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Abstract
We investigate input-to-state stability (ISS) of infinite-dimensional collocated control
systems subject to saturated feedback. Here, the unsaturated closed loop is dissipative
and uniformly globally asymptotically stable. Under an additional assumption on the
linear system, we show ISS for the saturated one. We discuss the sharpness of the
conditions in light of existing results in the literature.
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1 Introduction

In this note we continue the study of the stability of systems of the form

{
ẋ(t) = Ax(t) − Bσ

(
B∗x(t) + d(t)

)
,

x(0) = x0,
(ΣSLD)
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derived from the linear collocated open-loop system

ẋ(t) = Ax(t) + Bu(t),

y(t) = B∗x(t).

by the nonlinear feedback law u(t) = −σ(y(t) + d(t)). Here X and U are Hilbert
spaces, A : D(A) ⊂ X → X is the generator of a strongly continuous contraction
semigroup, and B is a bounded linear operator from U to X , i.e. B ∈ L(U , X). The
function σ : U → U is locally Lipschitz continuous and maximal monotone with
σ(0) = 0.Of particular interest is the case inwhich σ is even linear in a neighbourhood
of 0. The open-loop system is called collocated as the output operator B∗ equals the
adjoint of the input operator B. In the following, we are interested in stability with
respect to both the initial value x0, that is, internal stability, and the disturbance d,
external stability. This is combined in the notion of input-to-state stability (ISS),
which has recently been studied for infinite-dimensional systems e.g. in [7,9,19,20]
and particularly for semilinear systems in [5,6,23], see also [18] for a survey. The
effect of feedback laws acting (approximately) linearly only locally is known in the
literature as saturation and first appeared in [24,25] in the context of stabilization
of infinite-dimensional linear systems, see also [10]. There, internal stability of the
closed-loop system was studied using nonlinear semigroup theory, a natural tool to
establish existence and uniqueness of solutions for equations of the above type, see
also the more recent works [11,15,16]. The simultaneous study of internal stability
and the robustness with respect to additive disturbances in the saturation seems to be
rather recent. This notion clearly includes uniform global (internal) stability, which is
far from being trivial for such nonlinear systems. In [22], this was studied for a wave
equation, and in [14] Korteweg–de Vries type equation was rigorously discussed,
building on preliminary works in [12,13], see also [11].

The combination of saturation and ISS was initiated in [15] and, as for internal sta-
bility, complemented in [16]. For the rich finite-dimensional theory on ISS for related
semilinear systems, we refer e.g. to [5,6] and the references therein. For (infinite-
dimensional) nonlinear systems, ISS is typically assessed by Lyapunov functions, see
e.g. [3,8,17,20,23]. These are often constructed by energy-based L2 norms, but also
Banach space methods exist [20], which are much easier to handle in the sense of
L∞-estimates as present in ISS. We will use some of these constructions here.

In this note, we investigate the question whether internal stability of the linear
undisturbed system, that is, (ΣSLD) with σ(u) = u and d ≡ 0, implies input-to-
state stability of (ΣSLD). In doing so, we try to shed light on limitations of existing
results. Because the linear system has a bounded input operator, the above question
is equivalent to asking whether ISS of the linear system yields that (ΣSLD) is ISS,
see e.g. [9]. For nonlinear systems, uniform global asymptotic (internal) stability
is only a necessary condition for ISS, which, however, may fail in the presence of
saturation. Indeed, the following saturated transport equation will serve as a model for
a counterexample which we shall discuss in this note in detail, see Theorem 7,
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⎧⎪⎨
⎪⎩
ẋ(t, ξ) = d

dξ x(t, ξ) − satR
(
x(t, ξ)

)
, (t, ξ) ∈ (0,∞) × [0, 1],

x(t, 0) = x(t, 1),

x(0, ξ) = f (ξ),

(Σsat)

where

satR(z) :=
{

z
|z| , |z| ≥ 1

z, z ∈ (−1, 1).
(1)

2 ISS for saturated systems

Definition 1 We call σ : U → U an admissible feedback function if

(i) σ(0) = 0,
(ii) σ is locally Lipschitz continuous, i.e. for every r > 0 there exists a kr > 0 such

that

‖σ(u) − σ(v)‖U ≤ kr‖u − v‖U ∀ u, v ∈ U with ‖u‖U , ‖v‖U ≤ r ,

(iii) σ is maximal monotone, i.e. �〈σ(u) − σ(v), u − v〉U ≥ 0 ∀ u, v ∈ U .

If additionally a Banach space S is continuously, densely embedded in U with dual
space S′ such that

(iv) ‖σ(u) − u‖S′ ≤ �〈σ(u), u〉U ∀ u ∈ U , and
(v) there exists C0 > 0 such that

�〈u, σ (u + v) − σ(u)〉U ≤ C0‖v‖U ∀ u, v ∈ U ,

then we call σ a saturation function. HereU ⊂ S′ is understood in the sense of rigged
Hilbert spaces, i.e. an element u in U is identified with the functional s �→ 〈s, u〉U in
S′.

It seems that the notion of a saturation function appeared first in the context of
infinite-dimensional systems in [24,25]. Note that the precise definition—in partic-
ular which properties it should include—has varied in the literature since then. Our
definition herematches the one in [15], except for the fact that, in addition, it is required
that ‖σ(u)‖S ≤ 1. We distinguish between “admissible feedback functions” and “sat-
uration functions” in order to point out which (minimal) assumptions are needed in
the following results.

Example 2 Let satR be the function from (1). It is easy to see that the function

sat : L2(0, 1) → L2(0, 1), u �→ satR(u(·))

123



296 Mathematics of Control, Signals, and Systems (2020) 32:293–307

is an admissible feedback function. Moreover, for S = L∞(0, 1) we have that

‖sat(u) − u‖L1(0,1) =
∫ 1

0
|sat(u)(ξ) − u(ξ)| dξ

≤
∫

{u≥1}
u(ξ) dξ +

∫
{−1≤u≤1}

u2(ξ) dξ +
∫

{u≤−1}
−u(ξ) dξ

= 〈sat(u), u〉U ∀u ∈ U .

As Property (v) from Definition 1 follows similarly, sat is a saturation function. Note
that this example is well known in the literature, see [15,16] and the references therein.

Let σ be an admissible feedback function. In the rest of the paper, we will be
interested in the following two types of systems: The unsaturated system,

{
ẋ(t) = Ax(t) − BB∗x(t),
x(0) = x0,

(ΣL )

and the disturbed saturated system

{
ẋ(t) = Ax(t) − Bσ

(
B∗x(t) + d(t)

)
,

x(0) = x0.
(ΣSLD)

with d ∈ L∞(0,∞;U ). We abbreviate

Ã : D( Ã) ⊂ X → X , Ãx := Ax − BB∗x .

By the Lumer–Phillips theorem, Ã generates a strongly continuous semigroup of con-
tractions (T̃ (t))t≥0 as −BB∗ ∈ L(X) is dissipative. Moreover, the nonlinear operator
A − Bσ(B∗·) generates a nonlinear semigroup of contractions [26, Thm. 1] since,
obviously, Bσ(B∗·) : X → X is continuous and monotone, i.e.

〈Bσ(B∗x) − Bσ(B∗y), x − y〉 ≥ 0, ∀x, y ∈ X .

Clearly, (ΣL ) is a special case of (ΣSLD) with d = 0, as σ(u) = u is an admissible
feedback function.

Definition 3 Let x0 ∈ X , d ∈ L∞
loc(0,∞;U ) and t1 > 0. A continuous function

x : [0, t1] → X satisfying

x(t) = T (t)x0 −
∫ t

0
T (t − s)Bσ

(
B∗x(s) + d(s)

)
ds, t ∈ [0, t1],

is called a mild solution of (ΣSLD) on [0, t1], and we may omit the reference to the
interval. If x : [0,∞) → X is such that the restriction x |[0,t1] is a mild solution for
every t1 > 0, then x is called a global mild solution.
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By our assumptions, (ΣSLD) has a uniquemild solution (on somemaximal interval)
for any x0 ∈ X and d ∈ L∞(0,∞;U ), [21, Thm. 6.1.4]1. In order to introduce the
external stability notions, the following well-known comparison functions are needed,

K := {α ∈ C(R+,R+) | α is strictly increasing, α(0) = 0},
K∞ := {α ∈ K | α is unbounded},
L := {α ∈ C(R+,R+) | α is strictly decreasing with lim

t→∞ α(t) = 0},
KL := {β ∈ C(R+ × R+,R+) | β(·, t) ∈ K ∀t > 0, β(r , ·) ∈ L ∀r > 0},

where C(R+,R+) refers to the continuous functions from R+ to R+.

Definition 4 (i) (ΣSLD) is called globally asymptotically stable (GAS) if every
mild solution x for d = 0 is global and the following two properties hold;
limt→∞ ‖x(t)‖X = 0 for every initial condition x0 ∈ X and there exist σ ∈ K∞
and r > 0 such that ‖x(t)‖ ≤ σ(‖x0‖) for every x0 ∈ X with ‖x0‖ ≤ r , d = 0
and t ≥ 0.

(ii) (ΣSLD) is called semi-globally exponentially stable in D(A) if for d = 0 and
any r > 0 there exist μ(r) > 0 and K (r) > 0 such that any mild solution x with
initial value x0 ∈ D(A) is global and satisfies

‖x(t)‖X ≤ K (r)e−μ(r)t‖x0‖X ∀t ≥ 0

for ‖x0‖D(A) := ‖x0‖X + ‖Ax0‖X ≤ r .
(iii) (ΣSLD) is called locally input-to-state stable (LISS) if there exist r > 0, β ∈

KL and ρ ∈ K∞ such that every mild solution x with initial value satisfying
‖x0‖X ≤ r and disturbance d with ‖d‖L∞(0,∞;U ) ≤ r is global and for all t ≥ 0
we have that

‖x(t)‖X ≤ β(‖x0‖X , t) + ρ(‖d‖L∞(0,t;U )). (2)

(ΣSLD) is called input-to-state stable (ISS) if r = ∞.
System (ΣSLD) is called LISS with respect to C(0,∞;U ) if the above holds for
continuous disturbances only. If (2) holds for (ΣSLD) with d ≡ 0 and r = ∞,
the system is called uniformly globally asymptotically stable (UGAS), where the
uniformity is with respect to the initial values.

Note that in our notation “UGAS” refers to “0-UGAS” and “GAS” refers to
“0-GAS” more commonly used in the literature. The System (ΣSLD) is globally
asymptotically stable if and only if for every mild solution x for d = 0 we have
limt→∞ ‖x(t)‖X = 0. This directly follows from the fact that the mild solutions
of (ΣSLD) with d = 0 can be represented by a (nonlinear) contraction semigroup,
which implies that ‖x(t)‖ ≤ ‖x0‖ for all t ≥ 0, x0 ∈ X . Compared to the other
notions, semi-global exponential stability in D(A) seems to be less common in the

1 A careful look at the proof reveals that the continuity of the nonlinearity in t required in [21, Thm. 6.1.2]
can be dropped in our setting.
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literature, but appeared already in the context of saturated systems in [16]. The notion
of semi-global exponential stability in X was studied in [14]. Note that for the linear
System (ΣL ) UGAS is equivalent to the existence of constants M, ω > 0 such that
‖T̃ (t)‖X ≤ Me−ωt for all t ≥ 0, see [4, Proposition V.1.2]. Clearly, if (ΣSLD) is
UGAS, then it is globally asymptotically stable. We note that semi-global exponential
stability in D(A) implies global asymptotical stability since D(A) is dense in X and
by the above-mentioned fact that the mild solutions are described by a nonlinear con-
traction semigroup. Moreover, using again the denseness of D(A) in X , the System
(ΣL ) is UGAS if and only if it is semi-globally exponentially stable in D(A).

Next we investigate the question whether (semi-)global exponential stability in
D(A) or UGAS of System (ΣL ) implies (semi-)global exponential stability in D(A)

or UGAS of System (ΣSLD).
In [11, Theorem 2], it is shown that global asymptotic stability of (ΣL ) implies

global asymptotic stability of (ΣSLD) if

– D(A) equipped with the norm ‖ · ‖D(A) = ‖ · ‖X + ‖A · ‖X is a Banach space
compactly embedded in X and

– σ is an admissible feedback function with the additional properties that for all
u ∈ U , �〈u, σ (u)〉 = 0 implies u = 0.

Note that the other assumptions of [11, Theorem 2] are satisfied in our situation
if σ is globally Lipschitz; this follows again by the fact that the mild solutions are
represented by a nonlinear semigroup. In [19, Section V], it is shown that under these
conditions and in finite dimensions, i.e. X = R

n and U = R
m , (ΣSLD) is UGAS.

Here we are interested in results for general admissible feedback functions and
saturation functions. The following result was proved in [16] and [15].

Proposition 5 [[15, Theorem1], [16, Theorem2]] Let (ΣL) beUGAS and σ : U → U
be a globally Lipschitz saturation function.

(i) If S = U, then (ΣSLD) is ISS.
(ii) If there exists a bounded self-adjoint operator P which maps D(A) to D(A) and

solves

〈 Ãx, Px〉 + 〈Px, Ãx〉 ≤ −〈x, x〉, ∀x ∈ D( Ã) = D(A), (3)

and if

∃c > 0 ∀x ∈ D(A) : ‖B∗x‖S ≤ c‖x‖D(A), (4)

then (ΣSLD) is semi-globally exponentially stable in D(A).

Note that in the second part of Proposition 5, the existence of a bounded, self-adjoint
operator P satisfying (3) always follows from the assumption that (ΣL ) is UGAS.
However, the property that such P leaves D( Ã) invariant does not hold in general.
For instance, this is satisfied if there exists α > 0 such that �〈Ax, x〉 ≤ −α‖x‖2 all
x ∈ D(A), which follows directly from dissipativity. On the other hand, it is not hard
to construct examples where this invariance is not satisfied. We will comment on this
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condition also in Remark 10(ii). We will show next that Proposition 5(ii) does not hold
without assuming (4) and, moreover, that (4) does neither imply UGAS nor ISS for
(ΣSLD).

Proposition 6 Let X = U = L2(0, 1), S = L∞(0, 1), A = 0, B = I and σ = sat.
Then, System (ΣL) is UGAS and System (ΣSLD) is neither semi-globally exponentially
stable in D(A), nor UGAS nor ISS.

Proof As System (ΣL ) is given by ẋ(t) = −x(t), it is UGAS. System (ΣSLD) s given
by

{
ẋ(t, ξ) = −satR

(
x(t, ξ)

)
, t ≥ 0, ξ ∈ (0, 1),

x(0, ξ) = f (ξ),
(5)

with the unique mild solution x ∈ C([0,∞); L2(0, 1))

x(t, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f (ξ) − t, if f (ξ) ≥ 1 + t,

e−t f (ξ), if f (ξ) ∈ (−1, 1),

f (ξ) + t, if f (ξ) ≤ −1 − t,

e f (ξ)−1−t , if f (ξ) ∈ [1, 1 + t),

−e1−t− f (ξ), if f (ξ) ∈ (−1 − t,−1],

(6)

which can be derived by solving (5) for fixed ξ as simple ODE. We will show that
there exists a sequence ( fn)n ∈ L2(0, 1) with ‖ fn‖D(A) = ‖ fn‖L2(0,1) = 1 such that
for all t > 0 there exists an n ∈ N such that ‖xn(t)‖L2(0,1) > 1

2 where xn denotes the
corresponding solution of (5) with initial function fn . For this purpose, we will only
consider the restriction of xn to {ξ ∈ [0, 1] | f (ξ) ≥ 1 + t} and define

fn(ξ) := 1√
n
ξ−αn

with αn := 1
2

(
1 − 1

n

)
. Clearly, fn ∈ L2(0, 1), ‖ fn‖L2 = 1 and fn is decreasing. Note

that the equation fn(ξ) = 1 + t has a unique solution ξ for fixed n and t which is
given by

ξ = ξt,n := 1

(
√
n(1 + t))

1
αn

.

Therefore, {ξ ∈ [0, 1] | fn(ξ) ≥ 1 + t} = {ξ ∈ [0, 1] | ξ ≤ ξt,n}. Hence,

‖xn(t)‖2L2(0,1) ≥
∫ ξt,n

0
xn(t, ξ)2dξ

=
∫ ξt,n

0
( fn(ξ) − t)2 dξ
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=
∫ ξt,n

0

(
1√
n
ξ−αn − t

)2

dξ

= 1

n

∫ ξt,n

0
ξ−2αndξ − 2t√

n

∫ ξt,n

0
ξ−αndξ +

∫ ξt,n

0
t2dξ

= 1

n

1

1 − 2αn
ξ
1−2αn
t,n − 2t√

n

1

1 − αn
ξ
1−αn
t,n + t2ξt,n

= n
1

1−n (1 + t)
2

1−n − 1

n + 1
2n

1
1−n 2t(1 + t)

1+n
1−n + n

n
1−n t2(1 + t)

2n
1−n .

Taking the limit n → ∞, we conclude

lim
n→∞ ‖xn(t)‖2L2(0,1) ≥ 1.

Thus, the solution of System (5) does not converge uniformly to 0 with respect to
the norm or graph norm of the initial value, so the system is neither semi-globally
exponentially stable in D(A) nor UGAS. ��

Note that System (ΣSLD) from Proposition 6 is (GAS) for d = 0 by [11, Theo-
rem 2]. After we have seen that (4) is necessary to conclude semi-global exponential
stability in D(A) in Proposition 5(ii), one may ask whether “more stability” can in
fact be expected. The following theorem shows that UGAS of System (ΣL ) together
with the hypotheses in Proposition 5(ii) is not sufficient to guarantee UGAS of System
(ΣSLD).

Theorem 7 Let X = U = L2(0, 1), B = I , S = L∞(0, 1), σ = sat and

A = d

dξ
, D(A) = {y ∈ H1(0, 1) | y(0) = y(1)}.

Then, the following assertions hold.

(i) System (ΣL) is UGAS and the hypothesis of Proposition 5(ii) holds,
(ii) System (ΣSLD) is semi-globally exponentially stable in D(A),
(iii) System (ΣSLD) is neither UGAS nor ISS.

We note that System (ΣSLD) of Theorem 7 equals (Σsat). Further, in [15, Thm. 1]
it has been wrongly stated that the saturated system is UGAS.

Proof It is easy to see that System (ΣL ) is UGAS. Since A is dissipative, it follows
that P = I solves (3) for Ã = A − BB∗ = A − I . Trivially, P maps D(A) to D(A).
Condition (4) is satisfied because H1(0, 1) is continuously embedded in L∞(0, 1).
Hence, (ΣSLD) is semi-globally exponentially stable in D(A) by Proposition 5 and the
fact that σ is globally Lipschitz continuous. This shows Assertions (i) and (ii). To see
(iii), note that A generates the periodic shift semigroup on L2(0, 1). By extending the
initial function f periodically toR+, the uniquemild solution y ∈ C([0,∞); L2(0, 1))
of (ΣSLD) is given by

y(t, ξ) = x(t, ξ + t),
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where x is defined in (6). By the particular form of (6), this implies that

‖x(t)‖L2(0,1) = ‖y(t)‖L2(0,1)

holds for all t ≥ 0. We can therefore choose the same sequence ( fn)n ∈ L2(0, 1) with
‖ fn‖L2(0,1) = 1 as in the proof of Proposition 6 in order to conclude

lim
n→∞ ‖yn(t)‖2L2(0,1) ≥ 1.

This shows that System (ΣSLD) is not UGAS and thus not ISS. ��
An important tool for the verification of ISS of System (ΣSLD) are ISS Lyapunov

functions.

Definition 8 LetUr = {x ∈ X : ‖x‖ ≤ r} and r ∈ (0,∞]. LetU be eitherC(0,∞;U )

or L∞
loc(0,∞;U ). A continuous function V : Ur → R≥0 is called an LISS Lyapunov

function for (ΣSLD) with respect to U , if there exists ψ1, ψ2, α, ρ ∈ K∞, such that
for all x0 ∈ Ur , d ∈ U , ‖d‖L∞(0,∞;U ) ≤ r ,

ψ1(‖x0‖X ) ≤ V (x0) ≤ ψ2(‖x0‖X )

and

V̇d(x0) := lim sup
t↘0

1

t

(
V (x(t)) − V (x0)

) ≤ −α(‖x0‖X ) + ρ(‖d‖L∞(0,∞;U )), (7)

where x is the mild solution of (ΣSLD) with initial value x0 and disturbance d. If
r = ∞, then V is called an ISS Lyapunov function.

Note that our definition of an ISS Lyapunov function corresponds to the one of
a “coercive ISS Lyapunov function in dissipative form” in the literature, [18]. By
[3, Thm. 1], see also [18, Thm. 2.18], the existence of an (L)ISS Lyapunov implies
(L)ISS for a large class of control systems which, in particular, have to satisfy the
“boundedness-implies-continuation” property (BIC). System (ΣSLD) with an admis-
sible feedback function and continuous, or, more generally, piecewise continuous
disturbances d belongs to this class, which allows to infer (L)ISS from the existence
of a Lyapunov function. To see this, note in particular that the (BIC) property is satis-
fied by classical results on semilinear equations, [1, Prop. 4.3.3] or [21, Thm. 6.1.4].
In the following, we will infer ISS by constructing Lyapunov functions.

Theorem 9 Suppose that there exists α > 0 such that ‖T (t)‖ ≤ e−αt for all t > 0
and let σ be an admissible feedback function. Then, the function

V (x) = ‖x‖2X , x ∈ X ,

is an ISS Lyapunov function for (ΣSLD) with respect to C(0,∞;U ) and System
(ΣSLD) is ISS with respect to C(0,∞;U ).
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Proof Let x ∈ C(0, t1; X) be themild solution of (ΣSLD) with initial value x0 ∈ D(A)

and disturbance d ∈ C(0,∞;U ). Let y ∈ C(0, t2; X) be the mild solution of the
system

{
ẏ(t) = Ay(t) − Bσ

(
B∗y(t) + d̃(t)

)
y(0) = y0

with d̃ ∈ C(0,∞;U ) and y0 ∈ X . Then there exists an r > 0 such that

max{‖B∗x(s) + d(s)‖U , ‖B∗y(s) + d̃(s)‖U , ‖B∗x(s)‖U | s ∈ [0,min{t1, t2}]} < r

because x , y, d and d̃ are continuous. Thus, we have for t ∈ [0,min{t1, t2})

‖x(t) − y(t)‖ ≤ ‖x0 − y0‖ +
∫ t

0
‖B‖kr

(‖B‖‖x(s) − y(s)‖ + ‖d(s) − d̃(s)‖) ds.
Applying Gronwall’s inequality yields

‖x(t) − y(t)‖ ≤
(

‖x0 − y0‖ +
∫ t

0
‖B‖kr‖d(s) − d̃(s)‖ ds

)
et‖B‖2kr . (8)

Let us for a moment assume that d is Lipschitz continuous with Lipschitz constant L .
We will prove that x is right differentiable. For 0 < h < t1 − t , we can write x(t + h)

in the form

x(t + h) = T (t + h)x0 −
∫ t+h

0
T (t + h − s)Bσ

(
B∗x(s) + d(s)

)
ds

= T (t)x(h) −
∫ t

0
T (t − s)Bσ

(
B∗x(s + h) + d(s + h)

)
ds.

Thus, x at time t + h equals the mild solution y of

{
ẏ(t) = Ay(t) − Bσ

(
B∗y(t) + d(t + h)

)
y(0) = x(h)

(9)

at time t . Hence, by (8) we obtain

‖x(t + h) − x(t)‖ ≤ (‖x(h) − x0‖ + ‖B‖kr Lht
)
et‖B‖2kr . (10)

Note that

x(h) − x0
h

= T (h)x0 − x0
h

− 1

h

∫ h

0
T (h − s)Bσ

(
B∗x(s) + d(s)

)
ds

123



Mathematics of Control, Signals, and Systems (2020) 32:293–307 303

converges to Ax0 − Bσ
(
B∗x0 + d(0)

)
as h ↘ 0 since x0 ∈ D(A) and σ , x and d are

continuous. Therefore, by (10), we deduce

lim sup
h↘0

‖x(t + h) − x(t)‖
h

< ∞. (11)

By the definition of the mild solution, we have that

T (h) − I

h
x(t) = x(t + h) − x(t)

h
+ 1

h

∫ t+h

t
T (t + h − s)Bσ

(
B∗x(s) + d(s)

)
ds.

Again by continuity of σ , x and d, we have that

lim
h↘0

1

h

∫ t+h

t
T (t + h − s)Bσ

(
B∗x(s) + d(s)

)
ds = Bσ

(
B∗x(t) + d(t)

)
.

Combining this with (11) shows that

x(t) ∈ {z ∈ X | lim sup
h↘0

1

h
‖T (h)x − x‖ < ∞},

whichmeans that x(t) is an element of the Favard space of the semigroup, and because
X is reflexive, we can conclude that x(t) ∈ D(A), [4, Cor. II.5.21]. This implies that
x is right differentiable at t with

lim
h↘0

x(t + h) − x(t)

h
= Ax(t) − Bσ

(
B∗x(t) + d(t)

)
.

As V (x) = ‖x‖2, we hence obtain for the Dini derivative

D+V (x(·))(t) = lim sup
h↘0

1

t

(
V (x(t + h)) − V (x(t))

)

that

D+V (x(·))(t) = 2�(〈Ax(t), x(t)〉X − 〈Bσ(B∗x(t) + d(t)), x(t)〉X )

≤ −2α‖x(t)‖2 − �(〈σ(B∗x(t) + d(t)) − σ(B∗x(t)), B∗x(t)〉X )

≤ −2α‖x(t)‖2 + ‖σ(B∗x(t) + d(t)) − σ(B∗x(t))‖ ‖B∗x(t)‖
≤ −2α‖x(t)‖2 + kr‖d(t)‖ ‖B‖ ‖x(t)‖, (12)

where we used that −�〈σ(B∗x), B∗x〉 ≤ 0 by Property (i) and (ii) of admissible
feedback functions and the local Lipschitz condition for σ . By [2, Cor. A.5.45], we
obtain

V (x(t + h)) − V (x(t)) ≤
∫ t+h

t
−2α‖x(s)‖2 + kr‖d(s)‖ ‖B‖ ‖x(s)‖ ds. (13)
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From (8), we derive

‖x(t) − y(t)‖ ≤ (‖x0 − y0‖ + t‖B‖kr‖d − d̃‖L∞(0,t;U )

)
et‖B‖2kr ,

and therefore, the mild solution of (ΣSLD) depends continuously on the initial data
and the disturbance. Hence, by understanding x(t + h) again as the solution of (9) at
time t , (13) holds for all x0 ∈ X and d ∈ C(0,∞;U ) which leads to

V̇d(x0) ≤ −2α‖x0‖2 + kr‖d(0)‖ ‖B‖ ‖x0‖

≤ (ε − 2α)‖x0‖2 + (kr ‖B‖ ‖d(0)‖)2
ε

for all x0 ∈ X , d ∈ C(0,∞;U ) and ε > 0. Choosing ε < 2α, this shows that V
is an ISS-Lyapunov function for (ΣSLD) which implies that (ΣSLD) is ISS by [18,
Thm. 2.18]. �

Remark 10

(i) Recall that the semigroup generated by A in Theorem 7 was not exponentially
stable. Theorem 9 shows that this is not accidental.

(ii) Note that the assumption on the semigroupmade in Theorem 9 is strictly stronger
than the condition that (T (t))t≥0 is an exponentially stable contraction semigroup
as can be seen e.g. for a nilpotent shift semigroup on X = L2(0, 1). It is a simple
consequence of the Lumer–Phillips theorem that the following assertions are
equivalent for a semigroup (T (t))t≥0 generated by A and some constant ω > 0.

(a) �〈Ax, x〉 ≤ −ω‖x‖2 all x ∈ D(A).
(b) supt>0 ‖eωt T (t)‖ ≤ 1.

(c) P = 1
ω
I solves �〈Ax, Px〉 ≤ −〈x, x〉, for all x ∈ D(A).

However, we also remark that the above condition is satisfied for a large class of
examples, such as in the case when A is a normal operator.

(iii) It is natural to askwhether Theorem9holdswhen A ismerely assumed to generate
an exponentially stable semigroup.However, it is unclear how to use the structural
assumptions on σ in the general case. On the other hand, the assumption on the
semigroup in Theorem 9 implies that P = I satisfies (3) in Proposition 5(ii).

(iv) An inspection of the proof shows that Theorem 9 can be generalized to piecewise
continuous or regulated functions d : [0,∞) → U .

Locally linear admissible feedback functions yield LISS Lyapunov functions.

Theorem 11 Let (ΣL) be UGAS with M, ω > 0 such that ‖T̃ (t)‖ ≤ Me−ωt for all
t ≥ 0 and let σ be an admissible feedback function with σ(u) = u for all ‖u‖U ≤ δ

and some δ > 0. Then, (ΣSLD) is LISS with Lipschitz continuous LISS Lyapunov
function V (x) := maxs≥0 ‖e ω

2 s T̃ (s)x‖X .
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Proof Let ‖x0‖X ≤ ‖B‖−1δ and r := max{‖B∗x(s)‖U , ‖B∗x(s) + d(s)‖U | s ∈
[0, t]} for some t > 0. We can rewrite (ΣSLD) in the form

ẋ(t) = Ãx(t) + B
(
B∗x(t) − σ(B∗x(t) + d(t))

)
,

x(0) = x0.

Hence, the mild solution satisfies

x(h) = T̃ (h)x0 +
∫ h

0
T̃ (h − s)B

(
B∗x(s) − σ(B∗x(s) + d(s)

)
ds.

Denoting the integral by Ih , we have

lim sup
h↘0

1

h
‖Ih‖X ≤ lim sup

h↘0

1

h

(∫ h

0
M‖B‖‖B∗x(s) − σ(B∗x(s))‖Uds

+
∫ h

0
M‖B‖‖σ(B∗x(s)) − σ(B∗x(s) + d(s))‖Uds

)
≤ M‖B‖‖B∗x0 − σ(B∗x0)‖U + M‖B‖kr‖d‖L∞(0,ε;U )

= M‖B‖kr‖d‖L∞(0,ε;U ),

where the continuity of x , the Lipschitz continuity of σ as well as the condition
σ(u) = u if ‖u‖ ≤ δ have been used.

With ‖x‖ ≤ V (x) ≤ M‖x‖ and V
(
T̃ (t)x

) ≤ e− ω
2 t V (x) for all x ∈ X we obtain

V̇d(x0) = lim sup
h↘0

1

h

(
V (T̃ (h)x0 + Ih) − V (x0)

)
≤ lim sup

h↘0

1

h

(
e− ω

2 h − 1
)
V (x0) + M lim sup

h↘0

1

h
‖Ih‖X

≤ −ω

2
‖x0‖X + M2‖B‖kr‖d‖L∞(0,ε;U )

for every ε > 0. The Lipschitz continuity of V follows from

|V (x) − V (y)| ≤ |max
s≥0

‖e ω
2 s T̃ (s)x‖ − max

s≥0
‖e ω

2 s T̃ (s)y‖|
≤ max

s≥0
‖e ω

2 s T̃ (s)(x − y)‖
≤ M‖x − y‖,

for all x, y ∈ X . Applying [17, Theorem 4] yields local input-to-state stability of
(ΣSLD). ��

Note that Property (iii) of Definition 1 has not been used in the proof of Theorem
11.

123



306 Mathematics of Control, Signals, and Systems (2020) 32:293–307

3 Conclusion

In this note we have continued the study of ISS for saturated feedback connections of
linear systems. Theorem 7 states that ISS cannot be concluded from uniform exponen-
tial stability of the unsaturated closed-loop and stability of the (undisturbed) open-loop
linear system

ẋ(t) = Ax(t)

(i.e. the semigroup generated by A is bounded). However, the conclusion does hold
under more assumptions on A; namely, that�〈Ax, x〉 ≤ −α‖x‖2 for some α > 0 and
all x ∈ D(A), see Theorem 9. The latter property can be seen as some kind of quasi-
contractivtiy of the semigroup combined with exponential stability. This condition
seems to be crucial for the proof, see Remark 10. The question remains whether
the result could be generalized to more general semigroups, e.g. such as contractive
semigroups which are exponentially stable, but do not satisfy the above mentioned
quasi-contractivity. Note, however, that the assumption that A generates a contraction
semigroup seems to be essential to employ dissipativity of the nonlinear system.
Another task for future research is the step towards unbounded operators B, promi-
nently appearing in boundary control systems. As our techniques and also the ones
used in existing results for ISS on saturated systems seem to heavily rely on the bound-
edness of B, this may require a different approach or more structural assumptions on
A.
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