
tone is a member of the considered tonal level. For example,
the constraint A (related to the tonal level A) is satisfied
if the considered tone is the root tone and it is violated
otherwise.

From Table 2 it is easy to see that the embedding distance
is exactly the sum of the constraint violations. Hence, all
constraints have to be considered as equally ranked to yield
identical numerical values for identical numbers of constraint
violations. Table 2 also exhibits a measure of tonal abstrac-
tion, which is a linear function of embedding distance c. I
have chosen the form 6.5—c since it best fits the data of
Krumhansl and Kessler (1982) for the C major scale. Fig-
ure 1 presents the best fit for the major scale and Fig. 2 for
the (harmonic) minor scale.5

The most obvious empirical finding of the study is that
both for major and minor keys the seven tones of the scale
have higher values of tonal attraction than the five tones
which are not part of the scale. This is clearly seen in the
left part of Fig. 1, where we almost have a complete agree-
ment for data and model around the average rating of 2.3.
In the right part of the figure, the tones are ordered by the
ascending circle of fifth. In this case, the five tones before the
last are the non-scale members and approximate a horizontal
line. The ordering qua circle of fifths makes a special shape
of the data visible, which will be important when we discuss
the quantum model in Sect. 3. A second general finding is
that all tones of the tonic triad have higher values than the

5 There are three minor scales. If C is the root tone, these are the three
scales: (1) natural: C D E� F G A� B�C; (2) harmonic: C D E � F G A�

B C; (3) melodic: C D E� F G A B C (ascending) and C B� A� G F E�

D C (descending). In the following, we consider the harmonic scales
only (in agreement with Krumhansl and Kessler (1982).
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Fig. 1 Distribution marked by filled circle: data of Krumhansl and
Kessler (1982) for the key C major; distribution marked by x : score
of constraint violations d fitted to the data of Krumhansl and Kessler
(1982) by using the linear approximation 6.5 − c. The fit gives the

value 6.5 for pitch class 0 (minimal violations) and the value 2.5 for
pitch class 1 (maximal violations). On the left hand side, the tones are
ordered chromatically; on the right hand side, they are ordered by the
ascending circle of fifth

Fig. 2 Related distributions for
the key C minor. The harmonic
minor scale is chosen for
defining the level D violations.
On the left hand side, the tones
are ordered chromatically; on
the right hand side, they are
ordered by the ascending circle
of fifth

other tones of the scale. On the right-hand side of Fig. 1, we
find a local maximum at the element 4 of the circle of fifth
(the major third of the triad), which a little bit disturbs the
charming shape of the curve.

The data for the minor key are similar but the fit with
the model is far from being complete. The problem arises
because we have three minor scales. The one which leads to
the best agreement is the harmonic minor scale. On the left-
hand side, you see that for the penultimate two tones there is
the highest disagreement between model and data. These are
the tones A and �B, which are no elements of the harmonic
C-minor scale. Now consider the right-hand side of Fig. 2. A
local maximum appears at point 9 representing the note E�

in the harmonic minor triad.
Next, we consider charts of region and key relations. The

most famous of these graphic representations is Weber’s
regional chart (Weber 1824), which was later adopted by
Schönberg (1969). The chart represents the regions by key,
and it is shown in Fig. 3.

The general idea of a spatial chart is that distances and sim-
ilarities between tones, chords, and regions are expressed by
spatial distances and similarities. For instance, Fig. 3 shows
that the C-major region is closest to the G-major and F-major
regions, as well as to the A-minor and C-minor regions. This
is an intuitively correct outcome. However, when comparing
C-major with F-minor, the perceptual distance is predicted
to be larger than that between C-major and F-major. As
Tymoczko (2011) notes in appendix C: F-minor frequently
appears as a passing note between F-major and C-major and

d♯ F♯ f♯ A a C c

g♯ B b D d F f

c♯ E e G g B♭ b♭
f♯ A a C c E♭ e♭
b D d F f A♭ a♭
e G g B♭ b♭ D♭ d♭
a C c E♭ e♭ G♭ g♭

Fig. 3 Weber’s regional chart

should be closer to both, i.e. the distances f–F and f–C should
be smaller than the distance C–F. Unfortunately, this is not
expressed by the spatial chart.6

A more general problem is that the distance and similar-
ity relation are assumed to be symmetric relations. However,
Temperley (2007: 104) stresses the point that key relations are
asymmetric. For instance, consider the most closely related
key to C-major, which is G-major (dominant). However,
when taking G-major as a starting point, the most closely
related key is not C-major (subdominant) but D-major. This

6 A similar problem arises with Euler’s tonnetz. Here, triadic chords
can be represented by triangles on the tonnetz. Again, the spatial dis-
tance between the two triangles for C-major and F-minor is larger than
the distance between the two triangles for C-major and F-major (cf.
Tymoczko 2011, appendix C).
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Fig. 4 The chord circle of
fifths (bottom) and the region
circle of fifths (top) are used to
calculate the distance between
two chords in Lerdahl’s (1988)
model of chord proximity

d = i + (j1 + j2) + kchord
circle

region
circle

0 (I)

5(IV) 7(V)

11(viio)                         2(ii)

4(iii) 9(vi)

0
5 7

10 2
3 9

8 4
1 11

6

region 1

chord 1

region 2

chord 2distance j1 distance j2

in the chord circle 

distance i in the
region circles

exemplifies the asymmetry of the distance relation between
keys and Temperley (2007) gives empirical evidences for it.
The basic findings of asymmetry are in agreement with gen-
eral work on prototype effects in conceptual judgments. For
example, Tversky (1977) found that the similarity between
China and Korea is less than the similarity between Korea
and China. Similarly, people have a tendency to say 999 is
about 1000 but not 1000 is about 999. For a new treatment
of asymmetric similarity judgements within the framework
of quantum cognition the reader is referred to Pothos et al.
(2013).

Lerdahl’s model is able to account for Weber’s regional
chart (Lerdahl 1988: 331ff) but it also shares the shortcom-
ings just outlined. The basic idea is that this chart can be
constructed by combining the fifths cycle and the relative and
parallelmajor-minor cycle.With each application of one-step
in the circle of fifth, the distance rises by one-step (transform-
ingC–GorC–F, for instance). The sameholdswhen applying
the major–minor cycle (transforming c to E� or C to a, for
instance). In an alternative model, Krumhansl and Kessler
(1982) suggest to quantify the similarities between two keys
(regions) by calculating the correlations between their key
profiles. They construct a four-dimensional spatial represen-
tation of keys corresponding to the correlation values and
show how closely it resembles Weber’s regional chart.

The application of Lerdahl’s model to distances between
chords is more complicated. An important insight is that

chords are always relative to a tonal region (scale). Hence,
the chord of C-major is not absolute; it can be I/I (if it is
seen in the context of C-major) or IV/V (in the context of
G-major) or even III/VI (in the context of A-minor). The
distance measure is based on the chord circle of fifths and
the region circle of fifths. The chord circle relates the seven
chords within a tonal scale and the region circle relates the
12 regions. Note that the region circle does not distinguish
between major and minor regions (Fig. 4).

Hence, the distance between C-major and A-minor is zero
in the region circle but three in the chord circle. Lerdahl
(1988, 2001) makes use of the following linear formula to
calculate the distance d between two chords (given in the
context of a certain region):

d = i + ( j1 + j2) + k (2)

Hereby, i is the distance (number of steps) in the region circle;
j1 is the distance from the first chord to the tonic chord of the
first region (calculated in the corresponding chord circles);
j2 is the distance from the second chord to the tonic chord of
the second region; k is the number of distinct tones of the two
chords. For example, when comparing iv/vi (D-minor chord
in the context of A-minor region) with I/I (C-major chord
in the context of C-major region), the calculated distance
is d = 0 + (3 + 1) + 6 = 10. This is different from the
distance between ii/I and I/I, where D-minor and C-major
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Fig. 5 Stacked chart based on
Lerdahl’s (1988) model. The
calculated conditioned
probabilities are inversely
related to the distances predicted
by the model
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are both compared in the context of C-major: d = 0+ 2+ 4
= 6.

Recently, Huron (2006) has presented data based on cor-
pus studies (Huron 2006: 251). These data consist of the
frequencies of various chord progressions in a sample of
baroque music. From these data the probabilities of a chord
given someantecedent chord are derived [i.e.,we consider the
conditioned probabilities P(target chord/antecedent chord)].
The following stacked chart shows these conditioned proba-
bilities.

Note that the conditioned probabilities for each chord sum
up to 1 in the diagram. The broader the considered “second
chord strip” for a given “first chord”, the higher the proba-
bility of the considered target chord.

If we take Lerdahl’s distance model and relate distances
inversely to probabilities and normalize appropriately, then
we get the stacked chart shown in Fig. 5. Even though the
visual impression is counterintuitive against a strict corre-
lation between the model’s prediction and the corpus data,
there is some positive correlation (r = 0.21 in the aver-
age).

In agreement with Quinn (2010), I consider the (averaged)
correlation test as a very week instrument to establish causal
connections betweenmodels anddata. It is fair to say thatLer-
dahl’s distance model is not able to explain Huron’s (2006)
corpus data of a sample of baroque music. However, this is
not really a disproof of Lerdahl’s model.

Lerdahl makes a careful distinction between tonal hierar-
chies and event hierarchies. The latter are “part of the struc-
ture that listeners infer from temporal musical sequences”
(Lerdahl 1988: 316). Data that concern “chord progression”
should be explained in terms of such event hierarchies.
According to Lerdahl, consequently, we should not expect
that the distances calculated by hismodel, which obviously is
based on tonal hierarchies, conform to the chord progression

Table 3 Interval-cycle proximity as a function of interval length

Interval length 0 1 2 3 4 5 6 7 8 9 10 11

Interval-cycle
proximity (ICP)

1 12 6 4 3 12 2 12 3 4 6 12

data. Unfortunately, there is no alternative model available
that is created on event hierarchies.

2.2 Interval cycles

In recent research, Matthew Woolhouse has proposed to
explain tonal attraction in terms of interval cycles (Wool-
house 2009, 2010; Woolhouse and Cross 2010). The basic
idea is that the attraction between two pitches is proportional
to the number of times the interval spanned by the two pitches
must be multiplied by itself to produce some whole number
of octaves. Assuming 12-tone equal temperament, the ICP
of the interval can be defined as the smallest positive number
ICP such that the product with the interval length (i.e. the
number of half tone steps spanned by the interval) is a multi-
ple of 12 (maximal interval length). The following table lists
the ICPs for all intervals spanned by a given interval length.
For example, you see that the ICP for the triton is 2 and the
ICP for the fifth is 12. This has the plausible consequence
that, relative to a root tone, the fifth has higher tonal attraction
than the triton (Table 3).

A more general consequence is the kind of symmetry that
arises: an interval of n semitoneswill have the same ICP as an
interval of 12−n semitones. Unfortunately, this consequence
is wrong empirically. In fact, Krumhansl (1979) found that
subjects rated the same pairs of notes differently when the
notes were presented in different orders. For understanding
this result it is essential that Krumhansl presented the note
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pairs in a tonal context (sayC-major orC-minor). Such a tonal
context requires more than a root tone in order to be defined.
A defining context can consist of a whole scale, a chord, or
a cadential sequence of chords. In any case, it requires more
than just one root tone.

Woolhouse proposes to overcome the problem of symme-
try by taking a linear combination of the ICPs of the note
pairs considering all elements of the tonal context. In the
simplest case, this is the straight sum.7 Instead of the straight
sum, I suggest to take the arithmetic mean. This makes it eas-
ier to compare the effect of different tonal contexts (chords,
cadences, scales), which can have a quite different number
of tones. In cases with the same number of notes, the results
agree (up to a scaling factor) with Woolhose’s values. I will
call the arithmetic mean of ICPs relative to a given context
the context-driven ICP.

In the following, I will take the context-driven ICP as a
measure for tonal attraction in a given tonal context. Context-
driven ICP can also be calculated for chords. Toget an ICP for
a chord, we simply add the values of the tones of the chord.
Now let us consider some results presented by Woolhouse
(2010). First, taken the C-major scale as context, the tones
with the highest context-driven ICP (i.e. the highest tonal
attraction) are C and E. Of the seven possible diatonic triads,
C-major and A-minor have the highest context driven ICP.
Second, consider the natural A-minor scale (same tones as
for C-major but in a different order). Again, C and E are the
tones with the highest context-driven ICP, and—as before—
of the seven possible diatonic triads, C-major and A-minor
have the highest context driven ICP. Third, considering the
harmonicA-minor scale as context, the tone with the highest
context-driven ICP is A, and the optimal triad is the A-minor
triad. All these results are plausible findings. Importantly,
they were found without any additional stipulation. Quinn
(2010) notes as a problem for Woolhouse’s model that it
gives counterintuitive results when the melodic minor scale
is considered. In this case, contrasting with the harmonic
minor scale, the tone with the highest context-driven ICP is
B, and the optimal triad is the E-major triad.

Next, we will consider an example presented by Wool-
house and Cross (2010). In this example, the G7 chord is
taken as context and the ICP-profile is considered for the har-
monic minor scale C D E� F G A� B (= 0, 2, 3, 5, 7, 8, 11).
The chord G7, the dominant seventh in the key of C minor,
has been chosen because it strongly attracts C minor. The
following figure shows the ICP-profile for the seven tones of
the the harmonic C-minor scale.

Figure 7 shows the full context-driven ICP profile, i.e. it
considers the tonal attraction of all 12 pitch classes relative
to the given context.

7 In tonal contexts consisting of chords, a weighted sum can be consid-
ered that gives extra weight to intervals involving a chord root.

Fig. 6 Context-driven ICP-profile for the harmonic minor scale. The
contexts are (1) the harmonic C-minor scale (dashed profilemarked by
x) and (2) the chord G7 (dashed profile marked by o). The distribution
marked by filled circle represents the data of Krumhansl and Kessler
(1982) for the harmonic minor scale (C-minor). The theoretical curves
are scaled for best agreement with the empirical data

Fig. 7 Full context-driven ICP-profile, where the contexts are (1) the
harmonic C-minor scale (dashed profilemarked by x) and (2) the chord
G7 (dashed profile marked by o). The solid curve represents the data
of Krumhansl and Kessler (1982) for all 12 pitch classes. The scaling
factors are identical with those of Fig. 6

Figure 7 illustrates two important findings. First, it shows
that the agreement between the Krumhansl–Kessler data and
the theoretically calculated attraction values is very unsatis-
fying for all pitches that are not members of the (harmonic)
C-minor scale. Second, it demonstrates that Woolhouse’s
approach in terms of interval cycles is very sensitive to the
contextual triggers, even if they conform to a given tonal
scale.

Both aspects are essential for of a sound methodological
perspective. If the attraction value a listener feels in a given
tonal context for a particular pitch is causally connected with
the numbers of interval cycles, then we could expect that
this connection is effective for all 12 pitches of the scales,
not only for the subset that optimally fits the given tonal
context. Second, we could expect that there are significant
differences between contextual triggers conforming to a tonal
scale and contextual triggers non-conforming to it. Ample
evidence suggests that these differences are not predicted
theoretically. In the next section, I will show how this aspect
can be assessed.
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Fig. 8 Stacked chart reflecting
Piston’s table of chord
progression
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Quinn (2010) calculated the correlations between the
Krumhansl–Kessler data and the predictions of the context-
driven ICPmodel for fully chromatic key profiles. In contrast
to the suggestions made byWoolhouse and Cross (2010), the
average correlations between the full context-driven ICP pro-
file and Krumhansl–Kessler profiles are much closer to zero
than the correlations for scale-restricted key profiles. In the
major-scale case, the mean correlation is 0.089 and in the
minor case, the mean correlation is –0.045.8

Quinn (2010) further notes an important methodological
issue. It concerns the question of a deeper conceptual motiva-
tion for the (causal) connection between interval cycles and
tonal attraction.9

Why shouldwe expect that the attraction a listener feels
between two pitches should have anything to do with
the number of times the interval separating them needs
to be multiplied to produce an octave-equivalent inter-
val? On the face of it, these two properties of an interval
do not seem to have anything to do with one another.
Woolhouse does not provide much theoretical discus-
sion of thematter, largely confining himself to attempts
at showing correlational and anecdotal links between
ICP and various aspects of tonality. (2010: 173)

8 For scale-restricted key profiles, the values are 0.171 and 0.410,
respectively.
9 What I mean by “deeper” motivation can be made clear by an anal-
ogy to the old problem of analysing consonance/dissonance. Both the
model of Helmholtz (1877) and the Gestalt-theoretic model of psychol-
ogist Stumpf (1890) are attractive because they both are motivated by
physical-acoustic andphysiological arguments.With regard toStumpf’s
tonal fusion idea, it was only recently that some authors could derive the
underlying mechanism from certain properties of the neuronal period-
icity detection mechanism (Ebeling 2008; Tramo 2001). An analogous
argument is missing for Woolhouse’s approach.

Woolhouse (2010) applied his model of tonal attraction to
calculate values for all chord pairs of a given region (key) and
compared itwith Piston’s semi-empirical table of expectation
in chord progression (Piston 1979). Piston’s table consists
of statements like “IV is followed by V, sometimes I or II,
less often III or VI.” Woolhouse quantified such statements
by identifying four levels of chord-progression frequency:
“is followed by” was rated 4, “sometimes” was rated 3,
“less often” was rated 2, and a progression not mentioned
was rated 1. It was found that the predictions of the ICP
model were significantly correlated with the Piston-derived
frequency ratings (rs = 0.66, p < 0.005). An attempt to
replicate Woolhouse’s findings with data about chord pro-
gressions in musical corpora from Bach and Mozart showed
a significantly degraded performance (Quinn 2010). “That
study showed that the ICP model was better at explaining
Piston’s table than actual music and suggested further that
Woolhouse’s model and Piston’s table suffered from struc-
turally similar distortions of tonal harmonic syntax.” (Quinn
2010: 175). Figure 8 shows a stacked chart with scaled data
reflecting Piston’s table.

Even a shallow comparison with the data of Fig. 9 shows
capital discrepancies. The correlation value with the Huron
data presented in this Figure is considerably low (r = 0.29).

2.3 Comparing the models

The main problem of the traditional tonnetz approach is that
it does not provide a consistent theory of similarity consider-
ing the three levels of analysis concerning tones, chords, and
tonal regions. Further, there are many empirical issues which
are discussed in length in the existing literature (Lerdahl
2001; Tymoczko 2011). The two models we have discussed
in this section overcome some of the methodological and
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Fig. 9 Stacked chart using
corpus data of a sample of
baroque music (data from Huron
2006: 251)
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empirical issues. Both kinds of models have advantages and
disadvantages I will discuss now (Fig. 8).

Empirically, I think the hierarchical model gives an
adequate description for the attraction profiles for tones.
However, there are many stipulations in the model. They
concern the number of levels and the precise content of
some levels. For instance, they concern the question of which
chords constitute the triadic level. For Western music, the
decision is easy to make by assuming that we have a clear
distinction between major and minor systems. Non-Western
kinds of music need not conform to the major/minor system
and can be based on tonal scales quite different from those
of Western music. Alternative scales such as Indian ragas or
the scales underlying traditional Japanese music are widely
used in world music. It is completely unclear how we can
modify or extend the hierarchical model to account for the
traits of these kinds of music.

A common criticism against generative linguistics is
that it is founded on an English-biased view of the nature
of language (such as the extended projection principle or
Burzio’s generalisation), which hinders sound typological
work (Babby 2009). Similarly, a criticism against genera-
tive theories of music may include a powerful attack against
the assumption of a universal tonal hierarchy, which is built
on a bias towards Western music. I admit that—at least on
a first glance—many assumptions of Lerdahl’s and Jackend-
off’s (1983) generative theory of tonal music seem to be very
plausible. This is not necessarily an advantage.10

Some authors, e.g. Katz and Pesetsky (2011) recom-
mend optimality theory (Prince and Smolensky 1993/2004;
Smolensky and Legendre 2006) as a means of exploring the

10 Tucholsky recognized “the greatest enemy of truth is plausibility”.
Muns (2014) listed some of the “plausible” mistakes. Further, a recent
article of Bierwisch (2014) criticizes an extreme way of generativist’s
argumentation.

similarities between language andmusic. The presentation of
Lerdahl’s and Jackendoff’s model of the tonal pitch space in
an optimality-theoretic style has shown, unfortunately, that
the instrument ceases to be useful in the present case. This
is a consequence of the fact that the assumed constraints
represent an inclusion hierarchy, where violations of lower
constraints always entail violations of higher constraints.
Hence, all that counts is the total number of constraint viola-
tions; the ranking of the constraints does not matter. In this
vein, the conceptual core of optimality theory—constraint
interaction and combinatorial typologies—cannot play any
role.As a consequence, the core of the generativist strategy—
to make a distinction between universal (innate) and learned
knowledge—remains obscure in the musical domain.

Concerning the empirical facts, there is general agree-
ment that for both major and minor profiles, scalar tones
have higher values of tonal attraction than non-scalar tones.
With reference to a piano this means that the white tones
have higher values than the black tones (when considering
C-major or A-minor). A second general finding is that all
tones of the tonic triad have higher values than other tones of
the scale (Temperley 2007: 84). These two important empir-
ical facts are directly stipulated by the hierarchic model: by
assuming a “diatonic space” (level D) which includes all
scalar notes and by assuming a higher order “triadic space”
(level C) that includes the tones of the triadic space.11 The
important methodological insight of the interval cycle model
is that we have to “explain” these empirical findings rather
than to describe them. Even if the ICP model finally fails for
empirical reasons, its way of theorizing is important.

11 Another finding is that for major scales the tonic pitch has a higher
attraction value than the fifth. In the hierarchic model, this suggests
the assumption of an open fifth space (level B). Unfortunately, this
conflicts with the Kostka–Payne corpus data (Kostka and Payne 1995).
Consequently, the existence of this level of fifth space is questionable,
for it does not apply for all assumed tonal scales.
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The ICP model is important from a methodological point
of view. The model seeks to derive the basic traits of major
and minor attraction profiles, rather than to stipulate them. In
the ICP model, absolute profiles are defined, taking interval-
cycle proximity as an absolute function of interval length.
These absolute profiles are key-independent. Absolute pro-
files are theoretical entities, i.e. they cannot directly be
observed empirically. They abstract from the underlying
tonal context, which in Western music is defined by a major
or a minor scale.12 A capital advantage of this approach is
that it can also be applied to non-Western kinds of music.
From the empirical point of view, the model is not really
convincing, especially if we consider the full context-driven
ICP-profiles.

An interesting possibility to check the models is to apply
them to predict the proximity values of chords and tonal
regions. As we have seen the ICP-model is able to approxi-
mate rather artificial and semi-empirical data (Piston’s table),
but it fails to account for real corpus data. The hierarchic
model, on the other hand, can predict the basic impact of
Weber’s regional chart, but it fails to account for the sim-
ilarity data for chord pairs, as investigated for instance by
Huron (2006). Further, the hierarchicalmodel predicts a sym-
metric similarity relation, which is a clear failure.

Summing up, the hierarchical model has some serious
conceptual and empirical flaws. In contrast, the ICP-model
makes an interesting methodological point. It tries to derive
the observed phenomena and to fit the empirical data by
assuming only one important principle: the principle of
interval-cycle proximity. Unfortunately, themodel is descrip-
tively inadequate on all levels of investigation—tones, chords
and regions.

3 The quantum model of tonal attraction

In this section, I will seek for a model that successfully com-
bines the attractive methodological point of the ICP-model
with the issue of empirical adequacy. Hence, similar to the
ICP model of Woolhouse, I will start with defining absolute
profiles, and then I will extend this theoretic core to derive
context-dependent profiles of pitch attraction, and measures
for regional and chordal similarities. These similarity rela-
tions will clearly be asymmetric. However, in contrast to
Woolhouse’s approach, the absolute profileswill not be based

12 Assume we perform an empirical study asking for the proximity
between two pitches without explicitly presenting a context. It would
be wrong to assume that we can measure the absolute profiles in this
way. Instead, the subjects will automatically infer a tonal scale, i.e. they
will decide about a scale which fits best into the presented pitch interval
(and normally, the two pitches are assumed both to be elements of the
inferred scale). Hence, we will get a profile relative to an inferred scale.

on interval cycles but on a new idea of a mathematical inter-
pretation of the circle of fifth. This new understandingwill be
based on the idea of interpreting cognitive states as vectors in
a Hilbert space13 and of constructing a probability measure
by means of projecting such states.

The new understanding of probabilities as projection
properties of cognitive states is one of the most important
developments in theoretical and mathematical psychology.
In a series of papers, quantum probabilities are discussed
as providing an alternative to classical probabilities for the
understanding of cognition (Aerts 2009; Aerts et al. 2005;
Blutner 2009; Blutner et al. 2013; Bruza et al. 2009a, b;
Busemeyer and Bruza 2012; Busemeyer et al. 2006; Conte
et al. 2008; Gabora and Aerts 2002; beimGraben 2004; Kitto
2008). In considerable detail, they point out several cognitive
phenomena of perception, decision, and reasoning, which
cannot be explained based on classical probability theory,
and they demonstrate how quantumprobabilities can account
for these phenomena.

In their recent book, Busemeyer and Bruza (2012), give
several arguments why quantum models are necessary for
cognition. Somearguments relate to the cognitivemechanism
of judgments. Judgments normally do not take place in def-
inite situations. Rather, judgments create the context where
they take place. This is the dynamic aspect of judgments
also found in dynamic models of meaning (beim Graben
2013). An alternative aspect is the logical issue. The logic of
judgments does not obey classical logic. Rather, the under-
lying logic is very strange with asymmetric conjunction and
disjunction operations. When it comes to considering proba-
bilities and conditioned probabilities the principle of unicity
is violated, i.e. it is impossible to assume a single sample
spacewith a fixed probability distribution for judging all pos-
sible events. Another line of argumentation seeks to answer
the question “why quantum models of cognition” by spec-
ulating about implications for brain neurophysiology. In an
algebraic approach, even classical dynamical systems such
as neural networks could exhibit quantum-like properties, for
example in the case of coarse-graining measurements, when
testing a property cannot distinguish between epistemically
equivalent states (beim Graben 2004).

3.1 Qubit states

In classical information science, a bit is the basic unit of
information in computation referring to a choice between
two discrete states, say {0, 1}. In contrast, a qubit is the

13 A Hilbert space is a vector space upon which an inner product is
defined and which makes use of complex numbers. If the vector state
is assumed to describe a wave function, then the multiplication of the
vector with a complex number allows an elegant description of phase
shifts of the wave.

123



Modelling tonal attraction: tonal hierarchies… 1411

basic of information in quantum computing referring to
a choice between two orthogonal unit-vectors in a two-
dimensionalHilbert space. For instance, the orthogonal states

ϕ→ =
(
1
0

)
and ϕ↑ =

(
0
1

)
can be taken to represent true

and false, the vectors in between are appropriate for mod-
eling degrees of truth (vagueness) or degrees of expectation
(probabilities).

The simplest non-trivial physical system is a two-state
system, also called a qubit system. In such a system, each
proper observable has exactly two (orthogonal) eigenvec-
tors, say ϕ→ and ϕ↑. In the eigenstates of the observable the
question asked by the observable has a certain outcome. Of
course, a qubit can realize an infinite set of states but only
two orthogonal states relate to eigenstates of the observable.

Formally, an arbitrary state of a qubit can be written as

ψ = αϕ↑ + βϕ→ with |α|2 + |β|2 = 1 (3)

Making use of a particular parameterization of the states ψ

every state of a qubit can be realized as the point on a three-
dimensional sphere, the so-called Bloch sphere (Fig. 6, left-
hand side).

ψ = cos(θ/2)ϕ↑ + sin(θ/2)e+i	ϕ→ (4)

The parameters θ and	 are nothing but spherical polar coor-
dinates, 0 ≤ 	 < 2π and 0 ≤ θ < π .14 One example of the
realization of qubits is the spin of electrons. Hereby, it is pos-
sible to measure the spin in three “spatial” directions x, y and
z. Another example is the polarization of photons. Hereby
the state ϕ↑ represents a state with definite polarization in
↑-direction; the state 1√

2
(ϕ↑ −ϕ→) represents definite polar-

ization in↖-direction; the superposition of states including a
π/2 phase shift, such as 1√

2
(ϕ↑− iϕ→), represents circularly

polarized light (Fig. 10).
For a simple illustration, consider a photon in a qubit state

ψ and take ϕ↑ as indicating vertical polarization and ϕ→as
indicating horizontal polarization. Then the probability that
the object is vertically polarized (i.e. it collapses into the state
ϕ↑) is

P↑(ψ) = |ϕ↑ · ψ |2 = cos2(θ/2) = 1/2(1 + cos(θ)) (5)

14 That means we can represent each unit vector ψ as a point on
the unit sphere in the three-dimensional space by the coordinates
x = sin(θ) cos(	), y = sin(θ) sin(	), z = cos(θ). If the phase
parameter 	 is zero, then the y-component vanishes and the three-
dimensional phase can be reduced to a circle in the x, z-plane with the
coordinates x = sin(θ) and z = cos(θ). Note that the angle θ in the
Bloch sphere corresponds to the angle θ/2 in the original parameteri-
zation (4). Hence, two orthogonal vector states correspond to opposite
points on the Bloch sphere.

Fig. 10 Bloch sphere. Using Eq. (4) an arbitrary (normalized) state
of the two-dimensional Hilbert space can be parameterized by the two
spherical polar coordinates θ and 	. Hereby, 	 corresponds to a phase
shift of the two superposing states ϕ↑ and ϕ→. On the right hand side,
a Bloch circle is shown resulting from the assumption of a zero phase
shift (	 = 0)

Further, we can also calculate the probability that the object
is polarized into a direction given by the superposition of ϕ↑
and ϕ→, say ↖= 1√

2
(ϕ↑ − ϕ→). Interestingly, if the photon

is described by ψ and collapses into the state ϕ↖, then the
calculated probabilities for the collapse also depend on the
phase shift 	:

P↖(ψ) = 1/2|(ϕ↑ − ϕ→) · ψ |2
= 1/2(1 + cos(θ) · sin(	/2)) (6)

For the understanding of quantum cognition it is not required
to give an interpretation in terms of some mysterious prop-
erties relating to the spin of electrons, the polarization of
photons or other entities. In contrast to quantum mind the-
ory (Hameroff and Penrose 1995), quantum cognition does
not follow strategies of reducing mental entities to physi-
cal ones. Not unlike representatives of artificial intelligence
who try to analyse big corpora using vector states modelling
their distributive semantics (Widdows 2004), representatives
of quantum cognition also work with vector states. The role
of projections and quantum probabilities is essential in both
cases.

Before we can apply the projection of states to calculate
(probabilistic) key profiles, we have to introduce some basic
ideas for symmetry groups.

3.2 Symmetry, group theory, and the principle
of translation invariance

One of the fundamental ideas of quantum cognition is to
apply the mathematics of the physical formalism to the
domain of cognition. For example, we can use a series of
qubit states to represent the 12 pitch classes used in tonal
music. In addition, we can use the probability that one of
these qubit state collapses into another one as a measure for
the tonal attraction between the corresponding tones.
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In Sect. 2, we have introduced a numeric notation to define
the 12 tones of the system. For convenience, it is repeated
here:

0 = C, 1 = C�, 2 = D, 3 = D�,

4 = E, 5 = F, 6 = F�, 7 = G, 8 = G�, (1)

9 = A, 10 = B�, 11 = B

There are certain actions or operations that allow transform-
ing tones into other tones. For instance, we can increase the
tones by a certain number of steps (0, 1, 2, . . . , 11). Such
actions are called translations. The 1-step translation trans-
forms c into c�, c� into d, and so on.Actions can be combined.
For example, we can combine the translation of a 2-step
increasewith a 3-step translation, resulting in a 5-step transla-
tion (in other words, a major second combined with a minor
third gives a fifth). We will denote these operations like-
wise with the numbers 0, 1, 2, . . . , 11. Normally, the context
makes clear what the numbers denote: a pitch class or the
operation of increasing tones by a number of elementary
steps. It is obvious that the combination of acts of trans-
lations can be described by addition (modulo 12): x + y mod
12; e.g., 2 + 3 mod 12 = 5, 7 + 6 mod 12 = 1.

At this point, it is indispensable to introduce some basic
concepts of group theory.15 Generally, a group consists of a
set of (abstract) elements and a binary operation defined on
it. Usually, this operation is written with a product sign, for
example g1 · g2 ∈ G (the product sign “·” can be left out).
The following properties have to be satisfied:

1. all elements of G are connected by the group operation,
i.e., for all elements g1, g2 ∈ G it holds that g1 · g2 ∈ G

2. There is a particular element e ∈ G (the neutral element)
such that for all elements g ∈ G it holds that e · g =
g · e = g.

3. The associative law is valid, i.e. for all elements g1, g2, g3
∈ G we have (g1 · g2) · g3 = g1 · (g2 · g3).

4. For each element g ∈ G there exists an inverse element
g−1, which has the property g · g−1 = g−1 · g = e.

In the case of music based on 12 tones, we have to consider
the set of group elements {0, 1, 2, . . ., 11}, and the group
operation is x · y = x + y mod 12. The neutral element is
the element denoted by 0 : (0 + x) mod 12 = (x + 0) mod
12 = x . For the inverse element x−1,we have x−1 = (12−x)
mod 12.

A group G is called cyclic if there exists a single element
g ∈ G such that every element in G can be represented

15 For the interested reader, we refer to standard textbooks of group
theory (Alexandroff 2012; Jones 1998) or good introductory sections or
appendixes in music-theoretic treatises (Balzano 1980; Honingh 2006)

as a composition of g’s. The element g is called a gen-
erator of the group. If a cyclic group has n elements (i.e.
the group is of order n), the group can be represented as
Zn = {e, g, g2, g3, . . ., gn−1}, where gn = e. In the present
numerical representation of the cyclic groupZ12 wehave four
generators conforming to the numbers 1, 11, 7, 5.16 Hence, 1
(upward) and 11 (downward) generate the sequence of semi-
tones. In addition, the elements 5 and 7 enumerate the group
elements in successive fifths or fourths—representing the cir-
cle of fifths. If x is an integer variable running from 0 to 11,
we can generate the group elements in the respective four
cases in the following way, where the variable x runs from 0
to 11:

(a) x + 1 mod 12

(b) x + 11 mod 12(= 12 − x mod 12)

(c) x + 7 mod 12

(d) x + 5 mod 12(= x − 7 mod 12).

(7)

Figure 11 gives a visual illustration of two ways to generate
the cyclic group Z12. On the left-hand side, the generator of
the group is the action of increasing the tones by one semi-
tone. On the right-hand side, the generator is the action of
increasing tones by seven semi-tones. Hence, when we apply
the group generator to the tone C in the first case, we get C�.
In the second case we get the tone G. The construction in the
second case does exactly what usually is represented by the
circle of fifth.

Next, let us introduce the concept of symmetry. This
concept plays an important role in many areas of science,
including classical mechanics, quantum mechanics, chem-
istry, crystallography, and theoretical biology. In music, it
is indispensable for a mathematical understanding of mod-
ulation theory and counterpoint (Mazzola 2002; Mazzola
et al. 1989). Mathematically, symmetry is simply a set of
transformations applied to given structural states such that
the transformations preserve the properties of the states. In
music, the most basic symmetry principle is the principle of
translation invariance. It says that the musical quality of a
musical episode is essentially unchanged if it is transposed
into a different key, i.e. if the operations of the cyclic group
Z12 are applied. Therefore, we can say that Z12 is the sym-
metry group of (Western) music.

In mathematics, the word representation means a
structure-preserving function. In group theory, a repre-
sentation is simply a homomorphism. The object of our
investigation is the symmetry group of translations. The
homomorphism we seek for should map this group to a more
concrete group that is in some sense easier to understand

16 The general rule is that the generators for a cyclic group Zn are
exactly the numbers i in the range 0 < i < n such that n and i are
relatively prime (i.e., they have no common factor differently from 1).
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Fig. 11 Visual representation of Z12. On the left hand side the differ-
ent elements of the group are generated by the semi-tone generator. The
white dots give an ordered subset of Z12 starting with the tone 0. It is
the diatonic scale of C-major. On the right hand side, the group ele-
ments are generated by a generator that transposes by seven semi-tones

(resulting in the circle of fifth). The numbers indicate how often the
generator is applied recursively. The tones in the inner circles are the
results of application of the corresponding group element to the basic
pitch class C

than the original one. For example, this group could consist
of linear maps as studied in linear algebra. More concretely,
the group could consist of certain rotations of vectors in a
two-dimensional vector space. For instance, we can rotate

the vector ϕ→ =
(
1
0

)
in n steps to the original vector. In

linear algebra, the elementary rotation steps can be described
by the following rotation matrix γ :

γ =
(
cos(2π/n) sin(2π/n)

− sin(2π/n) cos(2π/n)

)
(8)

One application of thismatrix to the vectorϕ↑ =
(
0
1

)
results

in the vector γ

(
0
1

)
=

(
sin(2π/n
cos(2π/n)

)
. This is a rotation of

the original vector by an angle of 2π/n. It is not difficult to
see that the generator γ as defined in (8) generates the cyclic
group Zn . For n = 12, the group elements of this group can
be enumerated as follows, where k runs from 0 to 11:

γ k =
(
cos(2πk/12) sin(2πk/12)
− sin(2πk/12) cos(2πk/12)

)
(9)

In this way, we can generate a series of vector states ψk

representing the 12 tones. In (10a) these states are given as
vectors in a two-dimensional real Hilbert space (we have
assumed zero phases). In the Bloch sphere, these vectors are
represented as in (10b). The y-component is zero because
of the zero phase. Note that the angles in (10a) are half of
the ones in (10b). Hence, the triton in the vector picture is
orthogonal to the tonic tone (angle π/2). But in the Bloch
sphere the two points are on opposite sides of the sphere;
hence, their angle is π .

(a) ψk = γ k
(
0
1

)
=

(
sin(πk/12
cos(πk/12)

)

(b) xk = sin(πk/6), zk = cos(πk/6). (10)

Importantly, we have to consider two different ways of
enumeration, corresponding to two generators of the group
Z12. One enumerates the pitches in a chromatic (ascending)
way; the other enumerates the tones according to the (ascend-
ing) circle of fifth. In this way, we get two Bloch circles,
which exactly correspond to the two circles shown by Fig. 11.
Which of these two representations of tones is the preferred
one depends of an empirical decision. This decision is not
difficult in the present case because we intend to express the
similarity relation between tones, tonal regions, or chords. In
the next section, I will demonstrate that this clearly favours
the circle of fifth.

3.3 Key profiles in the quantum model

In the case of pure states, quantum theory defines struc-
tural probabilities. This means the probability that a state ψ

collapses into another state depends exclusively on the geo-
metric, structural properties of the considered states. How
well does a given tone fit with the tonic pitch? What is the
probability that it collapses into the (tonic) comparison state?
The probability of a collapse of the state ψk into a state ψl

can be calculated straightforwardly:

Pψl (ψk) = cos2(π (k − l) /12)

= 1/2(1+cos(π (k−l) /6)), where 0 ≤ k, l < 12.

(11)

For a fixed element ψl the probabilities of the 12 tones
indexed by k (0 ≤ k < 12) sum up to 1. Hence, formula (11)
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Fig. 12 Comparison between the profile resulting from interval cycles
(squares) and the quantum-probabilistic profile (circles)

offers a (probabilistic) attraction profile relative to a given
tone ψl . We can compare it with the absolute attraction pro-
file resulting from tonal cycles (see Fig. 12).

Figure 12 illustrates that the profile resulting from interval
cycles and the profile resulting from the quantum model are
very different. The correlation between both profiles is very
weak. The correlation coefficient is r = 0.27, i.e. the corre-
lation explains r2 = 0.063 or 6.3 % of the variance of each
data set. Hence, we can conclude that the two models are
based on two quite different assumptions about the absolute
profiles.

If the comparison state is not a single tone, but a tonal
region, a chord, or a series of chords, then I will consider
the mixture of all the states conforming to all the involved
single tonal elements. For simplicity, I will take all tones that
go into this mixture as equivalent and give them the common
weight 1/N (assuming N tonal elements are to consider). This
assumption is rather similar to Woolhouse’s treatment of the
problem of context effects in tonal attraction (Woolhouse
2009, 2010; Woolhouse and Cross 2010).

Figure 13 shows the key profiles for major and minor keys
using the quantum model and scales it to the Krumhansl and
Kessler data considered before.

The correlation coefficient between the predicted profile
and the Krumhansl–Kessler profile is r = 0.78 in the case of
major keys and r = 0.69 in the case of minor keys. Remem-
ber the correlation coefficients for the full chromatics scales
using the ICP model: r = 0.089 in the major case, and
r = 0.045 in the minor case.17

3.4 Symmetry breaking and the learning of key profiles

A qubit can be characterized by two parameters θ and 	

as described by formula (4). The parameter 	 describes the
phase shift between the two orthogonal “wave functions” ϕ↑

17 Since we do not know the detailed statistics of the Krumhansl–
Kessler data, it cannot be decided at what level the differences to the
quantum model are significant.

and ϕ→(representing the tonic and the corresponding triton).
	 was set to be zero so far. Now we will generalize the
earlier model by assuming that non-zero phase shifts can
be involved. That means we replace formula (10a) by the
following expression for the states ψk expressing the tones
(in an enumeration conforming to the circle of fifth):

ψk =
(
sin(πk/12)
ei	k cos(πk/12)

)
(12)

We will consider the phase parameters 	k as free parame-
ters that are determined by learning processes. In general,
the parameters can break the symmetry that originally con-
formed to the symmetry group Z12. This is a case of
symmetry breaking by learning, which is prominently inves-
tigated in connectionist modelling (e.g., Földiák 1991).

In the present context, we fit the phase parameters with
the Krumhansl–Kessler data. The result of the fit is shown in
Fig. 14.

The correlation coefficient between the model fit and the
Krumhansl–Kessler profile is r = 0.95 in the case of major
keys and r = 0.97 in the case of minor keys (explaining
90 and 94 % of the variance, respectively). This result is
comparable to the hierarchical model (r = 0.97 for major
keys and r = 0.93 for harmonic minor keys).

3.5 Similarity between regions

For the calculation of the similarity between regions we use
a measure that is commonly used in quantum information
science: the Kullbeck–Leibler distance (also called relative
entropy). It is defined as follows, where p and q denote two
probability distributions:

KL (p/q) = �k pk log2 (pk/qk) (13)

The index k ranges over all events of a given partition
of the sampling space. Typically, one of the distributions
represents empirical observations, the other an approxi-
mating model. Intuitively, the Kullbeck–Leibler distance is
the expected number of bits required to code samples for
p when using a code optimized to code samples for q.
The Kullbeck–Leibler distance is closely related to cross
entropy H(p/q) = −�k pk log2(qk), which was introduced
into music theory by Temperley (2007). The connection is
KL(p/q = H(p/q)−H(p). The Kullbeck–Leibler distance
has interesting mathematical properties. For instance, it is
a convex function of pk , is always nonnegative, and equals
zero only if pk = qk , for all k (Cover and Thomas 1991). It is
not really a distance in the strict sense, for it is an asymmetric
function.

Table 4 shows two different distance models for regions
based on the Kostka–Payne profiles. One is based on the
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Fig. 13 The dashed curves
show the Krumhansl–Kessler
profiles (left major keys; right
minor keys). The bold curves
are the theoretical predictions of
the quantum model

Fig. 14 Comparison of the KK
key profiles with the data from
the quantum model with fitted
phase factors. The dashed
curves show the KK key profiles
(left major keys; right minor
keys). The bold curves are the
theoretical predictions

Table 4 Distances from C
major and A minor to all other
keys using correlation and
relative entropy

Key Kostka–Payne profiles
correlation method

Kostka–Payne profiles
relative entropy

Quantum model relative
entropy

C major A minor C major A minor C major A minor

C 1.000 0.646 0.00 1.34 0.00 0.017

C�/D� −0.575 −0.448 6.93 6.17 0.242 0.260

D 0.146 0.198 3.19 3.78 0.064 0.017

D�/E� −0.065 −0.421 4.84 5.20 0.130 0.195

E −0.224 0.251 4.85 3.41 0.194 0.130

F 0.638 0.521 1.51 1.99 0.017 0.065

F�/G� −0.840 −0.709 7.93 7.27 0.260 0.242

G 0.638 0.343 1.24 2.63 0.017 0.00

G�/A� −0.224 −0.355 5.77 5.30 0.194 0.242

A −0.065 0.436 4.08 3.01 0.130 0.065

A�/B� 0.146 −0.009 3.64 3.84 0.064 0.130

B −0.575 −0.414 6.70 6.13 0.242 0.195

c 0.436 −0.072 2.34 3.44 0.065 0.130

c�/d� −0.355 −0.002 5.64 4.48 0.242 0.195

d 0.343 0.374 2.29 2.51 0.00 0.017

d�/e� −0.709 −0.542 6.77 5.73 0.242 0.260

e 0.521 0.374 1.74 2.66 0.065 0.017

f 0.251 −0.002 3.45 3.65 0.130 0.195

f�/g� −0.421 −0.072 5.20 4.56 0.195 0.130

g 0.198 −0.165 3.40 4.44 0.017 0.065

g�/a� 0.488 −0.364 6.15 5.18 0.260 0.242

a 0.646 1.000 0.89 0.00 0.017 0.00

a�/b� −0.414 −0.364 6.00 5.69 0.195 0.242

b −0.009 −0.165 3.91 4.38 0.123 0.065

It also makes the comparison between the quantum model (	 = 0) and the Kostka–Payne data

correlation method; the other is based on relative entropy.
The distances are calculated from C major and A minor to
all other keys.

The two columns on the left-hand side give the correla-
tion coefficients based on the Kostka–Payne profiles. The
two columns in the middle are the relative entropies for the
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Fig. 15 Stacked chart based on
the quantum model with zero
phases
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corresponding profiles. On the right-hand side, the empiri-
cal predictions of the quantum model (with zero phases) are
presented.

Note that the Kostka–Payne profiles do not really present
probability distributions. For each key, the numbers for the
12 pitch classes do not add up to 1. In contrast, the relative
entropies according to the quantum model are calculated on
the basis of probability distributions. Therefore, you should
not expect similar values for the empirical and theoretical
predictions. Rather, the number columns should be similar
when taking into account a certain scaling factor. This can be
tested via the correlation values between the two columns of
relative entropies, which are independent of scaling factors.

The correlations for the relative entropies according the
Kostka–Payne data and the quantum model are r = 0.97
(betweenC-major and themajor keys), r = 0.91 (betweenC-
major and the minor keys), r = 0.88 (between A-minor and
the major keys), r = 0.77 (between A-minor and the minor
keys). A comparison with the Krumhansl–Kessler profiles
shows very similar results.18 Further, it is notable that the
correlation values increase to almost 1 if the fitted phase fac-
tors are included. Without going into a detailed comparison,
it can be said that the quantum model gives a good approxi-
mation to the distances established byWeber’s regional chart
(see Fig. 3).

3.6 Similarity between chords

Finally, let us compare the predictions of the quantummodel
with the similarity between chords as found by Huron’s
(2006) corpus analysis and presented in Fig. 8. Using the

18 The correlations are: r = 0.95 between C-major and the major keys;
r = 0.91 between C-major and the minor keys; r = 0.90 between A-
minor and the major keys; r = 0.82 between A-minor and the minor
keys.

quantum model, I first calculated the conditioned probabil-
ities of all tones of the considered scale triggered by each
of the seven chords. To get the conditioned probabilities for
chords (instead of single tones) I simply used the product
of the corresponding conditioned probabilities for each of
the three tones of the chord. The stacked chart for the quan-
tum model representing the conditioned probabilities for all
chords is given in Fig. 15.

Obviously, the comparison with Fig. 8 shows that the
predictions of the quantum model with zero phases are far
from fitting the Huron (2006) data. The averaged correla-
tion between the Huron data and the quantum model with
zero phases is r = 0.48. Remember the corresponding cor-
relation value for the Lerdahl-model: r = 0.21; and for the
interval cycles model: r = 0.29. Surprisingly, we do not get
an improvement of the fit when the (learned) phase parame-
ters are involved: r = 0.35.

I mentioned already the important distinction between
tonal hierarchies and event hierarchies introduced by Ler-
dahl (1988). Empirical data that concern “chord progression”
should be explained in term of such event hierarchies. The
learning of event structures seems to be quite different from
the learning of key attraction profiles, which relates to tonal
hierarchies in Lerdahl’s model. If we assume that there is a
partial overlap of innate knowledge about temporal musical
sequences and tonal attraction, thenwe are able to understand
why the symmetry breaking by learning attraction values can
challenge the prediction of musical sequences and weaken
the degree of correlation between the quantum model and
Huron’s (2006) chord progression data.

4 General discussion and conclusions

Structural and probabilistic approaches in computational
music theory have tried to give systematic answers to the

123



Modelling tonal attraction: tonal hierarchies… 1417

problem of tonal attraction. I have discussed two previous
models of tonal attraction, one based on tonal hierarchies
(Lerdahl 1988, 2001) and the other based on interval cycles
(Woolhouse 2009, 2010; Woolhouse and Cross 2010). Both
models aim to account for the phenomenon of tonal attraction
at the level of pitches, regions, and chords.

Unfortunately, both models have serious limitations. The
hierarchical model has serious conceptual flaws because it
stipulates the empirical generalisations rather than predict-
ing them. Further, it envisages symmetric similarity relations
between regions and chords, whoch cannot be correct empir-
ically. The ICP-model, on the other hand, has interesting
methodological advantages. Unfortunately, it is descriptively
inadequate on all levels of investigation—pitches, chords,
and regions.

To overcome the shortcomings of these models, both
methodologically and empirically, I proposed a new prob-
abilistic model relying on insights of quantum cognition.
I have argued that the quantum approach integrates the
insights from both group theory and quantum probability
theory. In some sense, the model integrates the conceptual
advantages of the ICP model with the empirical prospects
of Lerdahl’s tonal hierarchies. The present model does not
incorporate information that listeners infer from temporal
musical sequences. According to Lerdahl (1988), these are
the effects of event hierarchies, which deserve a special
treatment—possibly along the lines of Mazzola (2002) and
Mazzola et al. (1989).

In his recent book, Philip Ball outlines that at the heart
of any scientific explanation of music is an understanding
of how and why it affects us (Ball 2010). From generativist
theory building, we can learn that a basic pillar of scientific
explanations is a careful distinction between different levels
of description. I think it is a good idea to start with the per-
ceptual and the cognitive level and to add a level of affective
meaning. The perceptual level is investigated in psycho-
acoustics. It relates the relevant physical properties of sensory
stimuli and the psychological responses evoked by them. The
cognitive level refers to psychological processes which go
beyond the purely sensual processes such as in the musical
context of event hierarchies or counterpoint. The distinction
is standard in approaches to consonance/dissonance where
it relates to the distinction between perceptual (or sensory)
consonance/dissonance andmusical consonance/dissonance,
following Rasch and Plomp (1999). If I consider affective
meaning as the third level of musical representation, I have in
mind the formofmeaningwhichMeyer (1956) called embod-
ied meaning. This term refers to the significance a musical
event can have for a listener in terms of its own structure and
in interaction with the listener’s musical expectations. In his
seminal book, Meyer (1956) pointed out that the principal
emotional content of music arises through the composer’s
arranging of expectations. Composers sometimes satisfy our

expectations, sometimes delay an expected outcome or even
thwart it, and sometimes composers play with ambiguities
avoiding any clear expectations to be established. The secret
to composing a likeable song is to balance predictability and
surprise. Because most music has a beat and is based on
repetition, we know when the next musical event is likely
to happen, but we do not always know what it will be. Our
brains are working to predict what will come next. The skill-
ful composer rewards our expectations often enough to keep
us interested, but violates those expectations the rest of the
time in interesting ways.

The mathematical treatment of expectations is in terms of
probabilities, let it be classical Bayesian probabilities (Oaks-
ford and Chater 2007) or non-classical quantum probabilities
(Busemeyer and Bruza 2012). In this paper, we have inves-
tigated the problem of tonal attraction and we have argued
in favour of a probabilistic approach in terms of quantum
probabilities. In this way, we have presented a framework
for expressing and handling expectations. Looking at future
work, this could be one of the building blocks for realising the
mapping betweenmusic and its affective (emotional) answer.
Another building block relevant for realizing the ultimate aim
of connectingmusical structureswith affectivemeaning is the
proper characterization of the qualitative character of chords
in terms of consonance and dissonance.

A surprising outcome of this paper is that we can make a
judgment on the percentage of variance that comes from the
symmetry conserving quantum model (and possibly can be
seen as innate and not learnable) and that part of the quan-
tum model that deals with symmetry breaking and fixing the
phases. The first part of the variance is about 50%, the second
part is about 40, and 10 % cannot be explained. The symme-
try breaking parts introduce significant differences between
the various keys. In the history of music theory such dif-
ferences have been significantly doubted by authors such as
Helmholtz (1877). Others have vehemently argued for them,
e.g. Beckh (1937). Of course, we have to leave this issue
unresolved here.

If the model’s distinction between learned (phases) and
more or less innate knowledge (symmetric structures) con-
tains a bit of truth, then this is a powerful argument for the
idea that the quantum model can realize important issues of
the generative tradition. Relating to the innateness issue, I do
not see any generativist wisdom in the model of tonal hier-
archies. Without a careful treatment of symmetry principles
such as the principle of translation invariance a cognitive
theory of tonal music is not possible (Balzano 1980; Hon-
ingh 2006; Mazzola 2002).
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